- При данном методе резки, в качестве режущего инструмента используется струя высокотемпературной плазмы, мощность которой — позволяет резать черные, либо цветные металлы толщиной до 20 сантиметров.
- Чаще всего, осуществляется плазменная резка металла с ЧПУ, то есть с помощью специальных программируемых станков.
- Фото процесса:
Такие станки, позволяют осуществлять резку металлов по заданным параметрам в промышленных масштабах, обеспечивая высокую скорость и эффективность работы.
Кроме того, плазменная резка на станках с ЧПУ позволяет обеспечить достаточно высокую безопасность работы с плазмой, при соблюдении всех правил техники безопасности.
- Инструменты для плазменной резки металлов, обычно обладают достаточно большими габаритами, а так же требуют мощного источника электрической энергии.
- Но современные технологии позволяют создавать и более компактные приборы, с помощью которых осуществляется ручная плазменная резка металла.
- Инструменты для ручной резки так же потребляют достаточно много энергии, кроме того — ручная резка осуществляется со значительно меньшей скоростью, чем такая же плазменная резка на станке с ЧПУ.
- Точность ручной плазменной резки несколько ниже, но на стороне этого метода — большая универсальность, так как приборы для ручной резки обладают небольшими габаритами и легко транспортируются практически куда угодно.
- Для работы такого прибора нужно только подключение к электросети.
Технология и принцип работы
Инструменты для плазменной резки позволяют работать практически с любыми металлами или сплавами, даже сверхпрочными либо отличающимися другими особыми свойствами.
Также, технология плазменной резки металла позволяет значительно ускорить резку металлических деталей малой и средней толщины по сравнению с газопламенной резкой.
Плазменно-дуговой способ
Для того, чтобы создать плазму — между электродом аппарата для резки и разрезаемым металлом создается электрическая дуга, одновременно — из расположенного рядом с электродом сопла, подается газ под высоким давлением.
Электрическая дуга преобразует струю газа в поток плазмы имеющий температуру от 5 до 30 тысяч градусов. При этом скорость движения струи плазмы достигает более полутора километров в секунду.
Наглядное видео:
Поток плазмы, имеющий такие показатели температуры и скорости движения, легко справляется с разрезанием любых даже самых прочных сплавов.
При этом, плазменно дуговая резка металлов обеспечить высокое качество и чистоту получаемого среза и невысокий нагрев самой разрезаемой детали, что исключает тепловую деформацию заготовки, которая зачастую является серьезной проблемой при других методах разрезания металлов.
Плазменно-дуговая резка металла подразумевает включение разрезаемого металла в электрическую цепь, то есть разрез осуществляется с помощью электрической дуги.
- Таким образом, режут металлы, которые другим способом обработать крайне сложно либо невозможно, к ним относятся коррозионностойкие стали, титан, медь.
- Также, с помощью этого метода легко режутся: алюминий, чугун и другие металлы, сплавы, черные либо цветные.
- При резке плазменной дугой происходит выплавление металла в точке разреза, затем расплавленный металл выдувается струей газа.
Метод резки плазменной струей
Также существует метод резки с помощью потока плазмы. При этом разрезаемый металл не является компонентом электрической цепи.
- В данном случае — электрическая дуга так же есть, но она проходит от наконечника электрода до внутренней стенки сопла плазмотрона.
- Таким образом, можно осуществлять резку неэлектропроводных материалов, разрезание металла осуществляется за счет воздействия высокоскоростной плазмы, электрическая дуга используется только для создания плазмы и придания ей большой скорости.
- Именно этот метод используется для изготовления аппаратов ручной плазменной резки.
Технологии плазменной резки
- Метод резки струей плазмы незаменим при резке тонких листов металла, в других случаях (за исключением ручной резки) он используется достаточно редко.
- В ручной резке преимущественно используется именно метод резки потоком плазмы, так как с помощью этой технологии можно создавать компактные приборы с невысоким весом и энергопотреблением.
Назначение форсунок
Форсунки, по которым подается газ, требуют охлаждения, чаще всего используется воздушное охлаждение, но присутствует и аппаратура с водным охлаждением.
Благодаря этому — один и тот же аппарат можно настроить для эффективной работы практически с любым металлом, самого широкого диапазона толщины и состава материала.
Как правило, форсунки с воздушным охлаждением более дешевы и надежны, но жидкостное охлаждение форсунок позволяет развивать значительно большую мощность, чем при использовании воздушного охлаждения.
Назначение электродов
- Электроды, используемые в аппаратах для плазменной резки, изготавливают из сплавов вольфрама с лантаном.
- Это связано с тем, что электрод должен обладать высокой электропроводностью и при этом должен быть устойчив к воздействиям высокой температуры.
- Газы, которые применяются для создания плазмы делятся на активные и неактивные.
- Посредством активных газов работают кислородная либо воздушно плазменная резка металла, эти разновидности метода используются для резки черных металлов и их сплавов (сталь, чугун).
- Для резки цветных металлов и сплавов, наилучшим образом подходит — резка с применением неактивных газов, таких как аргон, азот, водород.
Схематичный рисунок режущего плазмотрона
Так как физический принцип плазменной резки металла позволяет работать практически с любыми металлами, обеспечивать высокую безопасность и скорость работы, то этот метод обработки металлов получил достаточно широкое распространение на самых различных производствах.
Резка металла с помощью плазменной струи позволяет осуществлять сложную фигурную вырезку.
Помимо быстрого вырезания сложных технических деталей, возможна и художественная плазменная резка металла, которая позволяет создавать настоящие произведения искусства либо декоративные элементы даже из очень тугоплавких сплавов.
Технология предполагает различные режимы плазменной резки металла, которые позволяют быстро подстроить оборудование под работы не только с определенной разновидностью сплава, но и с заготовками определенной толщины.
Благодаря различным режимам работы оборудования можно легко подобрать нужный режим в большинстве случаев, что позволяет экономить как энергию, так и ресурс аппаратуры.
Основные преимущества
- Резка металлов с помощью плазмы является одним из наиболее современных и технически совершенных способов работы с различными металлами.
- Эта технология появилась относительно недавно, но получила широкое распространение, благодаря ряду преимуществ, которые она предлагает по сравнению классическими инструментальными методами работы с металлами.
- Основные преимущества плазменной резки металла заключаются в:
- скорости резки;
- универсальности (можно работать с любыми металлами и славами);
- нет ограничений по форме обрабатываемых деталей и сложности вырезаемых фигур;
- срез, который образуется в процессе резки, обладает высокой чистотой и качеством поверхности.
Для того, чтобы максимально использовать все преимущества плазменной резки металлов — необходимо правильно и точно подбирать режимы работы установки под конкретный материал, при этом необходимо учитывать множество факторов, таких как:
- свойства материала;
- его толщина;
- скорость и температура плазмы;
- скорость выполнения разреза.
При правильном подборе этих, а так же некоторых других специфических параметров — плазменная резка будет осуществляться быстро и с высоким качеством.
Резка металла с помощью плазмы более безопасна, чем обычная газопламенная резка, так как в процессе резки не используются баллоны с кислородом, горючими газами.
Таблица скоростей плазменной резки
Аппараты для плазменной резки могут иметь различные габариты и назначение.
- Аппараты для ручной плазменной резки могут производится с различными конструктивными особенностями сопла и охладительных систем.
- Наиболее компактные и универсальные из них могут работать на открытом воздухе, в условиях открытых строительных либо монтажных площадок.
- При этом, плазма может создаваться как на прямую – из воздуха, так и из подаваемых газов, таких как водород либо аргон.
- Еще одним различием в таких аппаратах является система охлаждения плазмотрона, она может быть как жидкостной так и воздушной.
- Воздушная система лучше подходит для работы на открытых площадках, но обладает меньшей эффективностью и не позволяет аппарату развивать действительно высокую мощность.
- Если еще 20-30 лет назад резка металла плазмой была мало распространена и относилась к экзотическим методам работы с металлами, то в наше время можно легко найти компании, которые занимаются предоставлением таких услуг, либо же самостоятельно приобрести оборудование для осуществления ручной плазменной резки.
Популярные металлы
- Наиболее распространена плазменная резка листового металла, это связано с тем, что этот метода на сегодняшний день является одним из самых дешевых и быстрых способов работы с листовым прокатом.
- Как правило, оборудование для работы с листами металла позволяет осуществлять резку листа толщиной до 50 мм, независимо от сплава, из которого изготовлен лист.
- Кроме того современные станки плазменной резки позволяют вырезать изделия практически любой геометрической формы с точностью среза до 0,5 мм.
Нередко требуется точно и быстро осуществить резку труб. В отличие от резки листового металла плазменная резка труб осуществляется в специальных машинах, которые позволяют вращать трубу в процессе резки.
Скорость такой резки может достигать 9000 мм, а точность среза до 0,1 мм.
Благодаря таким параметрам, а так же невысокой цене плазменная резка труб является одним из наиболее доступных методов точной резки труб самого широкого диапазона диаметров и практически любого сплава.
Одним из сложных для работы материалов является алюминий и его сплавы, этот металл достаточно легко окисляется, при резке сложно получить чистый и точный срез.
Алюминий
- При этом, плазменная резка алюминия с использованием воздуха или активных газов — не является наилучшим выбором, так как поверхность среза будет покрыта толстым слоем окислов, что негативно скажется на качестве получаемых деталей.
- Для работы с алюминием требуются аппараты плазменной резки, работающие на неактивных газах, таких как аргон либо азот.
- При их использовании на поверхности среза алюминия практически не будет оксидов, эта разновидность метода является одной из наиболее подходящих для работы с этим металлом.
Не смотря на универсальность метода, плазменная резка стали является наиболее частой областью применения плазменного оборудования, по причине того, что сталь является наиболее распространенным сплавом.
Кроме того, для резки стали нет необходимости применять инертные газы, что позволяет использовать даже самое простое и недорогое оборудование, получая отличные результаты как по точности так и по скорости работы.
Нержавеющая сталь
Если осуществляется плазменная резка нержавейки, то она также не требует технических ухищрений, так как этот сплав устойчив к окислению и его вполне возможно резать с помощью воздушно-дуговой разновидности плазменной резки, которая является наиболее дешевой и доступной.
Еще одним несомненным преимуществом является возможность работы даже с очень тонкими слоями металла без потерь качества и точности резки.
Именно плазменная резка тонкого металла является основным и практически единственным конкурентом в этой области для лазерной резки.
Это связано с тем, что методами механической обработки крайне сложно осуществлять резку тонкого металла, при этом они не удовлетворяют современным требованиям по точности, скорости работы и качеству получаемых срезов.
Рыночные расценки на услуги
Благодаря широкому распространению оборудования для плазменной резки, стоимость осуществления этой работы достаточно невысока и доступна.
На нее оказывает влияние толщина обрабатываемого материала, вид металла, который будет подвергаться резке, а так же сложность изготавливаемых деталей.
Предлагают такие услуги достаточное количество различных предприятий, поэтому найти подрядчика для выполнения данной работы не составляет труда. Так, стоимость плазменной резки металла обычно начинается от 25-30 рублей за погонный метр.
- В случае, если требуется осуществить резку цветных металлов, минимальная стоимость погонного метра будет составлять 50-60 рублей.
- Так же может осуществляться и плазменная резка металла своими руками, даже в домашних условиях.
- Для этого потребуется приобрести соответствующее оборудование, которое можно переносить и вес которого находится в пределах 5-8 килограмм.
- Для осуществления ручной плазменной резки потребуется подключение аппарата к электрической сети.
- При ручной работе цена услуг плазменной резки металла будет несколько выше, чем при автоматической.
- Но при этом она может осуществляться в широком диапазоне условий и обладает значительно большей автономностью по сравнению с промышленным оборудованием.
- Наибольшей популярностью пользуется воздушно плазменная чпу резка металла.
- При этом способе обработки не используются инертные газы, поэтому он подходит только для работы со сталью и другими сплавами железа, а цена плазменной резки металла таким способом весьма невысока.
- Основным преимуществом такого метода является высокая скорость резки, а так же возможность запрограммировать станок на изготовление даже очень сложных изделий в автоматическом режиме.
- В последние годы появилось множество компаний, которые предлагают услуги плазменной резки металла.
Это создало высокую конкуренцию на этом рынке и привело к тому, что цена резки металла плазмой значительно уменьшилась и стала доступна широкому кругу потребителей.
Цена услуг плазменной резки металла включает в себя стоимость расходных материалов (электроэнергии и газов), стоимость оборудования, а так же сложность изделий, которые требуется вырезать.
Технология и выбор параметров режима плазменной резки
Рекомендуем приобрести:
Установки для автоматической сварки продольных швов обечаек — в наличии на складе! Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.
Сварочные экраны и защитные шторки — в наличии на складе! Защита от излучения при сварке и резке. Большой выбор. Доставка по всей России!
Рабочие плазмообразующие среды должны обеспечивать:
- эффективное формирование режущей дуги
- получение высококачественных кромок реза
- эффективную передачу разрезаемому металлу тепловой энергии, заимствованной в столбе дуги
- длительную работу формирующих элементов плазмотрона
- получение дополнительной энергии для резки за счет экзотермических реакций
- экономичность и безопасность работы.
Рабочие среды наиболее широко используются в виде технических газов: азота, аргона, водорода, кислорода, сжатого воздуха и др.
Рабочую среду выбирают с учетом ее свойств (табл. 27.3) и свойств обрабатываемого материала. Инертные газы обеспечивают получение наиболее чистых поверхностей реза, что особенно важно для резки цветных металлов.
Двухатомные газы улучшают передачу энергии дуги разрезаемому металлу за счет механизма диссоциации — рекомбинации.
Кислородсодержащие среды повышают энергетическую эффективность резки металлов, экзотермически реагирующих с кислородом, что обеспечивает для них наиболее высокую производительность резки.
Наибольшее применение в РФ получила резка на основе использования плазмы кислородсодержащего сжатого воздуха (воздушно-плазменная резка). Области рационального использования сред указаны в табл. 27.4.
Перспективно использование интенсифицирующих плазмообразующих сред. При воздушно-плазменной резке обогащение воздуха кислородом обеспечивает повышение производительности резки сталей без увеличения затрат энергии и способствует улучшению качества металла на кромках.
Подача воды в плазменную дугу также улучшает качество заготовок из сталей и способствует повышению скорости резки. Если к плазмообразующему воздуху добавлять углеводороды, заметно возрастает скорость резки меди и ее сплавов и существенно улучшается качество заготовок.
Выбор параметров режима
Технологический процесс плазменной резки включает в себя следующие операции: врезание (с кромки листа или, при необходимости, с пробивки исходного отверстия), резку прямолинейных и криволинейных участков заданного контура и завершение реза. Основной операцией является прямолинейная резка заготовок с вертикальными кромками.
В составе назначаемых режимов и условий резки указывают рабочую плазмообразующую среду, рабочий ток, диаметр и длину сопла, расход рабочей среды, расстояние от рабочего торца плазмотрона до поверхности металла, а также рабочее напряжение дуги и скорость резки.
Ток I, напряжение U, тепловой к. п. д. η дуги, удельный вес γ, толщина δ, энтальпия плавления S разрезаемого металла, ширина реза b определяют скорость резки:
W = 0,24IUη/γbδS. (27.2)
При резке стали δ=1 см, γ = 7,8 г/см3, S= 13,06 кДж/г током I=300 А при U = 180 В с η = 0,3 и b=0,4 см W=4 см/с, или 2,4 м/мин. При резке в окислительных средах реакция окисления повышает скорость. При заданном режиме скорость резки можно регулировать (рис. 27.2).
Максимально возможная скорость резки на прямолинейных участках ограничивается уровнем, выше которого не достигается сквозное прорезание металла (рис. 27.2, а).
При скорости ниже этого уровня металл прорезается полностью (рис.27.
2, б), но качество резки характеризуется большой неперпендикулярностью кромок, шероховатостью поверхностей, большой глубиной литого участка зоны термического влияния и т. д.
С ограничением скорости резки (рис. 27.2, в, г) качество заготовок повышается, хотя затраты энергии и материалов возрастают, производительность резки снижается. При скоростях резки ниже максимальных в 1,5—2,5 раза (рис. 27.
2, д) кромки реза становятся параллельными между собой и перпендикулярными к поверхности листа, шероховатость становится минимальной и вырезаемая заготовка по большей части может быть использована без дополнительной механической обработки. При дальнейшем снижении скорости резки (рис. 27.
2, е) процесс и качество заготовок теряют стабильность, что неприемлемо.
Ориентировочные режимы и условия резки (для машинной прямолинейной резки) приведены в табл. 27.5, 27.6.
Скорость резки на криволинейных участках (с малыми радиусами кривизны) понижают на 30—50 % во избежание искажения формы кромок в результате отставания режущей струи (аналогично газопламенной кислородной резке).
Аналогично снижают скорость резки при завершении реза с целью сквозного прорезания металла на концевом участке у нижних кромок.
Если резку начинают на поверхности листа, начальное отверстие в металле пробивают вне контура детали (на отходе). При механизированной резке пробивку производят в движении машины с приподниманием и последующим опусканием плазмотрона. Пробивка производится при скорости движения машины меньшей против заданной в 1,5—2 раза.
Врезание с кромки металла или начального отверстия при толщине металла 20—30 мм не требует специальных приемов и регулировки скорости. Контроль полноты прорезания можно вести наблюдая за отклонением от вертикали факела режущей струи на выходе из листа.
Вначале врезания ось и передняя граница факела отклоняются в сторону, противоположную резке, но при правильно установленной скорости передняя граница факела вскоре занимает вертикальное положение или близкое к нему. Такое положение в процессе резки свидетельствует о рациональной скорости.
При слишком малой скорости весь факел ориентируется по вертикали, а его передняя граница неустойчива и отклоняется в направлении движения резака.
Параметры плазменной резки
Существуют определенные параметры, определяющие процесс плазменной резки. На него влияют многие факторы, в том числе факельный зазор (зазор межу листом и соплом), состав плазмообразующего газа, скорость перемещения резака, сила тока дуги. Причем одни из них напрямую зависят от других.
Плазмообразующий газ
Считается, что в ручной плазморезке наиболее эффективно в качестве плазмообразующего газа использовать обычный воздух.
И это отлично – ведь что может быть доступнее и дешевле? Вот только воздушная смесь хорошо зарекомендовала себя при раскрое листов толщиной до 25 мм. Причем использование воздуха приводит к азотированию кромки.
Такое явление наблюдается при насыщении кромки реза входящим, в состав воздуха, оксида азота.
При автоматической плазменной резке, как правило, применяют двойной газ. Листы толщиной +/-25 мм раскраивают с помощью водяного тумана (дополнительного газа) и азота (основного).
К сожалению, на более тонких листах водяной пар достаточно интенсивно охлаждает рез. При этом не обеспечивается прогрев близлежащих участков металла.
В результате на нижней поверхности образуется шлак, а кромка получается слишком грубой.
Для предотвращения такого дефекта уменьшают скорость резания или (и) увеличивают силу тока.
Для раскроя листов толще, чем 25 мм, большинство производителей плазменных резок рекомендуют использовать водород или аргон в качестве основного газа, а двуокись углерода или азот – как дополнительный. Применение водородно-азотистой смеси приводит к минимизации нитрирующего эффекта.
Углекислый газ значительно дороже азота. Но он незаменим, когда необходимо получить чистые кромки и максимально уменьшить вредные испарения, сопровождающие процесс резки металла.
Следует отметить, что процесс раскроя стальных листов зависит не только от выбора плазмообразующих газов. Важное значение здесь играет оптимальное давление, под которым находится газ. От этого параметра зависит срок службы сопла и качество реза.
Так, если давление повышено, в начале процесса не удается получить качественной кромки. При пониженном же давлении наблюдается недостаточное охлаждение плазмотрона. А это приводит к раздвоению дуги и разрушению сопла. В таблице ниже показано, как действуют различные газы на процесс резания металлов:
Наименование газа | Вид обрабатываемого металла | Достоинства | Недостатки |
Воздух |
|
|
|
Азот, N2 |
|
|
|
Водород-аргон, Ar-H2 |
|
|
|
Кислород, О2 |
|
Ток дуги
Факельный зазор
От данного параметра зависит:
- перпендикулярность образуемых
кромок; - плотность плазменной дуги;
- ее устойчивость.
Чем меньше факельный зазор, тем меньше угол кромки. Оптимальным считается расстояние от сопла до листа
в диапазоне от 1,5 до 10 мм. Данное расстояние выставляется индивидуально для каждого случая и указывается
в руководстве по эксплуатации источника плазмы.
Чтобы избежать кромочных дефектов, необходимо выдерживать постоянным факельный зазор. Уменьшение его величины приведет к преждевременному сгорания и электрода, и дорогостоящего сопла.
Особенно опасным является контакт сопла и листа, когда факельный зазор равен нулю. Чтобы избежать разрушения сопла по этой причине,
плазменные установки, выпускаемые компанией «ТеплоВентМаш», оборудованы датчиками контроля высоты.
Такие стабилизаторы позволяют автоматически поддерживать оптимальный, заданный оператором, факельный зазор.
Скорость плазменной резки
Именно скорость перемещения резака определяет качество реза. От нее зависит присутствие шлака под листом и на сложность его удаления. Если скорость невелика, возникнет перерасход плазмообразующего газа. А на нижней части листа появится легко удаляемый «низкоростный» шлак.
При повышенной скорости перемещения сопла линия реза становится волнистой. На нижней же части листа появляется плохо отделимый «высокорослый» шлак.
Идеальной скоростью резания листового металла считается такое перемещение резака, при котором угол отставания между прорезанием верхней и нижней кромок не превышает 5 градусов.
Угол наклона кромок и ширина реза
ГОСТ 14792-80 определяет четыре главнейших параметра, влияющих на качество раскроя листового металла. К ним относятся:
- линейное отклонение;
- неперпендикулярность торцовой
поверхности; - её шероховатость;
- зона термического воздействия.
На точность и качество реза определяющее влияние оказывает угол наклона кромок и ширина реза. А вот форма кромок и размеры реза зависят от тока и напряжения дуги, скорости перемещения плазмотрона и расхода плазмообразующего газа.
На ширину реза влияют ток дуги и размер выходного отверстия в сопле. Стоит хоть немного увеличить эти параметры, как тут же ширина реза увеличится. Чтобы оценить ширину шва, можно увеличить диаметр выходного отверстия в сопле в 1,5 раза.
Для получения точных размеров вырезаемых заготовок, необходимо сдвинуть плазмотрон «в металл» на полуширину реза. Если
купить станок плазменной резки с ЧПУ, это произойдет автоматически. В нашем оборудовании встроены специальные корректоры (или компенсаторы реза). Они устанавливают эквидистантную траекторию перемещения инструмента.
Вырезаемая деталь будет меньше положенного (если рез широк) из-за частичного разрушения электрода, повышенного тока дуги, завышенного факельного зазора, низкой скорости резки или уменьшенный расхода плазмообразующего газа.
Причиной узкого реза (и, соответственно, больших размеров заготовки) являются малый факельный зазор, пониженная дуга тока, перерасход плазмообразующего газа и завышенная скорость перемещения резака.
Углом наклона кромок считают угол, образованный перпендикуляром к поверхности листа и обработанной плоскостью. Если подвод плазмообразующего газа тангенциальный, правая и левая кромки реза отличаются углами наклона.
Закручивание газового потока по часовой стрелке приводит к тому, что, по ходу движения плазмотрона угол правой кромки составит от 1 до 3 градусов, а левой – от 3 до 8.
Если угол кромки превышает 5 градусов, следует пересмотреть параметры резки.
Технология плазменной резки
Сущность способа. Плазма — ионизированный газ, содержащий электрически заряженные частицы и способный проводить ток. Ионизация газа происходит при его нагреве. Степень ионизации тем выше, чем выше температура газа.
В центральной части сварочной дуги газ нагрет до температур 5000 … 30 000 °С, имеет высокую электропроводность, ярко светится и представляет собой типичную плазму.
Плазменную струю, используемую для сварки и резки, получают в специальных плазмотронах, в которых нагревание газа и его ионизация осуществляются дуговым разрядом в специальных камерах.
Процесс плазменной резки металла основан на использовании воздушно-плазменной дуги постоянного тока прямого действия (электрод-катод, разрезаемый металл — анод). Сущность процесса заключается в местном расплавлении и выдувании расплавленного металла с образованием полости реза при перемещении плазменного резака относительно разрезаемого металла.
Для возбуждения рабочей дуги (электрод — разрезаемый металл), с помощью осциллятора зажигается вспомогательная дуга между электродом и соплом — так называемая дежурная дуга, которая выдувается из сопла пусковым воздухом в виде факела длиной 20-40 мм. Ток дежурной дуги 25 или 40-60 А, в зависимости от источника плазменной дуги. При касании факела дежурной дуги металла возникает режущая дуга — рабочая, и включается повышенный расход воздуха; дежурная дуга при этом автоматически отключается.
Применение способа воздушно-плазменной резки, при котором в качестве плазмообразующего газа используется сжатый воздух, открывает широкие возможности при раскрое низкоуглеродистых и легированных сталей, а также цветных металлов и их сплавов.
Преимущества воздушно-плазменной резки по сравнению с механизированной кислородной и плазменной резкой в инертных газах следующие: простота процесса резки; применение недорогого плазмообразующего газа — воздуха; высокая чистота реза (при обработке углеродистых и низколегированных сталей); пониженная степень деформации; более устойчивый процесс, чем резка в водородосодержащих смесях.
Вдуваемый в камеру газ (рис. 1), сжимая столб дуги в канале сопла плазмотрона и охлаждая его поверхностные слои, повышает температуру столба. В результате струя проходящего газа, нагреваясь до высоких температур, ионизируется и приобретает свойства плазмы.
Увеличение при нагреве объема газа в 50 … 100 и более раз приводит к истечению плазмы с высокими околозвуковыми скоростями. Плазменная струя легко расплавляет любой металл. На практике находят применение два основных способа включения плазменных горелок (см. рис. 1).
В первом — дуговой разряд существует между стержневым катодом, размещенным внутри горелки по ее оси и нагреваемым изделием (плазменная струя прямого действия).
Такие плазмотроны имеют кпд выше, так как мощность, затрачиваемая на нагрев металла, складывается из мощности, выделяющейся в анодной области, и мощности, передаваемой аноду струей плазмы.
Рис. 1 Конструкция плазмотронов с аксиальной (а) (прямого действия)и тангенциальной (б) (косвенного действия) подачей газа
Во втором — дуга горит между катодом и соплом, которое подключается к положительному полюсу источника питания (плазменная струя косвенного действия). Струей газа, истекающей из сопла, часть плазмы столба дуги сжимается и выносится за пределы плазмотрона.
Тепловая энергия этой плазмы, складывающаяся из кинетической и потенциальной энергий ее частиц, используется для нагрева и плавления обрабатываемых изделий.
В большинстве случаев общая и удельная тепловые энергии невелики, поэтому такие плазмотроны используют для сварки тонких изделий в микроплазменных установках для пайки и обработки неметаллов, так как изделие не обязательно должно быть электропроводным.
Для надежной стабилизации дуги и оттеснения ее от стенок сопла применяют осевую или тангенциальную подачу газа (см. рис. 1). Для устранения турбулентностей в осесимметричных потоках их формируют с помощью специальных конструкций сопл и вкладышей.
В дуговых процессах с неплавящимся электродом изменение силы тока при изменении напряжения дуги приводит к неравномерности глубины проплавления металла и нарушению стабильности процесса.
Поэтому при плазменно-дуговой сварке оптимальными внешними характеристиками источника питания являются крутопадающие или даже вертикальные характеристики, позволяющие значительно изменять напряжение при постоянстве силы тока.
Источники питания с вертикальными характеристиками появились сравнительно недавно, применительно к плазменно-дуговым процессам.
Существует специальное оборудование для ручной и механизированной плазменно-дуговой сварки, наплавки и резки. Оно отличается от ранее описанных сварочных устройств конструкцией горелки-плазмотрона.
Существует множество горелок, отличающихся конструкцией катода (стержневой, полый, дисковый), способом охлаждения (водой, воздухом), способом стабилизации дуги (газом, водой, магнитным полем), родом тока, составом плазмообразующей среды и т.д.
Рис. 2 Схема микроплазменной горелки для сварки плазменной дугой:1 — рабочий газ;2 — фокусирующий газ
С увеличением скорости истечения плазменной струи нарушается ламинарность потока. Кроме того в засопловом участке степень обжатия столба дуги уменьшается. В связи с этим в последние годы получают все большее распространение горелки с вторичным фокусирующим и защитным потоком газа (рис. 2).
Газ подается под углом к оси горелки и как бы омывает столб дуги, интенсивно охлаждая его, благодаря чему при удалении от сопла несколько уменьшается диаметр столба дуги. При этом высокая концентрация плазменного потока достигается при сравнительно малой скорости истечения.
Такие горелки, называемые иглоплазменными или микроплазменными, позволяют получить остроконечную плазменную дугу в области малых токов (0,5 … 30 А).
Дуговая плазменная струя — интенсивный источник теплоты с широким диапазоном технологических свойств. Ее можно использовать для нагрева, сварки или резки как электропроводных металлов (см. рис. 1, а, б), так и неэлектропроводных материалов, таких как стекло, керамика и др. (см. рис. 1, б).
Тепловая эффективность дуговой плазменной струи зависит от силы сварочного тока и напряжения, состава, расхода и скорости истечения плазмообразующего газа, расстояния от сопла до поверхности изделия, скорости перемещения горелки (скорости сварки или резки) и т.д. Геометрическая форма струи может быть также различной (квадратной, круглой и т.д.) и определяться формой выходного отверстия сопла.
Техника сварки. Питание дуги, как правило, осуществляется переменным или постоянным током прямой полярности (минус на электроде). Возбуждают дугу с помощью осциллятора.
Для облегчения возбуждения дуги прямого действия используют дежурную дугу, горящую между электродом и соплом горелки.
Для питания плазмообразующей дуги используются источники сварочного тока с рабочим напряжением до 120 В, а в которых случаях и более высоким; для питания плазмотрона, используемого для резки, оптимально напряжение холостого хода источника питания до 300 В.
Плазменной струей можно сваривать практически все металлы в нижнем и вертикальном положениях. В качестве плазмообразующих газов используют аргон, азот, смесь аргона с азотом и водородом, углекислый газ и воздух (в основном для резки). В качестве электрода применяют вольфрамовые стержни или специальные медные со вставками из гафния или циркония.
К преимуществам плазменной сварки относятся высокая производительность, малая чувствительность к колебаниям длины дуги, устранение включений вольфрама в металле шва. Без скоса кромок можно сваривать металл толщиной до 15 мм с образованием провара специфической формы.
Это объясняется образованием сквозного отверстия в основном металле, через которое плазменная струя выходит на обратную сторону изделия. Расплавляемый в передней части сварочной ванны металл давлением плазмы перемещается вдоль стенок сварочной ванны в ее хвостовую часть, где кристаллизуется, образуя шов.
По существу, процесс представляет собой прорезание изделия с заваркой места резки.
Плазменной струей можно сваривать стыковые и угловые швы. Стыковые соединения на металле толщиной до 2 мм можно сваривать с отбортовкой кромок, при толщине свыше 10 мм рекомендуется делать скос кромок.
В случае необходимости используют дополнительный металл. Для сварки металла толщиной до 1 мм успешно используют микроплазменную сварку струей косвенного действия, в которой сила сварочного тока равна 0,1 …
10 А.
Резка плазменной струей основана на расплавлении металла в месте реза и его выдувании потоком плазмы. Плазменную струю используют для резки металла толщиной от долей до десятков миллиметров.
Для резки металла малой толщины используют плазменную струю косвенного действия. При повышенной толщине металла лучшие результаты достигаются при плазменной струе прямого действия.
При резке даже углеродистых сталей во многих случаях она более экономична, чем газокислородная, ввиду высокой скорости и лучшего качества реза.
В зависимости от металла в качестве плазмообразующих газов можно использовать азот, водород, аргоно-водородные, аргоно-азотные, азото-водородные смеси. Использование для резки смесей газов, содержащих двухатомные газы, энергетически более эффективно.
Диссоциируя, двухатомный газ поглощает много теплоты, которая выделяется на холодной поверхности реза при объединении свободных атомов в молекулу. В последнее время, когда появилась возможность использовать водоохлаждаемые циркониевые и гафниевые электроды, в качестве режущего газа стали использовать и воздух.
Сварку и резку можно выполнять вручную и автоматически.
- Скорость воздушно-плазменной резки в зависимости от толщины металла.
- Режимы воздушно-плазменной резки металлов.
- Режимы воздушно-плазменной резки металлов.