Фрезерная обработка металла: назначение, классификация, этапы

Главная » Статьи » Профессионально о металлообработке » Резание металлов

Рекомендуем приобрести:

Установки для автоматической сварки продольных швов обечаек — в наличии на складе! Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки — в наличии на складе! Защита от излучения при сварке и резке. Большой выбор. Доставка по всей России!

Фрезерование — это лезвийная обработка с главным вращательным движением резания, сообщаемым инструменту и имеющим постоянный радиус траектории, а также хотя бы одно движение подачи, направленное перпендикулярно оси главного движения.

Фрезерование является производительным и универсальным технологическим способом механической обработки заготовок резанием. В машиностроении фрезерованием обрабатывают плоскости, уступы, канавки прямоугольного и профильного сечения, пазы, фасонные поверхности и т.д. Фрезерование также используют для разрезания катаных прутков, резьбо- и зубофрезерования.

Для обработки плоских и фасонных поверхностей на фрезерных станках применяют фрезы — многозубый (многолезвийный) инструмент. Каждый зуб фрезы представляет собой простейший резец.

Назначение фрез. Основные типы фрез приведены на рис. 2.17. Для обработки открытых плоскостей на горизонтально-фрезерных станках применяют фрезы цилиндрические цельные (рис. 2.17, а) и сборные с вставными ножами (рис. 2.17, б).

Фрезерная обработка металла: назначение, классификация, этапы

Для высокопроизводительной обработки сплошных и прерывистых плоскостей на вертикально-фрезерных и специальных станках используют торцовые фрезерные головки (рис. 2.17, в), оснащенные твердосплавными ножами.

Обработку сопряженных плоскостей, расположенных на разных уровнях, параллельных или наклонных (грани куба, шестигранники, скосы, уступы и т.п.), производят торцовыми насадными фрезами цельными (рис. 2.17, г) и с вставными ножами (рис. 2.17, д).

Фрезерование пазов и уступов осуществляют концевыми (рис. 2.17, е, ж), шпоночными (рис. 2.17, з) и дисковыми (рис. 2.17, и) фрезами. Для обработки полуоткрытых плоскостей, канавок и для копировальных работ широко применяются концевые фрезы (см. рис. 2.17, е). Для обработки закрытых шпоночных канавок применяют шпоночные фрезы (см. рис. 2.17, з).

Прорезку шлицев и узких щелей производят отрезными (рис. 2.17, к) и шлицевыми фрезами.

Угловые фрезы (рис. 2.17, л) применяют для фрезерования прямых и винтовых канавок между зубьями при изготовлении фрез, разверток, зенкеров и других инструментов. Фрезерование фасонных поверхностей производят фасонными фрезами (рис. 2.17, м).

При классификации фрез, кроме назначения, учитывают их конструкцию; способ их закрепления на станке; конструкцию зубьев; расположение зубьев относительно оси; направление зубьев.

Существуют следующие конструкции фрез: цельные; составные, (например, с припаянными или приклеенными режущими элементами); сборные (например, оснащенные многогранными пластинами из твердого сплава); наборные (наборы фрез), состоящие из нескольких отдельных стандартных или специальных фрез и предназначенные для одновременной обработки нескольких поверхностей.

Закрепление фрез на станках. Соединительными частями — базами крепления — у фрез могут служить цилиндрические отверстия с продольными или поперечными шпоночными пазами, конусные и цилиндрические хвостовики (см. рис. 2.17).

Цилиндрические, дисковые, торцовые насадные, угловые и фасонные фрезы закрепляют на фрезерных оправках.

Для уменьшения биения фрезерной оправки опорные торцы фрез должны быть строго параллельны друг другу и перпендикулярны оси фрезы.

Отклонение опорных торцовых поверхностей от оси фрезы не должно превышать 0,04…0,05 мм. Вращение фрезам, закрепленным на оправке, передается продольной или торцовой шпонкой.

Торцовые насадные фрезы с мелким зубом крепят на укороченных оправках при помощи винта, а с крупным зубом и вставными ножами — на специальных оправках.

Концевые и шпоночные фрезы диаметром до 20 мм, для которых базой крепления служит цилиндрический хвостовик, закрепляют на концевых оправках при помощи цангового зажима.

Концевые, торцовые и шпоночные фрезы диаметром свыше 200 мм, для которых базой крепления является конический хвостовик, устанавливают в шпинделе станка непосредственно или при помощи переходных конусных втулок.

Затяжка конического хвостовика в коническом гнезде шпинделя производится винтом.

Торцовые фрезерные головки (см. рис. 2.17, в) крепят непосредственно на шпинделе станка. Базовое отверстие, шпоночный паз и отверстие для крепежных винтов выполняют согласно размерам передних концов шпинделей фрезерных станков.

Зубья фрезы могут быть острозаточенными (рис. 2.18, а) и затылованными (рис. 2.19, а). Острозаточенные зубья затачивают по задней поверхности под задним углом α (см. рис. 2.18, линии Т— Т).

Эти зубья просты в изготовлении и обеспечивают высокую чистоту обработанной поверхности. Недостатками остроконечных зубьев являются уменьшение высоты зуба и потеря размеров профиля после переточки.

Фрезерная обработка металла: назначение, классификация, этапыФрезерная обработка металла: назначение, классификация, этапы

Применяются три типа острозаточенных зубьев: с прямой спинкой (рис. 2.18, б), двухугловой спинкой (рис. 2.18, в) и криволинейной спинкой (рис. 2.18, г). Зубья с прямой спинкой характерны для мелкозубых фрез, допускающих 6…8 переточек зубьев и предназначенных для легких работ.

Зубья с двухугловой спинкой распространены у фрез с крупными зубьями, предназначенных для тяжелых работ. Спинка зуба, образованная двумя поверхностями, строится так, чтобы зуб имел форму, близкую к параболе. Фрезы с зубьями такого типа при большой прочности зуба имеют больший объем канавки.

Зубья с криволинейной спинкой, выполненной по параболе, обладают равной прочностью во всех сечениях, что позволяет увеличить высоту зуба, а следовательно, повысить число переточек и увеличить объем канавки.

У затылованных фрез с задней поверхностью, образованной по спирали Архимеда (см. рис. 2.19, а), заточка ведется по передней поверхности (линия T— T). Зуб у этих фрез сохраняется неизменным по форме (рис. 2.19, б) и размерам фасонного профиля при всех переточках до полного использования фрезы. Затылованный зуб применяется главным образом у фасонных фрез.

По расположению зубьев относительно оси различают: фрезы цилиндрические с зубьями, расположенными на поверхности цилиндра (см. рис. 2.17, а и б); фрезы торцовые с зубьями, расположенными на торце цилиндра (см. рис. 2.17, г и д); фрезы угловые с зубьями, расположенными на конусе (см. рис. 2.

17, л); фрезы фасонные с зубьями, расположенными на поверхности с фасонной образующей (см. рис. 2.17, м) (с выпуклым и вогнутым профилем). Некоторые типы фрез имеют зубья как на цилиндрической, так и на торцовой поверхности, например дисковые двух- и трехсторонние (см. рис. 2.17, и и к), концевые (см. рис. 2.

17, е), шпоночные (см. рис. 2.17, з).

По направлению зубьев фрезы могут быть: прямозубыми (см. рис. 2.17, и и к); косозубыми (см. рис. 2.17, м) и с винтовым зубом (см. рис. 2.17, а). Угол наклона винтового зуба служит для обеспечения спокойного (без вибраций) фрезерования.

При осуществлении фрезерования применяются две схемы:

  • встречное фрезерование (рис. 2.20, а). Направления движения подачи Ds и скорости фрезы v — встречные. Резание начинается в точке 1 (нулевая толщина срезаемого слоя) и заканчивается в точке 2 (наибольшая толщина срезаемого слоя);
  • попутное фрезерование (рис. 2.20, б). Направление движения подачи Ds совпадает с направлением скорости v фрезы. Резание начинается в точке 2 (наибольшая толщина срезаемого слоя) и заканчивается в точке 1 (нулевая толщина срезаемого слоя).

Фрезерная обработка металла: назначение, классификация, этапы

При работе по первой схеме резания врезание затруднено, так как происходит скольжение зуба и большое выделение тепла, что ускоряет затупление фрезы.

При работе по второй схеме обеспечивается более высокое качество обработанной поверхности и медленное затупление фрезы.

Однако работа происходит толчками (в момент врезания зуба в металл), поэтому попутное фрезерование возможно только на специально приспособленных для этих целей станках.

Геометрические параметры фрез выбираются в зависимости от следующих факторов: материала заготовки и режущей части фрезы, ее конструкции, условий фрезерования. Передний γ и задний α углы резания образуются заточкой фрез (рис. 2.21).

Наличие переднего угла γ облегчает врезание инструмента и отделение стружки. При увеличении переднего угла улучшаются условия работы инструмента, уменьшается усилие резания, повышается его стойкость.

Однако слишком большой передний угол ослабляет тело режущего инструмента, прилегающее к лезвию, и оно будет легко выкрашиваться и ломаться. Отвод тепла в этом случае ухудшается. На основании этого для каждого инструмента рекомендуются вполне определенные значения переднего угла.

При малых углах α повышается трение, возрастают силы резания и температура резания, задние поверхности инструмента быстро изнашиваются и его стойкость снижается. При очень больших значениях углов а уменьшается прочность инструмента, ухудшается отвод тепла. Угол между передней и задней поверхностями лезвия фрезы называют углом заострения β в секущей плоскости.

Источник: Черпаков Б.И., Альперович Т.А. «Металлорежущие станки», учебник. -М. 2003

Источник: https://www.autowelding.ru/publ/1/rezanie_metallov/osnovnye_ponjatija_o_processe_frezerovanija/23-1-0-337

Фрезерная обработка: основные виды фрезерования | мк-союз.рф

При работе с металлом применяется различное оборудование и инструменты. Чтобы эффективно использовать станки и дополнительные приспособления, требуется соблюдать технологии. Одни из видов работы с металлом является фрезерная обработка.

Фрезерная обработка металла: назначение, классификация, этапы

Изначально токарно-фрезерная обработка металла проводилась вручную. Мастера работали самодельными приспособлениями и обычными инструментами. Из-за этого производительность была низкая, а на выходе получалось множество бракованных деталей. Даже опытным мастерам металлообработки было сложно изготовить деталь точных размеров и формы.

С развитием технологий начали появляться станки, которые работали с помощью электродвигателей. С их помощью можно было точнее и быстрее обрабатывать заготовки. Обработка металла значительно упростилась, а технологии продолжали развиваться.

Постепенно обычные станки начали оборудоваться системами ЧПУ. На сегодняшний день профессиональное оборудование работает самостоятельно после настройки программы.

Для производства достаточно, чтобы один оператор настраивал программу и контролировал процесс работы станка.

Материалы и виды фрез

Фрезеровка на специальном оборудовании проводится при помощи фрез. Это насадки, которые закрепляются в патроне. На него передаётся вращательное усилие с помощью шпинделя, и фреза начинает крутиться. Существуют различные виды применяемых фрез:

  1. Дисковые. Используются для разрезания деталей, выборки, обработки фасок.
  2. Торцевые. С их помощью обрабатываются торцевые зоны.
  3. Цилиндрические. Используются при обработке узких плоскостей.
  4. Угловые. Применяется для создания угловых пазов и наклонных поверхностей.
  5. Концевые. С их помощью изготавливаются пазы на поверхности заготовок.
Читайте также:  Хозблок из металлопрофиля своими руками

Также можно выделить фасонные, червячные и кольцевые фрезы. Их выбор зависит от запланированных работ.

Фрезерная обработка металла: назначение, классификация, этапы

К материалам заготовок, подвергающихся обработке, относятся различные виды металлов, мягкие и твердые породы дерева, а также прочный пластик.

Классификация фрезеровки

Из всего разнообразия фрезеровочных работ и используемого оборудования основные виды фрезерования классифицируют в зависимости от трех факторов:

  • используемый вид фрезы,
  • позиционирование обрабатываемой детали на рабочей поверхности,
  • направление вращения рабочей части станка.

Чёткую классификацию фрезеровочных работ встретить невозможно. Связано это со множеством видов проводимых операций.

Технология фрезеровки

Фрезерная обработка металла может производиться на разных станках с разными материалами и фрезами. От этого изменяется технология, которой следует придерживаться в рабочем процессе.

Технология фрезеровки на обычном станке

Механические станки до сих пор считаются наиболее популярными в производстве. Их используют на предприятиях и в личных мастерских. Этапы работы:

  1. В первую очередь требуется провести подготовку. Для этого заготовка закрепляется на рабочем столе. Запускается вращение режущей части станка.
  2. Фреза слегка соприкасается с заготовкой и отводится в изначальное положение.
  3. Выставляется глубина обработки. Снова запускается электродвигатель.

По мере продвижения работы изменяется размер фрез. Таким образом достигается высокая скорость обработки.

Технология фрезеровки на станке с ЧПУ

Фрезерная металлообработка на станках с ЧПУ достаточно популярна на сегодняшний день. Постепенно оборудование, программируемое оператором заранее, вытесняет механические станки. Связано это с тем, что механизмы с ЧПУ обладают большей точностью при работе и ускоряют производственный процесс.

Фрезерная обработка металла: назначение, классификация, этапы

Технология работы на оборудовании с ЧПУ заключается в том, что оператор должен настроить программу, проверить подвижные механизмы, натянуть ремни, закрепить заготовку на рабочем столе и включить двигатели. Дальше человеку нужно только наблюдать за процессом работы механизмов. Двигатели работают за счёт программы и выполняют заданный алгоритм действий. После создания требуемой формы из заготовки оператор должен выключить оборудование, снять готовую деталь и повторить процесс. Если нужно изготовить деталь другой формы, оборудование следует перенастроить.

Технология фрезеровки ГБЦ

Владельцы автомобилей, работающих на бензине, часто сталкиваются с необходимостью в использовании фрезерного оборудования. Со временем изнашиваются головки блока цилиндров (ГБЦ). Связано это с тем, что при работе двигателя возникают постоянные изменения температурного режима. Из-за этого детали мотора изнашиваются и выходят из строя.

Если не исправить проблему, связанную с головками блока цилиндров, вовремя, они могут прогореть. Это приведёт к смешиванию охлаждающей жидкости со смазывающей. Выхлопные газы, в свою очередь, будут попадать в систему охлаждения.

Фрезеровку головок блока цилиндров производят при отказе двигателя и отклонениях головок от плоскости на 0.05 мм. Эту работу лучше доверить автослесарю, который имеет опыт фрезеровочных работ.

Чтобы измерить величину отклонения, используют большую линейку и набор щупов.

Фрезеровка титановых изделий

При обработке титана с помощью фрезерного оборудования, необходимо учитывать тот факт, что этот металл обладает низкой теплопроводностью. Из-за этого процесс его обработки осложняется.

Чтобы было проще работать с титаном и иметь на выходе качественные детали, необходимо учитывать мнение опытных мастеров металлообработки:

  1. При обработке титана используют высокоскоростные фрезы.
  2. Сначала снимают большой слой, плавно переходя к тонкому.
  3. Фрезы должны обладать большим количеством зубьев.
  4. Во время работы наблюдают за изменением заточки режущей части.
  5. После каждого прохода, делают фаску под углом в 45 градусов.
  6. Начинать обработку титана нужно по дуге.
  7. Диаметр фрезы должен быть на 30% меньше диаметра паза.

Перед началом работы с титаном необходимо убедиться в том, что мощности двигателя достаточно для обработки прочных видов металла. Нужно заранее осмотреть фрезу на наличие дефектов и проверить натяжение ремней на двигателе.

Фрезерная обработка металлов является одним из известнейших процессов в металлообработке. Её можно производить на механических станках и оборудовании с ЧПУ. Однако при работе с программируемыми машинами требуется выбирать опытного оператора. В противном случае, оборудование не будет функционировать в нормальном режиме.

Загрузка…

Источник: https://xn—-ntbhhmr6g.xn--p1ai/metallyi/osobennosti-frezernoy-obrabotki

Технология фрезерных работ по металлу

Фрезерные работы по металлу являются одним из самых сложных видов металлообработки. В отличие от токарных работ, в процессе которых инструмент перемещается всего лишь по двум осям, фрезерная обработка является многокоординатной: перемещения инструмента происходят по трем, четырем и даже 5 осям.

Если точением обрабатываются, как правило, тела вращения, то фрезерование позволяет обрабатывать практически любые поверхности. Принцип фрезеровки начали использовать еще в XVI веке в Европе благодаря Леонардо да Винчи. Именно он изобразил цилиндрический напильник, который вращался вокруг своей оси – данная схема и легла в основу фрезы.

Создание станка с вращающимися напильниками осуществили в Китае в 1665 году. Технология фрезерных работ в то время существенно отличалась от современной. Но уже в XIX веке появились качественные прототипы современных фрезерных станков и в ХХ веке технология фрезерных работ приобрела современный вид.

Конечно же, эта технология постоянно развивается, однако в основе её лежит все тот же принцип гениального Леонардо.

   Появление фрезерных обрабатывающих центров с ЧПУ и современных CAM– программ существенно упростило работу технолога по созданию техпроцессов фрезерных работ. Отпала необходимость «ручного» расчета режимов по формулам и использования большого количества разнообразных таблиц.

   Но для правильного выбора предлагаемых программой параметров и создания эффективной управляющей программы для станка с ЧПУ, технологу по-прежнему необходимо иметь глубокое понимание процессов, происходящих при фрезерной обработке. Он должен ясно представлять как изменение параметров резания или схемы обработки отразится на скорости фрезерования и качестве изготавливаемой детали.

 Основные понятия.

   Фрезерование (фрезеровка) — это способ обработки плоскостей, пазов, фасонных поверхностей, шлицев, а также любых других поверхностей, отличных от тел вращения, позволяющий получить чистоту поверхности 4—6-го и 3—4-го классов точности.

   Процесс резания при фрезеровке характеризуется следующими особенностями:

   1. Фрезеровка   является способом многолезвийной обработки: при этом в процессе резания находится несколько зубьев одновременно. Чем больше число зубьев, тем меньше интенсивность переменных нагрузок, выше плавность резания.

    2. Периодически повторяющимся процессом резания режущими кромками по циклу — нагрузка с последующей паузой.

   3. Периодически повторяющимся процессом врезании зуба в металл, что приводит к ударной нагрузке на режущую кромку, а также при наличии радиуса скругления к определенному периоду скольжения зуба без процесса резания. В схемах фрезеровки, где удельный вес такого явления велик, это ведет к ухудшению условий работы инструмента и вызывает его повышенный износ.

    4. Переменностью нагрузки на режущую кромку за одни цикл резания, обусловленной переменной величиной площади срезаемого слоя: у прямозубых фрез переменной является только толщина среза, а у фрез с винтовым зубом – переменными являются и толщина среза и длина контакта режущей кромки с заготовкой.

 Схемы фрезеровки.

   При работе цилиндрическими, коническими, дисковыми и фасонными фрезами различают следующие схемы фрезерной обработки:

  1. Фрезеровка против подачи — встречная фрезеровка (фиг. 1, а), когда движение работающих зубьев фрезы при ее вращении направлено против направления подачи.

При фрезеровке по этой схеме зуб работает из-под корки, что облегчает процесс обработки заготовок с упрочненным поверхностным слоем.

Вместе с тем резание сопровождается повышенными вибрациями, так как сила резания стремится оторвать заготовку от стола, создавая переменную нагрузку определенной частоты (фиг. 1, б).

  2. Фрезеровка по направлению подачи – попутное фрезерование, когда направление движения работающих зубьев совпадает с направлением подачи. При работе по этой схеме зуб сразу подвергается максимальной нагрузке. Однако при обработке заготовки, не имеющей на поверхности твердого поверхностного слоя, эта схема дает повышение стойкости инструмента, чистоты и точности обработки.

Фрезерная обработка металла: назначение, классификация, этапы

   При работе торцовыми и концевыми фрезами необходимо различать симметричную (фиг. 2, а и 6) и несимметричную (фиг. 2, в и г) фрезеровку.

   Симметричную фрезеровку разделяют на симметричную полную (фиг. 2, а), когда t = D, и симметричную неполную, когда t < D (фиг. 2, б).

 Торцевую фрезеровку жаропрочных и титановых сплавов ведут при наличии высокой жесткости системы по схеме неполного несимметричного попутного фрезерования (фиг. 2. г) при t≤ (0.4 — 0,6) Dи k→ 0. Это обеспечивает плавный выход режущих кромок из металла, уменьшение вибраций, повышение стойкости инструмента и чистоты обработки.

Фрезерная обработка металла: назначение, классификация, этапы

Основные элементы срезаемого слоя при фрезеровании (фиг. 1, 2).

  Угол контакта фрезы ψ в град — центральный угол, равный дуге соприкосновения с деталью.

   Глубина резания t в мм — величина срезаемого слоя материала, соответствующая длине дуги резания ψ и измеренная в направлении перпендикулярном к обрабатываемой поверхности.

  Ширина фрезерования В в мм — ширина обрабатываемой поверхности, измеренная в направлении, параллельном оси фрезы. Для цилиндрических фрез эта величина равна величине зоны контакта фрезы с деталью в направлении, параллельном оси фрезы, а для дисковых — равна ширине фрезеруемого паза.

   Ширина среза  в мм – длина соприкосновения режущей кромки зуба с обрабатываемой деталью. Для цилиндрической прямозубой фрезы b = В, для цилиндрической с винтовым зубом b ≠ В и является переменной величиной.

   Толщина среза a в мм — расстояние, измеренное в радиальном направлении, перпендикулярном к поверхности резания, образованное двумя последовательными положениями режущих кромок фрезы. Это величина переменная, максимальное значение которой расположено на угле контакта ψ.

 Режимы фрезерования.

  •    Глубина резания t в мм при фрезеровке зависит от припуска на детали, а также от жесткости и мощности станка.
  •    Подача при фрезеровании определяется тремя параметрами:
  •    sz мм/зуб — подачей на один зуб, определяющей величину нагрузки каждого зуба фрезыв процессе резания;
  •   s = sz• z мм/об — подачей на один оборот фрезы;
  •   sms • n = sz • z • n мм/мин – минутной подачей, определяющей основное технологическое время.
  •    При чистовом фрезеровании, исходя из заданного диаметра фрезы D в мм и глубине резания t в мм, допустимая величина подачи определяется заданной чистотой поверхности:
  • Значения коэффициентов и показателей степени выбираются из таблиц в зависимости от типа инструмента и свойств материала.
  • При грубом фрезеровании подача зависит от жесткости и мощности станка и прочности режущей кромки.
  •    Скорость резания при фрезеровании определяют по формуле:
  • где T – стойкость фрезы, которая является табличным значением.
  • Значения коэффициентов также являются табличными значениями и зависят от схемы обработки, типа инструмента и обрабатываемого материала.
  •    Сила резания при фрезеровании R раскладывается на две составляющие (фиг. 1, б):
Читайте также:  Регулировка водяной станции своими руками

окружную Р в направлении, касательном к траектории движения режущей кромки, и радиальную Р г, направленную по радиусу. Помимо этого ее можно разложить на горизонтальную Рн и вертикальную составляющие Pw, у фрез с винтовыми зубьями имеется еще осевая составляющая Р0; фреза на оправке устанавливается таким образом, чтобы эта сила действовала на шпиндель.

   Окружная составляющая наиболее значительна. Ее величину определяют по формуле:

   Значение коэффициента Ср, показателей степени хр ур rpqpявляются табличными.   Величина силы Р зависит от величины переднего угла и скорости резания, вида обрабатываемого материала, величины износа инструмента. Это учитывается поправочными   коэффициентами, которые также приведены в справочных таблицах.

  1.    Основное технологическое время Т при цилиндрическом и торцовом фрезеровании с продольной и поперечной подачами определяют по формуле:
  2. где sM— минутная подача в мм/мин;
  3. l— длина   фрезерования в мм;
  4. l1 — величина врезания в мм 
  5. l2 — величина выхода инструмента в мм.

Источник: https://kospas.ru/tehnologiya-frezernyh-rabot

Технология фрезеровки металла

  • [Фрезеровкой] называют один из видов обработки металлических деталей.
  • В современном производстве фрезеровка металла распространена ничуть не меньше токарной обработки или сверления.
  • Первоначально фрезеровка на токарном станке означала обработку путем действия вращающегося элемента (фрезы) на обрабатываемую заготовку.
  • Сама фреза – это инструмент в виде зубчатого колеса со множеством лезвий, который при помощи фрезерного станка вращается с большой скоростью, что позволяет снимать слои металла в нужных местах.

Фрезерная обработка металла: назначение, классификация, этапы

  1. Долгие годы фрезерные станки работали только в ручном режиме, поэтому процент брака при фрезеровке был довольно высок.
  2. С развитием программирования и технологии появилось новое поколение фрезерных станков – с числовым программным управлением, применение которых намного облегчило работу фрезеровщиков и упростило ее.
  3. Следующим этапом развития фрезеровки стало использование лазера в металлообработке, на современных станках фрезу полностью заменил луч лазера, и теперь, говоря о фрезеровке, мы понимаем не только непосредственный процесс металлообработки, но и написание программ для фрезеровальных станков.
  4. Лазерная обработка металла позволила объединить токарный и фрезерный станки в один механизм, и теперь все чаще можно услышать термин «токарно-фрезерная обработка».

Классификация фрезеровки

Однозначно четкой классификации этого вида металлообработки нет, так как выполняемые работы очень разнообразны.

Кроме разделения по виду станка (лазерная обработка, токарно-фрезерная обработка на механическом станке), из основных видов градаций можно выделить следующие:

  • по расположению обрабатываемой детали – горизонтальная, вертикальная фрезеровки и фрезерование под углом;
  • по виду используемой фрезы – торцевая, концевая, периферийная, фасонная;
  • по направлению вращения фрезы относительно движения заготовки – попутная или встречная.
  • Последний вид классификации применим для фрезерной обработки массивных деталей, когда первоначальная фрезеровка металла выполняется встречным способом, а для заключительной доводки детали используется попутный способ.
  • Видео:

Технология фрезеровки

В зависимости от вида станка, сложности изготавливаемой детали, материала заготовки различается и технология выполнения фрезерной обработки металла.

ВАЖНО ЗНАТЬ:  Различные виды резки нержавеющей стали

Рассмотрим это чуть подробнее.

Технология фрезеровки на обычном станке

Работа начинается с подбора фрезы, которая надежно закрепляется на шпинделе станка.

Обработка деталей начинается с небольшой подготовки:

  • включается вращение шпинделя, заготовка подводится к фрезе до небольшого соприкосновения с ней;
  • стол с заготовкой отводится и шпиндель останавливается;
  • устанавливается нужная глубина реза;
  • включается вращение шпинделя;
  • стол станка с обрабатываемой заготовкой вручную перемещают до соприкосновения с движущейся фрезой.
  1. Обычно для фрезеровки одной детали используется набор фрез, что позволяет повысить производительность выполняемой работы.
  2. Видео:
  3. Размеры фрез подбираются исходя из заданного стандарта точности, обычно для черновой фрезеровки достаточно достичь 11-ый или 12-ый квалитет точности, а для заключительного этапа фрезеровки – 8-го или 9-го.

В исключительных случаях точность размеров может соответствовать 7-му или 8-му квалитетам. Данным способом часто выполняется фрезеровка стали.

Технология фрезеровки на станке с ЧПУ

  • Фрезеровка ЧПУ начала применяться не так давно, ее прообразом можно считать используемую на обычных механических станках систему рычагов, которые соединяли шпиндель станка с шаблонной деталью.
  • И только несколько лет спустя, управление фрезерным станком было поручено компьютеру, а для взаимодействия фрезеровщика-оператора со станком стали писать специальные программы.
  • Обработка листового материала этим способом позволяет получить предметы большей точности, снизить количество брака, увеличить производительность, а также выпускать серийные детали со сложной геометрией поверхности в большом количестве.

С помощью компьютера станку задается и скорость вращения шпинделя, и параметры его движения (глубина фрезеровки и линейные координаты).

  1. Современные станки позволяют выполнять 3D фрезеровку – это обработка заготовки несколькими фрезами одновременно в разных плоскостях.
  2. При этом предварительно на компьютере строится 3D-модель заготовки, «глядя» на которую станок воспроизводит ее с максимальной точностью.
  3. К квалификации фрезеровщика на станке с ЧПУ предъявляются уже совсем другие требования.
  4. Лазерная металлообработка используется только на станках с ЧПУ.
  5. Такое оборудование сейчас самое дорогое, цена на такую работу выше, чем на механическом станке, но оно позволяет добиться максимальной точности при изготовлении деталей, значительно снижает время на изготовление единицы предмета.

ВАЖНО ЗНАТЬ:  Продольная резка металла — станки, линии, агрегаты

  • Видео:
  • Лазерным станкам с ЧПУ «по плечу» как фрезерование листового металла, так и изготовление сложных по геометрии объемных деталей, исключение составляют только округлые сферообразные конструкции.
  • Лазерная обработка выполняется в двух вариантах:
  • тепловым лазером выжигают металл в нужных местах, по окончании обрабатывая шлифовкой кромку;
  • шлифовальный лазер, многократно проходя по одному и тому же месту, снимает минимально возможный слой материала заготовки.

Лазерная обработка оставляет поверхность заготовки гладкой, без заусениц, что позволяет не выполнять шлифование готовой детали.

Технология фрезеровки гбц

Помимо промышленного производства с необходимостью фрезеровки очень часто сталкиваются автолюбители, чьи автомобили используют бензин.

Речь идет о фрезеровке головки блоков цилиндра (иначе называется фрезеровка ГБЦ) – устранении недостатков, проявляющихся в снашивании отдельных деталей мотора автомобиля при его эксплуатации.

Последствиями такого износа может быть прогорание головки блока, что повлечет за собой попадание охлаждающей жидкости в систему смазки, а выхлопных газов – в систему охлаждения.

  1. В результате постоянных температурных изменений металлические части двигателя изнашиваются и искривляются, особенно страдают от этого длинные головки четырех-шести цилиндров и головки из алюминиевого сплава.
  2. Даже если вы разобрали двигатель для смены только лишь прокладки, обязательно осмотрите головки, уделяя особое внимание тем местам, возле которых прокладка прогорела.
  3. Именно в этих местах вы и обнаружите отклонение головок от линейных размеров.
  4. Поводом для фрезерной обработки различных деталей мотора будет перевод машины на другой вид бензина, тюнинг двигателя вашего «железного коня», то есть работы, связанные с увеличением объема камеры сгорания двигателя.
  5. Фрезеровка гбц выполняется только в строго установленных случаях:
  1. отказ работы двигателя;
  2. отклонение головки от плоскости более 0,05 мм.

Для самостоятельного определения степени искривления головки используются набор щупов и большая лекальная линейка.

Допустимая степень уменьшения головок регламентируется инструкцией завода-изготовителя, обычно фрезой снимают слой металла толщиной менее 0,3 мм.

ВАЖНО ЗНАТЬ:  Газовая (кислородная) резка металла

  • Видео:
  • Самостоятельное увеличение снимаемой толщины (сверх установленной регламентом завода-изготовителя) может потребовать полную замену головки блока цилиндра.
  • Самостоятельно выполнить эту работу, конечно, не по силам, а вот золотые руки мастера вернут к жизни двигатель вашего автомобиля.
  • Для устранения вышеперечисленных недостатков допускается обработка на фрезерных станках как механических, так и с ЧПУ.

Фрезерование титановых деталей

Изделия из титана сейчас все чаще применяются в аэрокосмической промышленности. Титан является одним из самых сложных материалов для обработки фрезой вследствие его низкой теплопроводности.

Говоря простым языком, при фрезеровании титана только небольшая часть тепла отводится со снимаемой стружкой, что вызывает существенный нагрев, как самой заготовки, так и деталей станка.

Несмотря на трудности с фрезерованием титана, для его качественного фрезерования специалисты дают несколько советов:

  • максимально уменьшите площадь контакта фрезы и заготовки из титана;
  • тщательно следите за остротой режущей кромки фрезы;
  • используйте фрезы с увеличенным количеством зубов;
  • придерживайтесь принципа «от толстой стружки к тонкой»;
  • начало фрезерования титана выполняйте по дуге;
  • в конце прохода снимайте фаску под углом 45°;
  • используйте фрезы с большим вспомогательным задним углом;
  • тщательно следите за осевой глубиной;
  • уменьшите осевую глубину фрезерования тонких деталей из титана;
  • выбирайте фрезу диаметром не более 70% от диаметра паза;
  • для фрезеровки титана используйте высокоскоростные фрезы.

Цена на фрезеровочные работы зависит от вида станка, геометрии детали и материала заготовки (цена для нержавейки, алюминия, титана будет разной).

Фрезеровка металла (титана, нержавейки, алюминия и пр.) должна выполняться на исправном оборудовании, специально обученным персоналом.

Видео:

Обращаясь за услугами фрезеровки любого листового металла (титана, нержавейки и др.), уточните, какие станки использует фирма, поинтересуйтесь у знакомых репутацией исполнителя, тогда качество выполненной работы вас не разочарует, не покажется завышенной цена.

Читайте также:  Полуавтоматическая сварка mig/mag: описание вида, оборудование

Источник: https://rezhemmetall.ru/frezerovka-metalla.html

Что такое фрезеровка – Фрезерование — Википедия

  • Материал из Википедии — свободной энциклопедии
  • Концевые фрезы с цилиндрическим хвостовиком
  • Фрезерование (фрезерная обработка) — это механическая обработка резанием плоскостей, пазов, лысок, при которой режущий инструмент (фреза) совершает вращательное движение (со скоростью V), а обрабатываемая заготовка — поступательное (со скоростью подачи S).
  • Официальным изобретателем фрезерного станка является англичанин Эли Уитни, который получил патент на такой станок в 1818 г.[источник не указан 673 дня]
  • В зависимости от расположения шпинделя станка и удобства закрепления обрабатываемой заготовки —— вертикальное, горизонтальное. На производстве в большей степени[источник не указан 686 дней] используют универсально-фрезерные станки, позволяющие осуществлять горизонтальное и вертикальное фрезерование, а также фрезерование под разными углами различным инструментом.
  • В зависимости от типа фрезы (концевое, торцовое, периферийное, фасонное и т. д.)
  1. Концевое фрезерование — пазы, канавки, подсечки; колодцы (сквозные пазы), карманы (пазы, стороны которых выходят более чем на 1 поверхность), окна (пазы, которые выходят только на одну поверхность).
  2. Торцевое фрезерование — фрезерование больших поверхностей.
  3. Фасонное фрезерование — фрезерование профилей. Примеры профильных поверхностей — шестерни, червяки, багет, оконные рамы.
  4. Существуют также специализированные фрезы, предназначенные для отрезки (дисковые фрезы)
  • В зависимости от направления вращения фрезы относительно направления её движения (либо движения заготовки) — попутное «под зуб», когда фреза «подминает» заготовку, получается поверхность высокой степени точности, но также велика опасность вырыва заготовки при большом съёме материала; и встречное «на зуб», когда движение режущей кромки происходит навстречу заготовке. Поверхность получается меньшей степени точности, однако увеличивается производительность. На практике используют оба вида фрезерования, «на зуб» при предварительной (черновой) и «под зуб» окончательной (чистовой) обработке.

В настоящее время в производстве для фрезерования используются станки с ЧПУ (числовым программным управлением), благодаря чему фрезерные работы производятся в автоматическом режиме. Для осуществления автоматических работ создается специальная программа, а также производится предварительная обработка чертежей.

  1. Элементы режимов резания при фрезеровании:
  2. Скорость резания (м/мин):
    U=π⋅D⋅n1000{displaystyle U={frac {pi cdot Dcdot n}{1000}}}
  3. где:
  • π=3,1415…{displaystyle pi =3{,}1415dots }
  • D — диаметр фрезы (мм)
  • n — частота вращения фрезы (об/мин)
  • 1000 — коэффициент перевода мм в м

Подачи при фрезеровании:

Sz — подача на зуб (мм/зуб) — величина перемещения стола станка с обрабатываемой заготовкой или фрезы за время поворота её на один зуб.
Sо — (оборотная подача мм/об) — величина перемещения стола станка с обрабатываемой заготовкой или фрезы за один оборот фрезы. Sо = Sz × z, где z — число зубьев фрезы.
Sm — (минутная подача мм/мин) величина перемещения стола станка с обрабатываемой заготовкой или фрезы за одну минуту Sm = Sо × n = Sz × z × n.
t — глубина резания при фрезеровании (мм) — это расстояние между обработанной и обрабатываемой поверхностями.
Ширина фрезерования (мм) — это поверхность заготовки, обработанная за один рабочий ход.

  • Кожевников Д. В., Кирсанов С. В. Металлорежущие инструменты. Учебник (гриф УМО). Томск: Изд-во Томского ун-та. 2003. 392 с. (250 экз.).
  • Кожевников Д. В., Кирсанов С. В. Резание материалов. Учебник (гриф УМО). М.:Машиностроение. 2007. 304 с. (2000 экз.).

ru.wikipedia.org

это обработка материалов, и что такое фрезеровка лазером

  • Фрезерование – это вид обработки деталей с помощью фрез вручную или на станке.
  • В наше время фрезеровка имеет такое же распространение, как токарная обработка детали либо сверление.
  • Процесс фрезерования заготовки, выполненной из различного материала, заключается в обработке заготовки с помощью фрезы.
  • Фреза – это режущий инструмент, выполненный в виде зубчатого колеса, имеющего множество лезвий, который зажимается во фрезерном станке и, вращаясь с большой скоростью, снимает слои поверхности заготовки в нужном вам месте.

Обработка заготовки на станке

Раньше сам фрезерный станок работал лишь вручную, поэтому велик был процент брака.

С применением новых технологий и программирования появились новые фрезерные станки – с программным числовым управлением, использование которых облегчило и упростило работу фрезеровщиков.

Сейчас стал доступен и применен новый вид обработки – с помощью лазера, так на новых станках рабочий орган (фреза) полностью заменили на лазер. Лазер дает более точную обработку заготовки и соответственно меньший процент брака.

Лазерная обработка поверхности заготовки позволила совместить в один процесс обработку на токарном и фрезерном станках, и теперь появился новый термин «фрезерно-токарная обработка материала».

Классификация фрезерных работ

Четкого разделения этого вида обработки нет из-за того, что выполняемые вами работы очень разнообразны.

Существует разделение по типу станка:

  1. Лазерная обработка.
  2. Фрезерная механическая обработка.

Из основных видов можно указать следующие:

  • по расположению на станине обрабатываемой заготовки – вертикальная, горизонтальная фрезеровка и фрезерование под определенным углом;
  • по виду применяемой фрезы – концевая, торцевая, фасонная, периферийная;
  • по направлению вращения режущего инструмента относительно движения заготовки – встречная или попутная.

Последний тип классификации используется для обработки больших заготовок, когда первичное фрезерование детали выполняется встречным видом обработки, а для окончательной доводки применяется попутный вид.

Технология процесса фрезеровки

В зависимости от типа станка, сложности обрабатываемой заготовки, материала применяемой детали различается и сама технология, по которой происходит фрезерная обработка.

Технология процесса фрезеровки на обычном станке

Вначале фрезеровщик производит подбор фрезы, которая надежно крепится на шпинделе фрезерного станка.

Обработка заготовки начинается с подготовки:

  • включается небольшое вращение шпинделя, при этом деталь подводится к самой фрезе до наименьшего соприкосновения с ней;
  • станина стола с закрепленной заготовкой отводится и вращающийся шпиндель останавливается;
  • устанавливается необходимая глубина резки детали;
  • включается вращение фрезы;
  • станину стола с обрабатываемой деталью вручную перемещают до соприкосновения с вращающейся фрезой.
  1. Фрезеровщику для работы над одной заготовкой необходим набор фрез, это позволяет увеличить производительность выполняемой им операции.
  2. Размеры рабочего инструмента (фрез) выбираются, исходя из необходимого стандарта точности, так, для чернового вида фрезеровки необходимо достичь одиннадцатого или двенадцатого квалитета точности, а при заключительном этапе фрезеровки – 8 или 9.
  3. В особых случаях согласно заданию точность размера может соответствовать 7 или 8 квалитетам.

Фрезерная обработка на станке с числовым программным управлением (ЧПУ)

Фрезерование с применением ЧПУ начало внедряться в производство не так давно, ее родоначальником можно считать систему рычагов, которая использовалась на обычных фрезерных станках.

С развитием электроники и вычислительной техники управление фрезерным станком было отдано компьютеру. Так фрезеровщик стал оператором ЧПУ, а для его взаимодействия со станком были написаны программы.

  • Обработка материала на станке ЧПУ позволяет увеличить точность, увеличить производительность, снизить процент брака, а также наладить выпуск серийных деталей со сложной геометрической поверхностью в большом количестве.
  • Компьютер задает станку и количество оборотов шпинделя, и параметры его движения (линейные координаты и глубина фрезеровки).
  • Современные ЧПУ станки могут выполнять 3D фрезеровку – это обработка детали несколькими рабочими органами одновременно, при этом находясь в разных плоскостях.
  • Перед началом работы, оператор предварительно на компьютере строит 3D-модель детали, станок затем воспроизводит ее с максимальной точностью.
  • На станке с ЧПУ к квалификации фрезеровщика предъявляются совсем иные требования.

Лазерная обработка детали на станке с ЧПУ

  1. В современной обработке детали лазером он применяется лишь на станке с ЧПУ.
  2. Это оборудование самое дорогостоящее, цена за работу выше, чем на фрезерном обычном станке, но лазерная обработка детали позволяет получить максимальную точность, значительно снижая при этом время на изготовление единицы детали.

  3. Лазерным ЧПУ станкам под силу как точное фрезерование обычного материала, так и изготовление сложных объемных геометрических деталей, исключение лишь только составляют сферообразные округлые конструкции.

  4. Лазерное фрезерование заготовки может выполняться двумя вариантами:
  1. В нужном месте станок с помощью теплового лазера выжигает заготовку, по окончании процесса выжигания шлифуется кромка.
  2. Шлифовочный лазер, снимает понемногу слои материала детали, многократно проходя по одному и тому же месту.

Лазерная обработка заготовки оставляет верхний слой гладким, без заусениц, это позволяет не производить дополнительную операцию – шлифование уже готовой вашей детали.

Фрезерование деталей выполненных из титана

Титан, как материал для деталей, все чаще используют в аэрокосмической отрасли. Титан один из самых трудных материалов для металлообработки режущей фрезой, так как он обладает низкой теплопроводностью.

То есть вовремя процесса фрезерования титана лишь небольшая часть тепла уходит со снимаемой стружкой, а это вызывает хороший нагрев как деталей фрезерного станка, так и самой заготовки.

Несмотря на все трудности с фрезерованием титана, для качественной обработки материала фрезеровщики дают немного дельных советов:

  • максимально необходимо уменьшите площадь контакта заготовки из титана и фрезы;
  • тщательно нужно следить за фрезой, ее режущая кромка должна быть остротой;
  • применяйте фрезы с большим количеством зубьев;
  • придерживайтесь позиции «только тонкая стружка»;
  • начало фрезеровки производите по дуге;
  • в конце прохода фрезы снимите фаску под 45°;
  • применяйте фрезы с большим дополнительным задним углом;
  • скрупулёзно наблюдайте за осевой вашей глубиной;
  • если деталь тонкая необходимо уменьшить осевую глубину фрезерования;
  • выбирать необходимо фрезу, диаметр которой не более 70% от диаметра выбираемого паза;
  • для фрезеровки заготовки из титана необходимо применять высокоскоростные фрезы.
  • Цена на фрезеровочные работы во многом зависит от геометрии детали, вида фрезерного станка и материала вашей заготовки.
  • Фрезеровка материала должна производиться на исправном фрезерном оборудовании, специально прошедшем обучение персоналом.
  • Обращаясь за услугами фрезеровки, поинтересуйтесь, какие фрезерные станки использует фирма, уточните у знакомых или друзей репутацию исполнителя, тогда качество выполненной работы вас не разочарует, не покажется завышенной цена.

Источник: https://ice-people.ru/raznoe-2/chto-takoe-frezerovka-frezerovanie-vikipediya.html

Ссылка на основную публикацию
Adblock
detector