Мартенсит: структура, кристаллическая решетка, твердость

Под мартенситом понимают игольчатую микроструктуру, которая фиксируется в отдельных чистых металлах, имеющих склонность к полиморфизму, и металлических сплавах, прошедших процедуру закалки.

По сути, мартенсит – это базовый структурный компонент стали после закалки, который является твердым пересыщенным упорядоченным раствором углерода в α-железе.

Впервые он был описан Марком Мартенсом – известным специалистом в области проблем, связанных с усталостью различных металлических материалов. Именно в его честь и был назван мартенсит.

Кристаллическая решетка интересующего нас углеродного раствора в α-железе является тетрагональной. Каждая из ее элементарных составляющих описывается формой параллелепипеда (прямоугольного).

В центре и вершинах ячейки при этом размещаются атомы железа, а в объемах ячеек расположены атомы углерода.

Высокие прочностные показатели и твердость, коими описывается любая мартенситная нержавеющая сталь, обуславливаются неравновесной структурой мартенсита, характеризуемой существенными внутренними напряжениями.

  • Мартенсит: структура, кристаллическая решетка, твердость
  • Рекомендуем ознакомиться
  • При нагреве мартенситного металла отмечается перераспределение (диффузионное) атомов углерода, что приводит к формированию двух фаз:
  • цементита (в этой фазе углерод содержится в количестве 6,67 %);
  • феррита (содержание углерода в ней – не более 0,02 %).

Элементарная ячейка первой из означенных фаз описывается ромбической структурой, вторая – объемно-центрированной. Решетка начальной структуры аустенита связана кристаллографическими постоянными соотношениями с решеткой мартенсита. Это означает, что плоскости с четко заданными кристаллографическими индексами аустенитной и мартенситной структуры параллельны друг другу.

Мартенсит: структура, кристаллическая решетка, твердость

Принято выделять два типа мартенсита:

  1. Дислокационный (нередко его называют реечным). Он формируется в средне- и малоуглеродистых, а также высоколегированных сталях. В них мартенситное преобразование начинается при температуре более 300 °С. Кристаллы мартенсита в такой ситуации вытянуты в одну сторону, представляя собой рейки толщиной от 0,2 до 2 мкм. Такие рейки разделяются тонкими (от 10 до 20 нм) слоями аустенита.
  2. Двойниковый (или пластинчатый). Данный тип характерен для легированных и углеродистых сталей (преобразование мартенсита в них возможно при температуре менее 200°). Пластины интересующей нас игольчатой микроструктуры описываются мидрибом – средней линией высокой травимости. Каждый мидриб при этом включает в себя множество двойников по плоскостям.

Такой полиморфный процесс предполагает то, что упорядоченное передвижение молекул либо атомов в составе кристалла вызывает модификацию их расположения по отношению друг к другу. Причем междуатомные расстояния в данном случае существенно больше, нежели показатели смещений относительного плана соседних атомов.

Деформации ячеек кристаллической решетки – это и есть ее перестройка, за счет чего окончание мартенситного преобразования вполне допускается описывать как однородно измененную начальную фазу.

Отметим отдельно и то, что деформация имеет малую величину (не более 10 %).

По этой причине энергетический барьер, который не дает развиваться однородному переходу начальной фазы в конечную, также невелик, если соотносить его с энергией связи в кристалле.

Мартенсит: структура, кристаллическая решетка, твердость

Описываемое нами превращение становится возможным только в том случае, когда постоянно присутствует упорядоченное взаимодействие между метастабильной и стабильной фазой. Повышенная подвижность и низкий энергетический потенциал межфазных границ обусловлены их упорядоченным строением.

Следствием этого становится то, что требуемая для появления кристаллов в новой фазе «лишняя» энергия, имеет малое значение.

Ее вполне можно сопоставить с энергией «исходных» дефектов, имеющихся в начальной фазе.

За счет такой особенности скорость образования мартенситных кристаллов является по-настоящему большой, причем, как правило, тепловых изменений для зарождения новых кристаллов не требуется.

Мартенсит: структура, кристаллическая решетка, твердость

Мартенситные преобразования в комбинации с модификациями атомного порядка компонентов и их перераспределения являются базой для разнообразных структурных превращений, которые дают возможность изменять характеристики кристаллических материалов посредством их механической либо термической обработки.

Такие хромистые стали имеют в своем составе достаточно высокое содержание углерода. Кроме того, зачастую они легируются молибденом, ниобием, вольфрамом и иными компонентами, которые обеспечивают высокие жаропрочные показатели конечного металла.

Особенности сталей, относимых к мартенситному классу:

  • высокий уровень противодействия коррозии в растворах щелочей, некоторых кислотных растворах, в условиях повышенной влажности;
  • высокая жаропрочность: данную полезную способность мартенситный металл получает в том случае, когда выполняется его закалка при температурах около 1050 градусов, а затем и отпуск на троостит либо сорбит;
  • способность к самозакаливанию;
  • малая пластичность при высоком показателе твердости, на которую не оказывают никакого влияния, дополнительно вводимые в сплав легирующие элементы;
  • высокая водородоустойчивость, свойственная таким маркам стали, как Х5ВФ, Х5М, Х9М;
  • сложность обработки мартенситного металла резанием.

Мартенсит: структура, кристаллическая решетка, твердость

Популярные марки мартенситных стальных сплавов:

  • 20Х13: в нем содержится от 12 до 14 % хрома, менее 0,8 % марганца и кремния, от 0,16 до 0,25 % углерода, такая сталь не легируется никелем;
  • 10Х12НДЛ: особенность – большое содержание никеля (от 1 до 1,5 %);
  • 18Х11МНФБ: не более 11,5 % хрома, от 0,5 до 1 % никеля, до 0,21 % углерода, от 0,8 до 1,1 % молибдена;
  • 12Х11В2МФ, 10Х9МФБ, 13Х11Н2В2МФ, 15Х11МФ: легируются ванадием (от 0,18 до 0,4 %) и молибденом (от 0,35 до 1,1 %) в дополнение к стандартным добавкам.

Используются описываемые стали для производства:

  • роторов и корпусов газовых и паровых турбин;
  • сварных аппаратов и сосудов с нагрузками не более 16Мпа;
  • диафрагм турбин (паровых);
  • составляющих насосного оборудования;
  • лопаток турбин, работающих на пару;
  • пружин;
  • подвергающихся нагреву поверхностей коллекторов, котлов, трубопроводов;
  • хирургического, измерительно и режущего инструмента;
  • пластин компрессоров с клапанами.

Мартенсит: структура, кристаллическая решетка, твердость

Технология сварки сталей описываемого класса достаточно сложна, что вызвано склонностью таких металлов после процедуры закалки к хрупкому разрушению.

Их следует сваривать после предварительного нагрева до 200–450 °С, причем температура окружающего воздуха должна быть плюсовой.

Как правило, металлы мартенситной группы свариваются методом ручной дуговой сварки с применением электродов, покрытых спецсоставами. Реже используются другие виды сварки:

  • электрошлаковая;
  • аргонодуговая;
  • под флюсом.

Источник: http://tutmet.ru/martensitnaja-nerzhavejushhaja-stal-prevrashhenie.html

Мартенсит: как и почему

Самым замечательным свойством стали является ее способность упрочняться до высокого уровня прочности путем простой закалки. Закалка стали обычно происходит при погружении нагретого металла в охлаждающую жидкость, такую как вода, масло или жидкая соль.

Для увеличения прочности необходимо, чтобы эта разогретая сталь содержала аустенит, а лучше – была полностью аустенитной. Тогда очень быстрое охлаждение не даст аустениту возможности превратиться в термодинамически «выгодную» структуру феррит + цементит. Вместо нее образуется новая структура, которая называется мартенсит.

Эта мартенситная фаза и дает стали очень высокий уровень прочности.

Углерод: много в аустените – мало в феррите

Как известно аустенит имеет гранецентрированную кубическую кристаллическую (ГЦК) структуру, феррит – объемно-центрированную кристаллическую (ОЦК) структуру.

Фазовая диаграмма стали показывает, что ГЦК структура – аустенит – будет растворять намного больше углерода, чем ОЦК структура — феррит.

При температуре А1 количество углерода, которое может раствориться в аустените – в 38,5 раза (0,77/0,02 = 38,5) больше, чем в феррите.

Дело в том, что атомы углерода намного меньше, чем атомы железа. Растворенные атомы углерода располагаются в промежутках между относительно большими атомами железа. ОЦК структура способна «поглотить» больше атомов углерода, так как некоторые промежутки между атомами в этой структуре значительно больше, чем любые промежутки в ГЦК структуре.

Медленное охлаждение аустенита – феррит плюс цементит

Рисунок 1 показывает схему превращения аустенита стали с содержанием углерода 0,60 % в феррит. Вертикальная линия представляет собой фронт превращения, который движется слева направо.

После того, как этот фронт продвинется, например, на 25 мм, в этой области длиной 25 мм содержание углерода должно упасть с 0,6 % до 0,02 %.

При медленном охлаждении углерод может успевать двигаться впереди фронта превращения в аустените вдоль направления, которое показано штриховой стрелкой, за счет механизма диффузии.

Мартенсит: структура, кристаллическая решетка, твердостьРисунок 1 – Схема продвижения фронта превращения аустенита в феррит

Быстрое охлаждение аустенита – мартенсит

Однако, если это превращение вынуждено происходить очень быстро путем закалки, уже не будет времени для диффузионного движения атомов углерода. Поэтому часть их – или они все –  останутся в феррите. Это чрезмерное содержание углерода в феррите приводит к резкому искажению его ОЦК структуры – в результате возникает мартенситная структура.

Атомная решетка: из феррита в мартенсит

На рисунке 2 показаны рядом атомная ячейка ОЦК феррита и искаженная атомная ячейка мартенсита. Атомная ячейка мартенсита похожа на ОЦК ячейку феррита в том, что она тоже имеет атом в центре и по атому в каждом из восьми углов.

Однако эта атомная ячейка уже не является кубом. Одна из ее сторон, которую называют периодом решетки с или гранью с (см. рисунок 2), длиннее, чем две другие, которые называют периодами а или гранями а.

Эта кристаллическая структура называется объемноцентрированной тетрагональной (ОЦТ).

Мартенсит: структура, кристаллическая решетка, твердостьРисунок 2 – Сравнение кристаллических структур феррита и мартенсита

Больше углерода – выше твердость

Рисунок 3 показывает, как с увеличением в мартенсите растворенного углерода его грань с становится все больше и больше по сравнению с гранью а.

Повышенное содержание углерода в мартенсите достигается закалкой аустенита с более высоким содержанием углерода.

На графике на рисунка 3 видно, что с увеличением содержания углерода искажение атомной решетки от кубической – грань с становится все больше по сравнению с гранью а. Это происходит из-за внедренных в ОЦТ решетку мартенсита атомов углерода.

  • Мартенсит: структура, кристаллическая решетка, твердостьРисунок 3 – Размеры граней а и с объемно-центрированной ячейки мартенсита
    (1 нм = 1000 мкм)
  • Прочность и твердость мартенсита с увеличением в нем содержания углерода возрастает очень сильно, как это видно из рисунка 4.
  • Мартенсит: структура, кристаллическая решетка, твердостьРисунок 4 – Твердость по Роквеллу свежезакаленного мартенсита
    в зависимости от содержания углерода
Читайте также:  Сверлильные станки из домкрата своими руками

Понять, почему с увеличением содержания углерода прочность мартенсита возрастает, помогает следующая интерпретация. Удобно представить себе, что химические связи, которые держат вместе атомы железа, являются пружинами.

С увеличение содержания углерода эти пружины растягиваются, чтобы поместить в решетке дополнительные атомы углерода.

А чтобы растянуть эти растянутые пружины дальше – деформировать мартенсит – требуется все больше и больше усилий.

Источник: John D. Verhoeven, Steel Metallurgy for Non-Metallurgists, 2007

Источник: http://steel-guide.ru/metallografiya-stali/martensit-kak-i-pochemu.html

Мартенсит — структура, кристаллическая решетка, твердость

Мартенситные стали представляют собой хромистые сплавы, структура которых состоит в основном из мартенсита. В них содержится обычно не менее 0,15 процентов углерода, от 11 до 17 процентов хрома, а также незначительное количество таких элементов, как никель, вольфрам, ванадий и молибден.

Образование

Физический механизм образования мартенсита принципиально отличается от механизма других процессов, происходящих в стали при нагреве и охлаждении.

Другие процессы диффузионны, то есть атомы перемещаются с малой скоростью, например, при медленном охлаждении аустенита создаются зародыши кристаллов феррита и цементита, к ним в результате диффузии пристраиваются дополнительные атомы и, наконец, весь объём приобретает перлитную или феррито-перлитную структуру.

Мартенситное превращение бездиффузионно (сдвиговое превращение), атомы перемещаются с большой скоростью по сдвиговому механизму, скорость распространения порядка тысячи метров в секунду.

Свойства мартенсита

Характерной особенностью мартенсита является его высокая твердость и прочность. Чем больше в стали и, естественно, в мартенсите углерода, тем

Рис. 5.14. Влияние углерода на твердость мартенсита

больше степень тетрагональности (искаженности) его кристаллической решетки, тем больше сопротивление пластической деформации, а следовательно, выше твердость (рис. 5.14) и прочность.

При повышении концентрации углерода в стали до 0,6…0,7% и более твердость возрастает до 65…66 HRC. Предел прочности (временное сопротивление σв) мартенсита при такой же концентрации углерода достигает 2400…2600 МПа.

Это в 2,5 раза выше прочности малоуглеродистого мартенсита, содержащего 0,015% углерода (до 1000 МПа). Вместе с тем мартенсит обладает низкой пластичностью.

C увеличением содержания углерода возрастает его склонность к хрупкому разрушению; в испытаниях на растяжение стали разрушаются хрупко уже при содержании углерода более 0,35%.

Мартенсит имеет наибольший удельный объем по сравнению с аустенитом и другими фазами стали. Поэтому мартенситное превращение протекает с увеличением объема, которое является одной из основных причин возникновения при закалке сталей значительных напряжений и, как следствие, деформации стальных изделий или даже образования трещин.

Свойства сталей с мартенситной структурой

Стали с мартенситной структурой, кроме высокого содержания углерода, характеризуются также наличием в составе хрома. Такие стали нередко легируются элементами, которые способны обеспечить высокую жаропрочность металла (вольфрам, молибден, ниобий и др.).

Химический состав хромистых мартенситных сталей

Стали, внутреннюю структуру которых формирует мартенсит, отличаются следующими особенностями:

  • высокой коррозионной устойчивостью по отношению к повышенной влажности, щелочным и кислотным средам;
  • высокой жаропрочностью (если сплавы данной категории подвергнуть закалке при температуре 10500, а затем выполнить отпуск на троостит или сорбит);
  • такой полезной характеристикой, как самозакаливание;
  • высокой твердостью при достаточно невысокой пластичности (что характерно, на твердость мартенсита, которой изначально обладают такие сплавы, практически не оказывают влияние легирующие элементы, вводимые в их состав);
  • повышенной устойчивостью к воздействию водорода (этим отличаются отдельные марки таких сталей, в частности Х5М, Х5ВФ и Х9М);
  • устойчивостью к обработке резанием из-за высокой твердости.

Механические свойства мартенситных сталей

Поскольку стали с мартенситной структурой после их закалки становятся очень хрупкими и склонными к разрушению, технология их сварки значительно усложняется.

Выполнять эту процедуру можно только после того, как изделие из такой стали нагреется до 200–4500, при этом важно, чтобы температура окружающего воздуха была выше нуля.

Кроме ручной дуговой сварки, проводимой с использованием электродов, покрытых специальными составами, для соединения изделий из таких сплавов применяют следующие технологии:

Рекомендуемые режимы сварки мартенситных сталей

Если говорить о сферах применения, то стали мартенситной группы используют для производства таких изделий, как:

  • корпуса и роторы для комплектации газовых, а также паровых турбин;
  • детали сварочных аппаратов, сосудов различного назначения, работающих под давлением, не превышающим 16 МПа;
  • диафрагмы для оснащения паровых турбин;
  • детали и комплектующие для производства насосного оборудования;
  • лопатки, которыми оснащаются паровые турбины;
  • пружины различного назначения;
  • детали трубопроводов, коллекторов, котлов, которые в процессе эксплуатации подвергаются значительному нагреву;
  • инструменты различного назначения – измерительные, режущие и хирургические;
  • пластины, которыми оснащают компрессоры.

Мартенситное превращение

Мартенсит образуется только в среде аустенита. Причиной, по которой происходит данная трансформация, является наличие большого количества свободной энергии аустенитом. Катализатором процесса превращения служит температура, которая в зависимости от химического состава стали должна находиться на уровне 500-700 ºC.

Также доказано, что мартенситное превращение тесно связано с центрами кристаллизации, которые образуются при повышении температуры. Они стимулируют рост кристаллов, уплотняя атомы и увеличивая, соответственно, прочностные свойства стали. Данный процесс не требует большого количества энергии и активируется при достаточно низкой температуре.

Мартенсит: структура, кристаллическая решетка, твердость

Рост кристаллов происходит до тех пор, пока какой-либо из атомарных слоев входит как в мартенситную, так и в аустенитную кристаллическую решетку. Причем между данными структурами не должно быть разделительной поверхности.

В противном случае образуется сдвиг одной фазы относительно другой, что вызывает появление значительного количества напряжения на их границе. Напряженность провоцирует появление упругих деформаций, как следствие кристаллы (иглы) останавливают свой рост.

При трансформации аустенита в мартенсит не происходит образование новых химических соединений. Этот процесс структурный. Атомы меняют свое местоположение, что влияет на тип и размеры кристаллической решетки.

Мартенситное превращение требует наличия постоянного переохлаждения. Также стоит заметить, что увеличение объема структуры происходит не за счет роста отдельных игл, а по причине образования новых, меньших с точки зрения размеров кристаллов, мартенсита.

Среди особенностей мартенситного превращения выделяется то, что аустенит не может полностью перейти в мартенсит. Бывают исключения — стали, точка перехода аустенита в мартенсит которых лежит ниже нуля. Но в большинстве случаев всегда имеется некоторый объем аустенитных фаз, не претерпевших своих структурных изменений. Связано это с физическими особенностями железа и углерода.

Трансформация аустенита в мартенсит относится к одним из базовых структурных изменений не только у сталей, но и у сплавов на основе титана и меди.

Виды мартенсита

В зависимости от степени нагрева и температуры охлаждаемой среды получают различные типы мартенсита. Существуют следующие его основные виды:

  • Пластинчатый мартенсит
  • Реечный мартенсит.

Каждый из них имеет свои особенности и соответственно механические свойства.

Пластинчатый мартенсит наблюдается в основном в высокоуглеродистых конструкционных сталях. Он образуется в результате закалки и характеризуется наличием мартенситом формы в виде пластин. Предел прочности на разрыв такого мартенсита может доходить до 900 Мпа. Твердость до 75 HRC.

Реечный мартенсит получается в результате улучшения (закалка с высоким отпуском) легированных сталей. Структура данного типа имеет форму реек размером до 2 мкм. Такой вид мартенсита отличается большей износостойкостью и лучшей динамической вязкостью.

При соблюдении определенного режима температур структура стали может содержать мартенсит как реечного, так и пластинчатого типа.

Виды мартенсита

1. Пластинчатый или игольчатый (двойниковый) мартенсит, который образуется в углеродистых и легированных сталях при температуре начала мартенситного превращения ниже 200 °C.

При этом образовавшиеся мартенситные пластины имеют среднюю линию повышенной травимости, которую называют мидрибом.

Мидриб состоит из большого числа двойников по плоскостям {112}, толщина которых составляет 5-30 нм.

2. Реечный или иначе пакетный (дислокационный) мартенсит, характерен для малоуглеродистых, среднеуглеродистых и высоколегированных сталей, для которых температура начала мартенситного превращения выше 300 °C.

В этом случае кристаллы мартенсита представляют собой тонкие рейки толщиной 0,2-2 мкм и вытянутые в одном направлении. Сосредоточение параллельных друг другу реек образуют пакеты.

Между собой рейки разделены тонкими прослойками остаточного аустенита толщиной 10-20 нм.

Образование того или иного структурного типа мартенсита обусловлено температурой его формирования, которая зависит от состава сплава и других факторов.

Значительный интервал между температурой начала и конца мартенситного превращения приводит к наличию в сталях двух типов мартенсита, которые образуются при различной температуре.

Низкая прочность аустенита при высокой температуре способствует образованию реечного мартенсита, а с понижением температуры, когда прочность аустенита выше, увеличивается доля пластинчатого мартенсита.

Также существуют низкоуглеродистые мартенситные стали, в которых образуется мартенсит только реечного типа и отсутствует остаточный аустенит. Температура начала мартенситного превращения у таких сталей порядка 400 °C.

Реечный мартенсит обладает повышенной релаксационной способностью.

Это интересно: Медь — температура плавления, физические свойства, сплавы

3 Мартенситные стали – описание, особенности

Такие хромистые стали имеют в своем составе достаточно высокое содержание углерода. Кроме того, зачастую они легируются молибденом, ниобием, вольфрамом и иными компонентами, которые обеспечивают высокие жаропрочные показатели конечного металла.

Особенности сталей, относимых к мартенситному классу:

  • высокий уровень противодействия коррозии в растворах щелочей, некоторых кислотных растворах, в условиях повышенной влажности;
  • высокая жаропрочность: данную полезную способность мартенситный металл получает в том случае, когда выполняется его закалка при температурах около 1050 градусов, а затем и отпуск на троостит либо сорбит;
  • способность к самозакаливанию;
  • малая пластичность при высоком показателе твердости, на которую не оказывают никакого влияния, дополнительно вводимые в сплав легирующие элементы;
  • высокая водородоустойчивость, свойственная таким маркам стали, как Х5ВФ, Х5М, Х9М;
  • сложность обработки мартенситного металла резанием.
Читайте также:  Передаточное отношение передач: зубчатой, цепной, ременной

Популярные марки мартенситных стальных сплавов:

  • 20Х13: в нем содержится от 12 до 14 % хрома, менее 0,8 % марганца и кремния, от 0,16 до 0,25 % углерода, такая сталь не легируется никелем;
  • 10Х12НДЛ: особенность – большое содержание никеля (от 1 до 1,5 %);
  • 18Х11МНФБ: не более 11,5 % хрома, от 0,5 до 1 % никеля, до 0,21 % углерода, от 0,8 до 1,1 % молибдена;
  • 12Х11В2МФ, 10Х9МФБ, 13Х11Н2В2МФ, 15Х11МФ: легируются ванадием (от 0,18 до 0,4 %) и молибденом (от 0,35 до 1,1 %) в дополнение к стандартным добавкам.

Используются описываемые стали для производства:

  • роторов и корпусов газовых и паровых турбин;
  • сварных аппаратов и сосудов с нагрузками не более 16Мпа;
  • диафрагм турбин (паровых);
  • составляющих насосного оборудования;
  • лопаток турбин, работающих на пару;
  • пружин;
  • подвергающихся нагреву поверхностей коллекторов, котлов, трубопроводов;
  • хирургического, измерительно и режущего инструмента;
  • пластин компрессоров с клапанами.

Технология сварки сталей описываемого класса достаточно сложна, что вызвано склонностью таких металлов после процедуры закалки к хрупкому разрушению.

Их следует сваривать после предварительного нагрева до 200–450 °С, причем температура окружающего воздуха должна быть плюсовой.

Как правило, металлы мартенситной группы свариваются методом ручной дуговой сварки с применением электродов, покрытых спецсоставами. Реже используются другие виды сварки:

  • электрошлаковая;
  • аргонодуговая;
  • под флюсом.

Ссылки

  • Энциклопедия «Кругосвет»
  • Зотов О. Г., Кисельников В. В., Кондратьев С. Ю. Физическое металловедение. СПБГТУ, 2001
  • Б. А. Билби и И. В. Христиан. Мартенситные превращения // Успехи физических наук, т. LXX, вып. 3, 1960
  • О.Н.Магницкий,Е.Н.Пряхин,С.А.Кутолин,А.С.Капран,К.Л.Комаров,Ю.А.Фролов.Моделирование на ЭВМ свойств твердых растворов железо — углерод как функции электронного строения легирующих компонентов и их состава.II.Прогнозирование физико — механических свойств твердых растворов альфа-железо — углерод(область мартенсита) ЭВМ.-Ж.физ.химии,1982.-т.56,№12,с.3026-3029.- Chem.Abstr.,v.98,147571u,1983.
Поделитесь в соц.сетях:

Источник: https://intehstroy-spb.ru/spravochnik/martensit-i-martensitnye-stali-struktura-kristallicheskaya-reshetka-svoystva.html

Большая Энциклопедия Нефти и Газа

Cтраница 4

Полумартенситная структура состоит РЅР° 50 % РёР· троо-стита постоянного состава Рё РЅР° 50 % РёР· мартенсита. Твердость мартенсита тем больше, чем больше РІ нем углерода.  [46]

Характерной особенностью мартенсита является его высокая твердость и прочность.

Твердость мартенсита возрастает с увеличением в нем содержания углерода ( см. рис.

128, Р±), РІ стали СЃ 0 6 — 0 7 % РЎ твердость мартенсита составляет HRC 65 ( HV 9600 РњРџР°), это РІ 6 раз больше твердости феррита.  [47]

Вследствие искажения кристаллической решетки мартенсит обладает высокой твердостью Рё РЅРёР·РєРѕР№ пластичностью. Твердость мартенсита возрастает СЃ увеличением РІ стали содержания углерода.  [48]

Характерной особенностью мартенсита является его высокая твердость и прочность.

Твердость мартенсита возрастает с увеличением в нем содержания углерода ( рис.

128); РІ стали СЃ содержанием 0 6 — 0 7 % РЎ твердость мартенсита составляет HRC 65 ( HV 960), это РІ 6 раз больше твердости феррита.  [50]

Характерной особенностью мартенсита является его высокая твердость и прочность.

Твердость мартенсита возрастает с увеличением в нем содержания углерода ( рис.

109); РІ стали СЃ 0 6 — 0 7 % РЎ твердость мартенсита составляет HRC 65 ( ftV 960), это РІ 6 раз больше твердости феррита.  [52]

Характерной особенностью мартенсита является его высокая твердость и прочность.

Твердость мартенсита возрастает с увеличением в нем содержания углерода ( см. рис.

128, Р±); РІ стали СЃ 0 6 — 0 7 % РЎ твердость мартенсита составляет HRC 65 ( HV 9600 РњРџР°), это РІ 6 раз больше твердости феррита.  [53]

Вследствие искажения кристаллической решетки мартенсит обладает высокой твердостью Рё РЅРёР·РєРѕР№ пластичностью. Твердость мартенсита возрастает СЃ увеличением РІ стали содержания углерода.  [54]

Твердость мартенсита зависит в первую очередь от содержания в мартенсите ( встали) углерода.

РџСЂРё 0 7 % РЎ твердость мартенсита достигает максимального значения ( HRC 64), Рё РїСЂРё дальнейшем увеличении содержания углерода твердость мартенсита существенно РЅРµ увеличивается ( фиг. Впрочем, эта кривая РЅРµ характеризует твердости закаленной стали, так как сталь, РєСЂРѕРјРµ мартенсита, содержит то или РёРЅРѕРµ количество остаточного аустенита. Если нагрев РїРѕРґ закалку был произведен выше точки РђСЃР° Рё весь углерод переведен РІ твердый раствор, то твердость закаленной стали РїСЂРё увеличении содержания углерода свыше 0 8 % снижается РёР·-Р·Р° резкого возрастания количества остаточного аустенита ( фиг.  [55]

Мартенсит: структура, кристаллическая решетка, твердость Кристаллическая решетка мартенсита.  [56]

Характерной особенностью мартенсита являются его высокая твердость и прочность.

С твердость мартенсита 65 HRC, что во много раз больше твердости феррита, временное сопротивление достигает 2600 2700 МПа.

Однако СЃ повышением РІ мартенсите содержания углерода возрастает склонность его Рє С…СЂСѓРїРєРѕРјСѓ разрушению, понижается сопротивление рождению трещины.  [57]

Твердость мартенсита зависит только от содержания углерода в стали.

Свойство стали увеличивать твердость мартенсита с увеличением содержания углерода называется закаливаемостью стали.

РќР° этом же графике приведена кривая твердости для сталей СЃ 50 % мартенсита РІ структуре.  [58]

Закаливаемость стали зависит в основном от содержания в ней углерода.

Это объясняется тем, что твердость мартенсита зависит от степени искажения его кристаллической решетки.

Чем меньше РІ мартенсите углерода, тем меньше будет искажена его кристаллическая решетка Рё, следовательно, тем ниже будет твердость стали.  [59]

Страницы:      1    2    3    4

Источник: https://www.ngpedia.ru/id501608p4.html

Мартенсит и мартенситные стали

Как фазовая структура мартенсит был обнаружен в начале 20 века. Исследование проводил инженер Адольф Мартенс, который занимался проблемой повышения усталостной прочности металлов. Обнаруженная структура отличалась повышенной износостойкостью и позволила производить детали, выдерживающие более высокие механические и температурные нагрузки.

Общие сведения о мартенсите

Структура на основе перенасыщенного твердого раствора углерода в железе называется мартенсит. Получается он методом переохлаждения аустенитной фазы. Другими словами, мартенсит – результат проведения закаливания сталей с содержанием углерода выше 0,3%. Кристаллы мартенсита имеют тетрагональную структуру, где атомы железа занимают место в узлах решетки.

На вид мартенсит представляет собой множественные темные иглы железа на светлом фоне. Угол наклона данных игл в среднем составляет 60 градусов относительно друг друга. Обнаружить следы углерода на поверхности мартенсита невозможно, т. к. он полностью находится в растворенном состоянии.

Мартенсит выделяется прочностью по сравнению с остальными фазами. Механические свойства до определенного момента в прямой зависимости от количества углерода в стали. Но стоит заметить, что после прохождения определенной отметки прочность падает, и начинает повышаться хрупкость.

Согласно исследованиям, проводимым в 30-х годах прошлого столетия советскими учеными, причины высоких механических характеристик мартенсита кроются в следующем:

  • Структура мартенсита имеет блочный характер, при том что сами блоки обладают достаточно малыми размерами.
  • Сопротивление статическим искажениям, что означает устойчивость положения атомов при их смещении от идеального размещения атомов в кристаллической решетке.
  • В случае воздействия механических нагрузок, и как следствие пластической деформации, выделяются мельчайшие твердые частицы, блокирующие скольжение слоев относительно друг друга и повышающие твердость сплава.

Твердость мартенсита имеет валатильный характер и зависит от температуры нагрева, охлаждения и времени выдержки стали. В среднем ее значение колеблется в пределах 35 — 70 единиц по шкале Роквелла. Также мартенсит выделяется большим удельным объемом. Его значение выше по сравнению с другими фазовыми структурами такими как аустенит, перлит и т. д.

Как следствие от всего вышесказанного, образование мартенсита сопровождается значительными изменениями стали в объеме. Это, в свою очередь, приводит к нежелательному повышению внутренней напряженности в структуре, которая в будущем может стать причиной появления трещин.

Мартенситное превращение

Мартенсит образуется только в среде аустенита. Причиной, по которой происходит данная трансформация, является наличие большого количества свободной энергии аустенитом. Катализатором процесса превращения служит температура, которая в зависимости от химического состава стали должна находиться на уровне 500-700 ºC.

Также доказано, что мартенситное превращение тесно связано с центрами кристаллизации, которые образуются при повышении температуры. Они стимулируют рост кристаллов, уплотняя атомы и увеличивая, соответственно, прочностные свойства стали. Данный процесс не требует большого количества энергии и активируется при достаточно низкой температуре.

Рост кристаллов происходит до тех пор, пока какой-либо из атомарных слоев входит как в мартенситную, так и в аустенитную кристаллическую решетку. Причем между данными структурами не должно быть разделительной поверхности.

В противном случае образуется сдвиг одной фазы относительно другой, что вызывает появление значительного количества напряжения на их границе. Напряженность провоцирует появление упругих деформаций, как следствие кристаллы (иглы) останавливают свой рост.

При трансформации аустенита в мартенсит не происходит образование новых химических соединений. Этот процесс структурный. Атомы меняют свое местоположение, что влияет на тип и размеры кристаллической решетки.

Мартенситное превращение требует наличия постоянного переохлаждения. Также стоит заметить, что увеличение объема структуры происходит не за счет роста отдельных игл, а по причине образования новых, меньших с точки зрения размеров кристаллов, мартенсита.

Среди особенностей мартенситного превращения выделяется то, что аустенит не может полностью перейти в мартенсит. Бывают исключения — стали, точка перехода аустенита в мартенсит которых лежит ниже нуля. Но в большинстве случаев всегда имеется некоторый объем аустенитных фаз, не претерпевших своих структурных изменений. Связано это с физическими особенностями железа и углерода.

Трансформация аустенита в мартенсит относится к одним из базовых структурных изменений не только у сталей, но и у сплавов на основе титана и меди.

Читайте также:  Резец проходной отогнутый: геометрия, выбор, маркировка, назначение

Виды мартенсита

В зависимости от степени нагрева и температуры охлаждаемой среды получают различные типы мартенсита. Существуют следующие его основные виды:

  • Пластинчатый мартенсит
  • Реечный мартенсит.

Каждый из них имеет свои особенности и соответственно механические свойства.

Пластинчатый мартенсит наблюдается в основном в высокоуглеродистых конструкционных сталях. Он образуется в результате закалки и характеризуется наличием мартенситом формы в виде пластин. Предел прочности на разрыв такого мартенсита может доходить до 900 Мпа. Твердость до 75 HRC.

Реечный мартенсит получается в результате улучшения (закалка с высоким отпуском) легированных сталей. Структура данного типа имеет форму реек размером до 2 мкм. Такой вид мартенсита отличается большей износостойкостью и лучшей динамической вязкостью.

При соблюдении определенного режима температур структура стали может содержать мартенсит как реечного, так и пластинчатого типа.

Мартенситные стали

К сталям мартенситного типа относят высоколегированные стали, структура которых после проведения термической обработки представлена мартенситом.

Сам по себе мартенситный сплав плохо поддается резанию. Его обрабатываемость повышают путем проведения предварительного отжига при температуре 800-900 ºC.

Как правило, мартенситные стали легируются такими металлами как вольфрам, никель и молибден для повышения жаропрочности и коррозионной устойчивости сплава к агрессивному воздействию среды.

Также мартенситная сталь обладает таким полезным свойством как самозакаливание, т. е. самопроизвольное повышение твердости после проведения термической обработки.

Стали мартенситного класса относятся к 3 группе свариваемости. Проведение сварки требует предварительного нагрева до 200-300 ºC и последующего отжига детали. Все это необходимо для снижения внутреннего напряжения и уменьшения вероятности образования трещин на поверхности сварного шва. На практике данные стали свариваются методом аргонодуговой и электрошлаковой сварки.

Механические свойства сталей на основе мартенсита достаточно высокие. Так, марка 15Х5, применяемая при изготовлении сосудов высокого давления, имеет предел прочности на разрыв равным почти 400 Мпа.

Дополнительное легирование вольфрамом и ванадием сильно повышает жаропрочность сплава. Предел прочности стали 10ХМФБ составляет уже 600 Мпа. Сталь нашла применение в производстве коллекторов, трубопроводов и нагревательных котлов.

Увеличение содержания бериллия в составе мартенситных сталей способствует дальнейшему повышению их механических свойств. Предел прочности стали 12Х11В2МФ равен примерно 850 Мпа.

Такие марки применяются в производстве деталей, испытывающих повышенную тепловую и механическую нагрузку.

Например, в корпусе и роторе газовой и паровой турбины, а также в качестве материала для лопаток турбовинтовых компрессоров.

Стали мартенситного класса достаточно упруги и хорошо сопротивляются ударным нагрузкам. Ударная вязкость колеблется в пределах 80-150 Джсм2. Ее значение в большей степени зависит от типа термической обработки и содержания тех или иных элементов. Наибольшее ее значение получается в результате проведения закалки с последующим высоким отпуском.

Мартенситные стали не отличаются высоким значением пластичности. Относительное удельное сжатие равно 14-24%. Данный параметр зависит в большей степени от количества углерода в составе стали. Также такие элементы как никель и медь оказывают отрицательное влияние на пластичность сплава.

Источник: https://prompriem.ru/stati/martensit.html

МАРТЕНСИТ

МАРТЕНСИТ – структура сплавов, возникающая при их термической обработке при быстром охлаждении. В железоуглеродистых сплавах (сталях и чугунах) мартенсит возникает при содержании углерода более 0,3% при закалке в воде. Перед закалкой сталь нагревается до температур, обеспечивающих переход феррита и перлита в аустенит (выше 723° С).

У мартенсита игольчатая микроструктура, высокая твердость и прочность, низкая пластичность.

Физический механизм образования мартенсита принципиально отличается от механизма других процессов, происходящих в стали при нагреве и охлаждении. Другие процессы диффузионны, т.е.

атомы перемещаются с малой скоростью, например, при медленном охлаждении аустенита создаются зародыши кристаллов феррита и цементита, к ним в результате диффузии пристраиваются дополнительные атомы и, наконец, весь объем приобретает перлитную или феррито-перлитную структуру.

Мартенситное превращение бездиффузионно, атомы перемещаются с большой скоростью по сдвиговому механизму, скорость распространения составляет тысячи м/с.

Диаграмма состояния железо – углерод соответствует равновесным превращениям в сплавах при медленном нагреве и охлаждении, поэтому мартенситной области на диаграмме нет.

Кристаллическая структура мартенсита тетрагональна, элементарная ячейка имеет форму прямоугольного параллелепипеда, атомы железа расположены в вершинах и центре ячейки, атомы углерода в объеме ячеек. Структура неравновесна, и в ней есть большие внутренние напряжения, что в значительной степени определяет высокую твердость и прочность сталей с мартенситной структурой.

При нагреве сталей с мартенситной структурой происходит диффузионное перераспределение атомов углерода. В стали возникают две фазы – феррит, содержащий очень мало углерода (до 0,03%) и цементит (6,67% углерода).

Элементарная ячейка феррита имеет форму куба, атомы железа расположены в вершинах и в центре куба (объемноцентрированная структура), цементит имеет ромбическую структуру.

Элементарная ячейка цементита имеет форму прямоугольного параллелепипеда.

Кристаллическая решетка мартенсита связана постоянными кристаллографическими соотношениями с решеткой исходной структуры аустенита, т.е. плоскости с определенными кристаллографическими индексами в структуре мартенсита параллельны плоскостям с определенными индексами в структуре аустенита. Соотношение между кристаллографическими направлениями в решетках мартенсита и аустенита аналогично.

Мартенситное превращение при охлаждении происходит не при постоянной температуре, а в определенном интервале температур, при этом превращение начинается не при температуре распада аустенита в равновесных условиях, а при на несколько сотен градусов ниже. Оканчивается превращение при температуре значительно ниже комнатной. Таким образом, в интервале температур мартенситного превращения в структуре стали, наряду с мартенситом, есть и остаточный аустенит.

При пластической деформации стали при температурах мартенситного превращения количество мартенсита увеличивается. В некоторых случаях так же влияет упругая деформация.

Кроме железоуглеродистых сплавов, мартенситное превращение наблюдается и в некоторых других, например, сплавах на основе титана.

Лев Миркин

Литература:

Зотов О.Г., Кисельников В.В., Кондратьев С.Ю. Физическое металловедение. СПБГТУ, 2001

Проверь себя!
Ответь на вопросы викторины «Физика»

Что такое изотоп, чему равно число Авогадро и что изучает наука реология?

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/MARTENSIT.html

Перлитная, бейнитная и мартенситная области превращения и их влияние на структуру и свойства сталей

Схематически процесс изотермического распада аустенита можно охарактеризовать следующим образом.

Представим, что сталь с исходной перлитной структурой (сталь У8) нагрели до аустенитного состояния, выдержали при температуре нагрева для завершения фазового превращения П —» А, а затем перенесли в соляную ванну с температурой меньше, чем Arh которая поддерживается постоянной. Выдержка при этой температуре называется изотермической.

В процессе этой выдержки должно произойти превращение: у-же- лезо (0,8 % углерода) —> а-железо (0,02 % углерода) + цементит (Fe^C) (6,67 % углерода). Превращение, как следует из формулы, состоит в перестройке решетки у^аи диффузионном перераспределении углерода между фазами аустенита, феррита, цементита.

Особенность изотермического превращения заключается в том, что распад аустенита на ферритно-цементитную смесь начинается не сразу. Аустенит некоторое время сохраняется нераспавшимся. Этот отрезок времени 0а (см. рис. 1.34) называется инкубационным периодом.

По истечении инкубационного периода начинается распад аустенита на ферритно-цементитную смесь, который заканчивается в точке в.

Таким образом, точка а характеризует начало, точка в — конец, а отрезок ав — время распада аустенита на ферритно-цементитную смесь.

Продолжительность инкубационного периода и время распада аустенита зависят от температуры изотермической выдержки. Если для различных температур определить эти величины, а затем нанести их на одну общую диаграмму, то получим так называемую диаграмму изотермического распада аустенита (рис. 1.35).

На диаграмме нанесены две линии, имеющие вид буквы С (С-об- разные кривые). На кривой 1 находятся температуры начала, на кривой 2 — температуры конца распада аустенита на ферритно-цементит- ную смесь. Расстояние между кривыми при любой заданной температуре характеризует время распада, а длина отрезка от оси ординат до кривой 1 — время инкубационного периода.

В зависимости от степени переохлаждения аустенита на диаграмме различают три температурные области:

  • ? от Агх до 550 °С — область перлитного превращения;
  • ? от 550 °С до Мп (250 °С) — область промежуточного превращения;
  • ? ниже Мн — область мартенситного превращения.

Эти области характеризуются различной степенью переохлаждения аустенита относительно точки Arh которая определяет образование разных структур, обладающих различными механическими свойствами: твердостью, прочностью, пластичностью.

Так, при распаде аустенита в районе температур перлитного превращения образуются структуры пластинчатого типа, представляю-

Рис. 1.35. Диаграмма изотермического распада аустенита эвтектоидной стали

щие собой ферритно-цементитную смесь и отличающиеся лишь дисперсностью строения. Чем ниже степень переохлаждения аустенита относительно точки Arh тем выше дисперсность и тверже продукт распада аустенита.

При малых степенях переохлаждения от Агх до 650 °С из аустенита образуется перлит. Расстояние между пластинками феррита и цементита в перлите составляет 0,5…0,7 мкм. Под микроскопом пластинки различимы отчетливо при увеличении в 500 раз. Твердость перлита составляет 20 HRC.

При переохлаждении аустенита от 650 до 600 °С получается структура, называемая сорбитом. Межпластинчатое расстояние в сорбите — 0,25 мкм. Смесь различима под микроскопом при увеличении в 1000 раз. Твердость сорбита — 20…30 HRC.

При переохлаждении аустенита от 600 до 550 °С получается фер- ритно-цементитная смесь очень большой дисперсности, называемая трооститом.

Источник: https://studref.com/591884/tehnika/perlitnaya_beynitnaya_martensitnaya_oblasti_prevrascheniya_vliyanie_strukturu_svoystva_staley

Ссылка на основную публикацию
Adblock
detector