Паяльник для SMD компонентов своими руками

Паяльник для пайки SMD компонентов из доступных деталей Паяльник для SMD компонентов своими руками

Это инструкция по изготовлению и сборке миниатюрного паяльника, пригодного для пайки SMD и других мелких компонентов современной радиоаппаратуры.

Паяльник для SMD компонентов своими руками Паяльник для SMD компонентов своими руками Паяльник для SMD компонентов своими руками Паяльник для SMD компонентов своими руками

Если вам лень читать статью, приступайте сразу к просмотру видеоролика, в котором показан процесс изготовления паяльника, его сборка и испытания. Хотя, некоторые технические подробности освещены только в статье. Продолжительность видеоролика 8 минут, разрешение Full HD. Есть субтитры.

Паяльник для SMD компонентов своими руками

Я уже недавно представлял на суд зрителя подобную конструкцию паяльника, но c вдвое меньшей мощностью. Это был сверхминиатюрный паяльник, позволяющий производить самые мелкие работы, такие как, например, ремонт шлейфов. Подробности об этом изделии можно найти здесь>>>

К сожалению, конструкция эта оказалась слишком сложной для повторения, так как требовала изготовления всяких замысловатых деталей, а также специальной оснастки для изготовления нагревательного элемента. Поэтому я решил значительно упростить самоделку, но вместе с этим повысить КПД изделия.

Паяльник для SMD компонентов своими руками

Тут уместно доложить, что несколько дней экспериментов с нагревательными элементами на основе резисторов МЛТ доказали полную несостоятельность этой конструкции, хотя она довольно широко представлена самодельщиками в сети Интернет.

Лишь один резистор из пяти позволил довести температуру жала до 400°С и то, только в течении одного цикла включения/выключения. При очередном включении он отказал. Другие резисторы не позволили получить температуру выше 250°С и выходили из строя во время одного или двух коротких циклов.

Паяльник для SMD компонентов своими руками

Исследование вышедших из строя резисторов показало, что обрыв плёночного резистивного элемента происходит по внешнему периметру той или другой контактной чашки. Вы можете это проверить и сами, если подключите резистор к блоку питания и с помощью вольтметра определите место наивысшего падения напряжения.

Но, не стоит унывать, изготовление паяльника на основе резистора МЛТ тоже довольно трудоёмкая работа, так как доработка самого резистора требует даже примитивной токарной обработки. А представленную ниже конструкцию можно повторить чуть ли ни на коленке.

Паяльник из консервной банки

Паяльник для SMD компонентов своими руками

Это эскиз малогабаритного паяльника для пайки SMD компонентов р/а. По нему и был собран этот паяльник.

Паяльник для SMD компонентов своими руками

Ручка паяльника была изготовлена из ручки от скакалки. К сожалению, ручка оказалась без сквозного отверстия, и его пришлось просверлить. В видеоролике показано, как это можно сделать.

В эскиз были заложены саморезы в качестве крепёжных элементов крепления корпуса и кабеля, но у меня дома не нашлось таких мелких шурупчиков. Поэтому я использовал пустотелые заклёпки, в которых нарезал резьбу.

Полученные таким образом резьбовые втулки и пружинку от шариковой ручки я вклеил эпоксидным клеем в отверстия, просверленные в ручке. Если вы будете использовать саморезы, то желательно под них тоже просверлить отверстия, чтобы ручка не растрескалась.

Каркасом паяльника является небольшая трубка, согнутая из жести от консервной банки. В качестве шаблона для гибки трубки использован отрезок медной проволоки диаметром 2,5мм. Эта же проволока послужила заготовкой для изготовления жала паяльника. При использовании проволоки другого диаметра, придётся внести поправку в чертёж развёртки каркаса.

Корпус паяльника тоже изготовлен из жести толщиной 0,3мм от консервной банки.

Чтобы, при сверлении отверстий диаметром 3 и 4 миллиметра, обеспечить правильную форму отверстий и не снимать заусенцы, лучше использовать свёрла с заточкой цапфенбор.

Отверстия, указанных выше размеров, необходимы для снижения температуры корпуса в месте его соединения с ручкой паяльника.

Разные же диаметры этих отверстий были выбраны для того, чтобы линия изгиба планок не проходила через отверстия.

А это чертёж развёрток: корпуса, каркаса и замыкателя. Четрёж можно приклеить к жести и использовать в качестве шаблона для обрезки контура и разметки отверстий. Под превьюшкой находится чертёж в формате А4. Масштаб чертежа 1:1, разрешение 300 пикселей на дюйм.

Пара слов перед цифрами.

Малогабаритный паяльник должен быть низковольтным просто потому, что чем меньше размер нагревательного элемента, тем сложнее обеспечить электробезопасность. Это обусловлено конечной электрической прочностью воздушной изоляции.

Кроме этого, незначительная длина нихромового провода, из которого изготавливается низковольтный нагреватель, позволяет применить однослойную намотку.

Нагреватель такой конструкции имеет лучшую теплоотдачу и более прост в изготовлении.

В первую очередь это связано с тем, что каждый очередной слой нагревателя требует использования термостойкой прокладки, которая обладает более низкой, чем у металла теплопроводностью.

  • Предполагается, что температура паяльника будет регулироваться за счёт изменения напряжения питания, например, с помощью любительского лабораторного блока питания.
  • Рассчитаем сопротивление спирали для паяльника с номинальным напряжением 12 Вольт.
  • Исходные данные:
  • Напряжение питания – 0…12 Вольт,
  • Мощность – 15 Ватт,
  • Сопротивление нагревателя при этом будет равно:
  • R = U²/P, где:
  • R – сопротивление в Омах,
  • U – напряжение питания в Вольтах,
  • P – мощность нагревателя в Ваттах.
  • R = 12²/15 = 9,6 (Ом)

Нихромовый провод подходящего диаметра я получил, разобрав десятиваттный резистор С5-5-10Ватт на 160 Ом. Внутри оказался провод диаметром 0,17мм.

Кстати, металлический корпус от этого же резистора я применил при изготовлении миниатюрного паяльного фена>>>

Нихромовый провод я не отжигал, так как расчётная длина провода позволила намотать витки с некоторым зазором (шагом). Если вам попадётся более толстый провод, и расстояние между витками будет слишком мало, то провод придётся отжечь до образования окалины. Подробнее об этом рассказано здесь>>>

Определить длину провода можно с помощью омметра. У меня получилось около 140мм.

  1. Количество витков спирали нагревателя определяем так:
  2. ω = L/(π*(D+d)), где:
  3. ω – количество витков,
  4. L – длина провода,
  5. π – число Пи (3,14),
  6. D – диаметр каркаса вместе с изолирующей слюдяной прокладкой,
  7. d – диаметр провода.
  8. ω = 140/(3,14*(3,6+0,17)) ≈ 12 (витков)

Паяльник описанной конструкции может обеспечить температуру на конце жала свыше 500°С. Время достижения температуры 350°С около одной минуты.

Спираль нагревательного элемента намотана на каркасе из жести. Между каркасом и спиралью проложена прокладка из слюды (или стекломиканита). Чтобы пластинка слюды не рассыпалась при намотке спирали, она была наклеена на лоскут стеклоткани. С внешней стороны спираль также изолирована несколькими слоями стеклоткани.

На выводы спирали одета трубка из стеклоткани, позаимствованная у выброшенной соседями электроплиты.

Для обеспечения равномерной стяжки нагревателя жестяной обечайкой, в разрыв обечайки вставляется небольшой жестяной замыкатель. Он предотвращает выдавливание стеклоткани в зазор обечайки.

А это самодельный паяльник для пайки SMD деталей в собранном виде. Небольшое расстояние между передним краем ручки и концом жала обеспечивает необходимую точность позиционирования жала при монтаже мелких радиодеталей.

11 Апрель, 2015 (17:35) в Сделай сам, Технологии

Пайка smd деталей без фена

Все понимают, как можно с помощью обычного паяльника ЭПСН, мощностью 40 ватт, и мультиметра, самостоятельно ремонтировать различную электронную технику, с выводными деталями.

Но такие детали сейчас встречаются, в основном только в блоках питания различной техники, и тому подобных силовых платах, где протекают значительные токи, и присутствует высокое напряжение, а все платы управления, сейчас идут на SMD элементной базе.

Паяльник для SMD компонентов своими руками

На плате SMD радиодетали

Так как же быть, если мы не умеем демонтировать и впаивать обратно SMD радиодетали, ведь тогда минимум 70% от возможных ремонтов техники, мы уже самостоятельно не сможем выполнить…

Кто нибудь, не очень глубоко знакомый с темой монтажа и демонтажа, возможно скажет, для этого необходимы паяльная станция и паяльный фен, различные насадки и жала к ним, безотмывочный флюс, типа RMA-223, и тому подобное, чего в мастерской домашнего мастера обычно не бывает.

Паяльник для SMD компонентов своими руками

Паяльная станция

У меня есть дома в наличии, паяльная станция и фен, насадки и жала, флюсы, и припой с флюсом различных диаметров.

Но как быть, если тебе вдруг потребуется починить технику, на выезде на заказ, или в гостях у знакомых? А разбирать, и привозить дефектную плату домой, или в мастерскую, где есть в наличии соответствующее паяльное оборудование, неудобно, по тем или иным причинам? Оказывается выход есть, и довольно простой. Что нам для этого потребуется?

Читайте также:  Линейчатые поверхности: развертывающиеся, косые

Что нужно для хорошей пайки

  • 1. Паяльник ЭПСН 25 ватт, с жалом заточенным в иголку, для монтажа новой микросхемы.

Паяльник для SMD компонентов своими руками

  • 2. Паяльник ЭПСН 40-65 ватт с жалом заточенным под острый конус, для демонтажа микросхемы, с применением сплава Розе или Вуда. Паяльник, мощностью 40-65 ватт, должен быть включен обязательно через Диммер, устройство для регулирования мощности паяльника. Можно такой как на фото ниже, очень удобно.

Паяльник для SMD компонентов своими руками

  • 3. Сплав Розе или Вуда. Откусываем кусочек припоя бокорезами от капельки, и кладем прямо на контакты микросхемы с обоих сторон, в случае если она у нас, например в корпусе Soic-8.

Паяльник для SMD компонентов своими руками Паяльник для SMD компонентов своими руками

  • 4. Демонтажная оплетка. Требуется для того, чтобы удалить остатки припоя с контактов на плате, а также на самой микросхеме, после демонтажа.

Паяльник для SMD компонентов своими руками

  • 5. Флюс СКФ (спиртоканифольный флюс, растолченная в порошок, растворенная в 97% спирте, канифоль), либо RMA-223, или подобные флюсы, желательно на основе канифоли.

Паяльник для SMD компонентов своими руками

  • 6. Удалитель остатков флюса Flux Off, или 646 растворитель, и маленькая кисточка, с щетиной средней жесткости, которой пользуются обычно в школе, для закрашивания на уроках рисования.

Паяльник для SMD компонентов своими руками

  • 7. Трубчатый припой с флюсом, диаметром 0.5 мм, (желательно, но не обязательно такого диаметра).

Паяльник для SMD компонентов своими руками

  • 8. Пинцет, желательно загнутый, Г — образной формы.

Распайка планарных деталей

Итак, как происходит сам процесс? Кое-что почитайте тут. Мы откусываем маленькие кусочки припоя (сплава) Розе или Вуда. Наносим наш флюс, обильно, на все контакты микросхемы.

Кладем по капельке припоя Розе, с обоих сторон микросхемы, там где расположены контакты. Включаем паяльник, и выставляем с помощью диммера, мощность ориентировочно ватт 30-35, больше не рекомендую, есть риск перегреть микросхему при демонтаже.

Проводим жалом нагревшегося паяльника, вдоль всех ножек микросхемы, с обоих сторон.

  • Демонтаж с помощью сплава Розе
  • Контакты микросхемы у нас при этом замкнутся, но это не страшно, после того как демонтируем микросхему, мы легко с помощью демонтажной оплетки, уберем излишки припоя с контактов на плате, и с контактов на микросхеме.

Итак, мы взялись за нашу микросхему пинцетом, по краям, там где отсутствуют ножки.

Обычно длина микросхемы, там где мы придерживаем ее пинцетом, позволяет одновременно водить жалом паяльника, между кончиками пинцета, попеременно с двух сторон микросхемы, там где расположены контакты, и слегка тянуть ее вверх пинцетом.

За счет того что при расплавлении сплава Розе или Вуда, которые имеют очень низкую температуру плавления, (порядка 100 градусов), относительно бессвинцового припоя, и даже обычного ПОС-61, и смещаясь с припоем на контактах, он тем самым снижает общую температуру плавления припоя.

Демонтаж микросхем с помощью оплетки

И таким образом микросхема у нас демонтируется, без опасного для нее перегрева. На плате у нас образуются остатки припоя, сплава Розе и бессвинцового, в виде слипшихся контактов.

Для приведения платы в нормальный вид мы берем демонтажную оплетку, если флюс жидкий, можно даже обмакнуть ее кончик в нее, и кладем на образовавшиеся на плате “сопли” из припоя.

Затем прогреваем сверху, придавив жалом паяльника, и проводим оплеткой вдоль контактов.

Выпаивание радиодеталей с оплеткой

Таким образом весь припой с контактов впитывается в оплетку, переходит на нее, и контакты на плате оказываются очищенными полностью от припоя.

Затем эту же процедуру, нужно проделать со всеми контактами микросхемы, если мы собираемся запаивать микросхему в другую плату, или в эту же, например после прошивания с помощью программатора, если это микросхема Flash памяти, содержащая прошивку BIOS материнской платы, или монитора, или какой либо другой техники.

Эту процедуру, нужно выполнить, чтобы очистить контакты микросхемы от излишков припоя. После этого наносим флюс заново, кладем микросхему на плату, располагаем ее так, чтобы контакты на плате строго соответствовали контактам микросхемы, и еще оставалось немного места на контактах на плате, по краям ножек.

С какой целью мы оставляем это место? Чтобы можно было слегка коснувшись контактов, жалом паяльника, припаять их к плате. Затем мы берем паяльник ЭПСН 25 ватт, или подобный маломощный, и касаемся двух ножек микросхемы расположенных по диагонали.

Припаивание SMD радиодеталей паяльником

В итоге микросхема у нас оказывается “прихвачена”, и уже не сдвинется с места, так как расплавившийся припой на контактных площадках, будет держать микросхему. Затем мы берем припой диаметром 0.5 мм, с флюсом внутри, подносим его к каждому контакту микросхемы, и касаемся одновременно кончиком жала паяльника, припоя, и каждого контакта микросхемы.

Использовать припой большего диаметра, не рекомендую, есть риск навесить “соплю”. Таким образом, у нас на каждом контакте “осаждается” припой. Повторяем эту процедуру со всеми контактами, и микросхема впаяна на место. При наличии опыта, все эти процедуры реально выполнить за 15-20 минут, а то и за меньшее время.

Нам останется только смыть с платы остатки флюса, растворителем 646, или отмывочным  средством Flux Off, и плата готова к тестам, после просушивания, а это происходит очень быстро, так как вещества применяемые для смывания, очень летучие. 646 растворитель, в частности, сделан на основе ацетона.

Надписи, шелкография на плате, и паяльная маска, при этом не смываются и не растворяются.

Единственное, демонтировать таким образом микросхему в корпусе Soic-16 и более многовыводную, будет проблематично, из-за сложностей с одновременным прогреванием, большого количества ножек. Всем удачной пайки, и поменьше перегретых микросхем! Специально для Радиосхем — AKV.

   Форум

   Форум по обсуждению материала Пайка smd деталей без фена

Делаем паяльник своими руками: 3 лучших способа

В быту иногда возникает необходимость припаять контакты деталей, залудить провода или выполнить аналогичные операции. Но при отсутствии паяльника нужно приобрести дорогостоящее оборудование, что совершенно нецелесообразно для одноразовых работ, либо собрать паяльник своими руками из подручных материалов. Далее мы рассмотрим наиболее простые в реализации методы изготовления.

Способ №1: Из ПЭВ резистора

  • Для такого паяльника вам понадобится старый резистор в керамической изоляции, который будет использоваться в качестве нагревательного элемента. Можно использовать резистор из старого электрооборудования, требуемые параметры рассчитываются по формуле: P = U2  /R,
  • Где P – мощность паяльника;
  • U – питающее напряжение;
  • R – омическое сопротивление резистора.

Такой самодельный паяльник рассчитан на работу от низкого напряжения в 12 или 24 В, что следует учитывать при расчете мощности устройства. Благодаря чему его можно запитать как от понижающего блока питания, так и от автомобильного аккумулятора.

При необходимости, вы можете подобрать резистор и под напряжение питания сети 220 В, но в данном примере мы рассмотрим низковольтный вариант.

Помимо ПЭВ резистора для изготовления вам понадобятся кусочки текстолита, гетинакса или сухой древесины для изолирующей рукоятки, главное, чтобы они выдерживали высокие температуры.

Два медных стержня различного диаметра для изготовления теплоприемника и паяльного жала. Соединительные провода или заводской блок питания на 12В.

Также вам пригодятся элементы для фиксации, напильник, электролобзик, сверло, метчик, дрель.

Процесс изготовления паяльника состоит из таких этапов:

  • Для токоприемника выбирается медный стержень, который должен плотно входить во внутреннее отверстие резистора. От плотности будет зависеть качество теплопередачи от нагревателя к жалу паяльника.
    Паяльник для SMD компонентов своими рукамиРис. 1: плотно входит в отверстие
  • Для жала подбирается медный прут или проволока меньшего диаметра. Заточите край прута для получения нужной формы, наиболее удобным для новичков считается форма плоской отвертки.
  • Просверлите с обеих сторон отверстия и нарежьте в них метчиком резьбу – одно под фиксирующий болт с шайбой, второе под медный наконечник.
  • Вставьте теплоприемник в резистор и замерьте глубину залегания, поставьте отметку на поверхности. По отметке сделайте радиальный паз при помощи напильника – в него будет вставляться стопорное кольцо, которое можно сделать из пружинки или шайбы.
  • На одном конце медной проволоки для жала паяльника нарежьте резьбу и вкрутите ее в теплоприемник.
    Паяльник для SMD компонентов своими рукамиРис. 2: вкрутите в теплоприемник
  • Соберите всю конструкцию вместе, зафиксируйте оба медных прутка при помощи резьбовых соединений и стопорного кольца.
  • Зачистьте концы блока питания от изоляции, если необходимо, удалите и штекер он больше не понадобиться.
  • Закрепите концы медных проводов от блока питания на контактах резистора. Для этого используйте болтовое соединение, обязательно плотно зажимайте гайки, чтобы получить хороший контакт.
  • При помощи лобзика выпилите из старой платы рукоятку, в данном примере она будет состоять из двух половинок, между которыми расположен электрический шнур. Также в ней  можно пропилить борозду под провода
    Паяльник для SMD компонентов своими рукамиРис. 3: поместите шнур питания в рукоятку
  • Соберите рукоятку – закрепите половинки при помощи болтов или заклепок.
Читайте также:  Почему ржавеет нержавеющая сталь

Аккумуляторный паяльник готов, его можно использовать для пайки микросхем, электрических контактов автомобильной проводки и т.д. Если под рукой нет керамического резистора, можно изготовить паяльник из нихромовой проволоки.

Способ №2: Из нихромовой нити

В отличии от предыдущего метода изготовления электрического паяльника, здесь вы самостоятельно изготовите нагревательный элемент из отрезка нихромовой проволоки. Следует отметить, что подобрать нужный диаметр можно как с помощью табличных величин удельного сопротивления нихрома на метр длины, так и опытным путем.

Второй вариант наиболее простой, так как, имея проволоку диаметром, допустим, в 0,5мм, вы можете натянуть ее на кусок сухой древесины и,  подключив питание крокодилами наблюдать скорость и величину нагрева по цветовым изменениям.

Паяльник для SMD компонентов своими рукамиРис. 4: определение нагрева опытным путем

При желании можно удлинить или укоротить нагреваемый участок путем перемещения крокодила – это позволит подобрать оптимальную температуру нагрева за счет длины, наиболее подходящую для вашего паяльника.

Помимо нихромовой нити вам понадобятся:

  • Продолговатая заготовка из дерева округлой формы, чтобы удобно помещалась в вашей руке.
  • Электрическая дрель и сверла различного диаметра для высверливания отверстий.
  • Медная проволока для изготовления толстого или тонкого жала, диаметр подбирается индивидуально в каждой ситуации.
  • Алебастр с водой для фиксации медной проволоки – объем довольно небольшой, поэтому вам хватит остатков с ремонта, приобретать новый пакет необязательно.
  • Соединительные медные провода для подключения нагревательного элемента к питающему шнуру. Выбираются в соответствии с номиналом протекающего по ним тока.
  • Изоляционные материалы – изолента, термоусадка, стеклотканевая изоляция.
  • Блок питания на 12В, чтобы сделать мини паяльник.
  • Слесарный инструмент, канцелярский нож и т.д.

В данном примере мы рассмотрим порядок изготовления низковольтного паяльника на 12В. Для этого выполните следующий алгоритм действий:

  • Просверлите в торце деревянной заготовки два несквозных отверстия – в одном из них будет размещаться жало, а другом разъем питания.
    Паяльник для SMD компонентов своими рукамиРис. 5: просверлите отверстия в торцах
  • На уровне конца торцевого отверстия под разъем питания просверлите с двух боков отверстия меньшего диаметра. Лучше расположить их под наклоном, так как затем  в них нужно будет протянуть питающие провода.
    Паяльник для SMD компонентов своими рукамиРис. 6: высверлите отверстия по бокам
  • От просверленных отверстий для вывода проводников электрического тока до отверстия установки нагревательного стержня вырежьте углубления и поместите в них провода от разъема.
    Паяльник для SMD компонентов своими рукамиРис. 7: поместите провода от разъема
  • Отрежьте из толстой медной проволоки, около 2,5мм в диаметре, заготовку под жало.
  • При помощи алебастровой смеси установите нагревательный стержень для паяльника в отверстие и дождитесь засыхания раствора до плотного состояния. Как правило, это занимает всего пару минут.
    Паяльник для SMD компонентов своими рукамиРис. 8: зафиксируйте жало
  • Наденьте на стержень кусок стеклотканевой изоляции и зафиксируйте при помощи скрутки медных проводов.
  • Намотайте на стеклотканевую трубку нагревательную спираль и прикрепите ее к выводам.
    Паяльник для SMD компонентов своими рукамиРис. 9: намотайте нихромовую проволоку

Оголенные проводники и места соединения заизолируйте с помощью термоусадки.

  • Соедините провода питания паяльника и заизолируйте изолентой.

Миниатюрный паяльник готов и может использоваться для пайки проводов, smd элементов и т.д.

Паяльник для SMD компонентов своими рукамиРис. 10: готовый миниатюрный паяльник

Способ №3 Мощный импульсный паяльник

Такой паяльник не подойдет новичку, так как для его создания требуются базовые знания в электротехнике и навыки чтения электрических схем.

За основу для изготовления этого агрегата берется импульсный блок питания от галогенных светильников.

Хорошо будет получить и схему этого устройства, в рассматриваемом примере она имеет такой вид, хотя может быть и любая другая, в зависимости от модели блока для паяльника:

Рис. 11: схема блока питания для импульсного паяльника

Принцип действия импульсного паяльника заключается в закорачивании вторичной обмотки трансформатора Т2 для получения максимального нагрева жала. Для этого применяется самодельная обмотка с одним витком и закороткой из более тонкой проволоки под наконечник.

Для изготовления паяльника вам понадобится блок от галогенного светильника, корпус (в данном случае используется пистолет из детской игрушки), медная проволока диаметром 6мм и проволока диаметром 1мм, керамические предохранители, болты для фиксации деталей паяльника, кнопка и шнур питания с вилкой. Из инструмента вам понадобятся пассатижи, отвертка, метчик и ножовка.

Процесс изготовления импульсного паяльника состоит из следующих этапов:

  • Снимите крышку с блока питания от галогенного светильника, будьте аккуратны, чтобы не повредить внутренние элементы, места пайки и детали.
    Рис. 12: снимите крышку с блока питания
  • С трансформатора удалите низковольтную обмотку, представленную несколькими витками медной проволоки.
    Рис. 13: удалите низковольтную обмотку
  • Примерьте плату в заготовленный корпус и определите наиболее выгодный способ расположения. Заметьте, что нагревательный элемент будет сильно греться, поэтому под ним никакие элементы лучше не оставлять, куда безопаснее перенести их подальше, разделив плату.
  • Аккуратно разделите плату и на две части, для безопасности деталей их можно удалить на время распила, если под рукой имеется хоть какой-то паяльник. В противном случае придется соблюдать предельную осторожность.
    Рис. 14: обрежьте плату
  • Подключите к плате кнопку и шнур питания.
  • В катушку с высоковольтной обмоткой трансформатора проденьте медную проволоку толщиной 6мм и согните при помощи пассатижей вокруг катушки, как показано на рисунке.
    Рис. 15: проденьте медную проволоку в катушку
  • На выводы нагревательного элемента наденьте части керамической рубашки предохранителя, они должны предохранять пластиковый корпус паяльника от высокой температуры.
    Рис. 16: наденьте куски керамической рубашки
  • Концы нагревателя расплющите, и сделайте отверстия при помощи метчика под фиксаторные болты.
    Рис. 17: нарежьте резьбу
  • Закоротите теплоприемник медной проволокой диаметром в 1 мм. Если при первом включении этот проводник перегреется и перегорит из-за слишком большой температуры жала, его нужно будет заменить более толстым в 1,5 или  2 мм. Если нагрев будет слабым, установите более тонкую проволоку в 0,5 мм.

У вас получился один из самых мощных паяльников, работающих от сети 220В – он запросто может выпаять детали с мощными ножками, соединять контакты силовой цепи и т.д.

Рис. 18: готовый импульсный паяльник

Но назвать этот паяльник одноразовым нельзя, поскольку собирается он целенаправленно и требует серьезных усилий для создания. Также желательно иметь хоть какой-то рабочий паяльник при его изготовлении, это значительно упростит работу по разделению платы.

Читайте также:  Нормализация стали: процесс, температура, режимы, время

Более подробная статья про изготовление импульсный паяльник: https://www.asutpp.ru/impulsnyj-payalnik-svoimi-rukami.html

Видео способы

Пайка SMD компонентов в домашних условиях

Многие задаются вопросом, как правильно паять SMD-компоненты. Но перед тем как разобраться с этой проблемой, необходимо уточнить, что же это за элементы. Surface Mounted Devices – в переводе с английского это выражение означает компоненты для поверхностного монтажа.

Главным их достоинством является большая, нежели у обычных деталей, монтажная плотность. Этот аспект влияет на использование SMD-элементов в массовом производстве печатных плат, а также на их экономичность и технологичность монтажа.

Обычные детали, у которых выводы проволочного типа, утратили свое широкое применение наряду с быстрорастущей популярностью SMD-компонентов.

Ошибки и основные принцип пайки

Некоторые умельцы утверждают, что паять такие элементы своими руками очень сложно и довольно неудобно. На самом деле, аналогичные работы с ТН-компонентами проводить намного труднее. И вообще эти два вида деталей применяются в различных областях электроники. Однако многие совершают определенные ошибки при пайке SMD-компонентов в домашних условиях.

Паяльник для SMD компонентов своими рукамиSMD-компоненты

Главной проблемой, с которой сталкиваются любители, является выбор тонкого жала на паяльник. Это связано с существованием мнения о том, что при паянии обычным паяльником можно заляпать оловом ножки SMD-контактов.

В итоге процесс паяния проходит долго и мучительно. Такое суждение нельзя считать верным, так как в этих процессах существенную роль играет капиллярный эффект, поверхностное натяжение, а также сила смачивания.

Игнорирование этих дополнительных хитростей усложняет выполнение работы своими руками.

Паяльник для SMD компонентов своими рукамиПайка SMD-компонентов

Чтобы правильно паять SMD-компоненты, необходимо придерживаться определенных действий. Для начала прикладывают жало паяльника к ножкам взятого элемента. Вследствие этого начинает расти температура и плавиться олово, которое в итоге полностью обтекает ножку данного компонента.

Этот процесс называется силой смачивания. В это же мгновение происходит затекание олова под ножку, что объясняется капиллярным эффектом. Вместе со смачиванием ножки происходит аналогичное действие на самой плате. В итоге получается равномерно залитая связка платы с ножками.

Контакта припоя с соседними ножками не происходит из-за того, что начинает действовать сила натяжения, формирующая отдельные капли олова.

Очевидно, что описанные процессы протекают сами по себе, лишь с небольшим участием паяльщика, который только разогревает паяльником ножки детали.

При работе с очень маленькими элементами возможно их прилипание к жалу паяльника. Чтобы этого не произошло, обе стороны припаивают по отдельности.

Пайка в заводских условиях

Этот процесс происходит на основе группового метода. Пайка SMD-компонентов выполняется с помощью специальной паяльной пасты, которая равномерно распределяется тончайшим слоем на подготовленную печатную плату, где уже имеются контактные площадки.

Этот способ нанесения называется шелкографией. Применяемый материал по своему виду и консистенции напоминает зубную пасту. Этот порошок состоит из припоя, в который добавлен и перемешан флюс.

Процесс нанесения выполняется автоматически при прохождении печатной платы по конвейеру.

Паяльник для SMD компонентов своими рукамиЗаводская пайка SMD-деталей

Далее установленные по ленте движения роботы раскладывают в нужном порядке все необходимые элементы. Детали в процессе передвижения платы прочно удерживаются на установленном месте за счет достаточной липкости паяльной пасты.

Следующим этапом происходит нагрев конструкции в специальной печи до температуры, которая немного больше той, при которой плавится припой. В итоге такого нагрева происходит расплавление припоя и обтекание его вокруг ножек компонентов, а флюс испаряется.

Этот процесс и делает детали припаянными на свои посадочные места. После печки плате дают остыть, и все готово.

Необходимые материалы и инструменты

Для того чтобы своими руками выполнять работы по впаиванию SMD-компонентов, понадобится наличие определенных инструментов и расходных материалов, к которым можно отнести следующие:

  • паяльник для пайки SMD-контактов;
  • пинцет и бокорезы;
  • шило или игла с острым концом;
  • припой;
  • увеличительное стекло или лупа, которые необходимы при работе с очень мелкими деталями;
  • нейтральный жидкий флюс безотмывочного типа;
  • шприц, с помощью которого можно наносить флюс;
  • при отсутствии последнего материала можно обойтись спиртовым раствором канифоли;
  • для удобства паяния мастера пользуются специальным паяльным феном.

Паяльник для SMD компонентов своими рукамиПинцет для установки и снятия SMD-компонентов

Использование флюса просто необходимо, и он должен быть жидким. В таком состоянии этот материал обезжиривает рабочую поверхность, а также убирает образовавшиеся окислы на паяемом металле.

В результате этого на припое появляется оптимальная сила смачивания, и капля для пайки лучше сохраняет свою форму, что облегчает весь процесс работы и исключает образование «соплей».

Использование спиртового раствора канифоли не позволит добиться значимого результата, да и образовавшийся белый налет вряд ли удастся убрать.

Паяльник для SMD компонентов своими рукамиПрипой для пайки

Очень важен выбор паяльника. Лучше всего подходит такой инструмент, у которого возможна регулировка температуры.

Это позволяет не переживать за возможность повреждения деталей перегревом, но этот нюанс не касается моментов, когда требуется выпаивать SMD-компоненты.

Любая паяемая деталь способна выдерживать температуру около 250–300 °С, что обеспечивает регулируемый паяльник. При отсутствии такого устройства можно воспользоваться аналогичным инструментом мощностью от 20 до 30 Вт, рассчитанным на напряжение 12–36 В.

Использование паяльника на 220 В приведет к не лучшим последствиям. Это связано с высокой температурой нагрева его жала, под действием которой жидкий флюс быстро улетучивается и не позволяет эффективно смачивать детали припоем.

Специалисты не советуют пользоваться паяльником с конусным жалом, так как припой трудно наносить на детали и тратится уйма времени. Наиболее эффективным считается жало под названием «Микроволна». Очевидным его преимуществом является небольшое отверстие на срезе для более удобного захвата припоя в нужном количестве. Еще с таким жалом на паяльнике удобно собирать излишки пайки.

Паяльник для SMD компонентов своими рукамиЖало для паяльника «Микроволна»

Использовать припой можно любой, но лучше применять тонкую проволочку, с помощью которой комфортно дозировать количество используемого материала. Паяемая деталь при помощи такой проволочки будет лучше обработана за счет более удобного доступа к ней.

Как паять SMD-компоненты?

Порядок работ

Процесс пайки при тщательном подходе к теории и получении определенного опыта не является сложным. Итак, можно всю процедуру разделить на несколько пунктов:

  1. Необходимо поместить SMD-компоненты на специальные контактные площадки, расположенные на плате.
  2. Наносится жидкий флюс на ножки детали и нагревается компонент при помощи жала паяльника.
  3. Под действием температуры происходит заливание контактных площадок и самих ножек детали.
  4. После заливки отводится паяльник и дается время на остывание компонента. Когда припой остыл — работа выполнена.

Паяльник для SMD компонентов своими рукамиПроцесс пайки SMD-компонентов

При выполнении аналогичных действий с микросхемой процесс пайки немного отличается от вышеприведенного. Технология будет выглядеть следующим образом:

  1. Ножки SMD-компонентов устанавливаются точно на свои контактные места.
  2. В местах контактных площадок выполняется смачивание флюсом.
  3. Для точного попадания детали на посадочное место необходимо сначала припаять одну ее крайнюю ножку, после чего компонент легко выставляется.
  4. Дальнейшая пайка выполняется с предельной аккуратностью, и припой наносится на все ножки. Излишки припоя устраняются жалом паяльника.

Паяльник для SMD компонентов своими рукамиПаяльник с острым жалом 24 В.

Как паять при помощи фена?

При таком способе пайки необходимо смазать посадочные места специальной пастой. Затем на контактную площадку укладывается необходимая деталь — помимо компонентов это могут быть резисторы, транзисторы, конденсаторы и т. д. Для удобства можно воспользоваться пинцетом.

После этого деталь нагревается горячим воздухом, подаваемым из фена, температурой около 250º C. Как и в предыдущих примерах пайки, флюс под действием температуры испаряется и плавится припой, тем самым заливая контактные дорожки и ножки деталей. Затем отводится фен, и плата начинает остывать.

При полном остывании можно считать пайку оконченной.

Паяльник для SMD компонентов своими рукамиФен для паяния мелких деталей

Ссылка на основную публикацию
Adblock
detector