Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Компонентами данной системы являются железо и углерод. Железо — металл серебристо-белого цвета, атомный номер 26, атомный вес 55,85, атомный радиус 1,27 Å, температура плавления 1539 0С, плотность 7,86 г/см3. Железо обладает невысокой твердостью и прочностью: НВ80, sв = 250 МПа, d = 50 %, j = 80 %; имеет три полиморфные модификации Fea, Feg и Fed.

Углерод — неметаллический элемент, атомный номер 6, атомный радиус 0,77 Å, атомный вес 12,01, температура плавления 3500 0С, плотность 2,5 г/см3. Углерод полиморфен. Он может образовывать три кристаллографические формы: графит, алмаз, фуллерен.

  • Углерод растворим в железе в жидком и твердом состоянии, с железом может образовывать химическое соединение — цементит.
  • На диаграмме ”Fe-C” могут быть четыре фазы:
  • 1) жидкая фаза (Ж); 2) феррит (Ф); 3) аустенит (А); 4) цементит (Ц).

Жидкая фаза — существует выше линии ликвидус. Железо хорошо растворяет углерод, образуя однородную жидкую фазу.

Феррит — твердый раствор внедрения углерода в Fea.

Углерод располагается в решетке a-Fe в центре грани куба. Максимальная растворимость достигает 0,02 % С при 727 0С. При комнатной температуре максимально растворяется до 0,006 % С. Твердость и механические свойства феррита близки к свойствам технического железа.

Аустенит — твердый раствор внедрения углерода в Feg.

Атом углерода располагается в центре элементарной ячейки. Предельная растворимость углерода в g-Fe 2,14 % при 1147 0С и 0,8 % при 727 0С.

Цементит — химическое соединение железа с углеродом Fe3С.

В цементите содержится 6,67 % С. Он имеет сложную орторомбическую решетку, в элементарной ячейке которой находятся 12 атомов железа и 4 атома углерода. Температура плавления цементита точно не определена и составляет около 1500 0С.

Цементит обладает очень высокой твердостью — порядка 800 НВ, хрупкий. До 217 0С имеет слабые ферромагнитные свойства.

По моменту образования в сплаве цементит условно подразделяется на первичный (ЦI) — кристаллизуется из жидкой фазы, вторичный (ЦII) — выделяется из аустенита, третичный (ЦIII) — выделяется из феррита.

  1. Цементит — соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита.
  2. В учебном пособии рассматривается упрощенная диаграмма ”Fe-С” без высокотемпературного участка перитектического превращения (рисунок 29).
  3. Линии на диаграмме:
  4. АСД — ликвидус; АЕСF — солидус; SЕ — линия предельной растворимости углерода в аустените; РQ — линия предельной растворимости углерода в феррите; GS- линия начала вторичной перекристаллизации (при охлаждении) — аустенита в феррит; РG — линия конца вторичной перекристаллизации; S — эвтектоидная точка; РSК — линия эвтектоидного превращения; С — эвтектическая точка; ЕСF — линия эвтектического превращения.
  5. Сплавы на диаграмме:
  • до 0,02 % С — техническое железо (феррит);
  • до 2,14 % С — углеродистые стали;
  • свыше 2,14 % С до 6,67 % С — углеродистые чугуны;
  • от 0,006 % С с до 0,8 % С — доэвтектоидные стали;
  • 0,8 % С — эвтектоидная сталь;
  • свыше 0,8 % С до 2,14 % С — заэвтектоидные стали;
  • от 2,14 % С до 4,3 % С — доэвтектические чугуны;
  • 4,3 % С — эвтектический чугун;
  • свыше 4,3 % С до 6,67 % С — заэвтектическими чугуны;
  • 6,67 % С — цементит.

Эвтектоид представляет собой мелкодисперсную механическую смесь двух фаз — феррита и цементита вторичного (Ф+ЦI) и называется перлитом (П). Эвтектоид образуется при строго определенном количестве углерода в сплаве — 0,8 %. Эвтектоидное превращение (при охлаждении) идет при постоянной температуре (727 0С):

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения
Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Рисунок 29 — Диаграмма состояния сплавов системы «железо-углерод» и кривые охлаждения

Эвтектика представляет собой мелкозернистую механическую смесь двух фаз – аустенита и цементита первичного (А+ЦI) при 1147 0С и называется ледебуритом (Л). Эвтектическое превращение идет при постоянной температуре (1147 0С), когда жидкая фаза имеет строго определенное содержание углерода — 4,3 %:

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Фазовые превращения в сплавах при охлаждении прослеживаются по кривым охлаждения.

Сплав I содержит 0,8 % С и является эвтектоидным. Кристаллизация аустенита начинается в точке 1 и заканчивается в точке 2. До точки S в сплаве не происходит никаких фазовых превращений: сплав просто охлаждается. При температуре 727 0С (точка S) весь аустенит превращается в перлит. После эвтектоидного превращения феррит содержит 0,02 % С.

По мере охлаждения содержание в нем углерода снижается до 0,006 %. Избыток углерода идет на образование цементита третичного (ЦIII). Структура стали при комнатной температуре перлит. Из-за небольшого количества в сплаве цементит третичный на диаграмме не указывается.

Сплав II является заэвтектоидным. От точки 3 до точки 4 идет кристаллизация аустенита. В точке 4 кристаллизация завершается, и сплав охлаждается без фазовых превращений до точки 5, которая соответствует предельной растворимости углерода в аустените.

По мере охлаждения содержание углерода снижается до 0,8 %. Избыток углерода идет на образование цементита вторичного (ЦII). При температуре 727 0С идет эвтектоидное превращение (точка 6). В результате охлаждения сплава до комнатной температуры образуется цементит третичный (ЦIII). Структура стали — перлит и цементит вторичный (располагается по границам зерен перлита).

Сплав III является эвтектическим чугуном и содержит 4,3 % С. При охлаждении сплава при температуре 1147 0С (точка С) вся жидкая фаза превращается в ледебурит, в котором аустенит содержит 2,14 % С.

По мере охлаждения содержание в нем углерода снижается до 0,8 %. Избыточный углерод образует цементит вторичный. В точке 7 идет эвтектоидное превращение, а ниже, по мере охлаждения, образуется цементит третичный (ЦIII).

Изменение фазового состава эвтектического сплава происходит по схеме

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Структура эвтектического чугуна — ледебурит.

Сплав IV является заэвтектическим сплавом. От точки 8 до точки 9 идет кристаллизация первичного цементита (ЦI). В точке 9 жидкая фаза достигает эфтектической концентрации (4,3 % С) и идет эвтектическое превращение, образуется ледебурит. Превращение ледебурита до комнатной температуры аналогично сплаву III. Структура сплава — иглы первичного цементита и ледебурит.

Все углеродистые чугуны имеют температуру конца кристаллизации ниже, чем углеродистые стали, так как содержат в своем составе эвтектику (ледебурит). Этим определяются высокие литейные свойства чугунов (жидкотекучесть, небольшая усадка и малая склонность к поглощению газов) и отсутствие пластичности из-за повышенного содержания цементита.

Микроструктура железоуглеродистых сплавов приведена на рисунке 31.

Критические точки на диаграмме «Железо-углерод» >
Дальше >

Источник: https://dprm.ru/materialovedenie/diagramma-zhelezo-uglerod

Металлические сплавы и диаграммы состояния

Вид диаграммы определяется характером взаимодействий, которые возникают между компонентами в жидком и твердом состояниях. Однокомпонентная диаграмма представляет собой температурную шкалу с нанесенными на нее точками фазовых превращений:

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Двухкомпонентная диаграмма помимо температурной оси  (оси ординат), имеет ось концентраций (ось абсцисс). Один конец оси абсцисс соответствует чистому компоненту А, другой – В. Промежуточные точки соответствуют сплавам с различным соотношением компонентов.

Трехкомпонентные диаграммы имеют вид трехгранной равносторонней призмы, в основании которой лежит концентрационный треугольник, а ребра являются температурными осями.

Рассмотрим наиболее типичные двухкомпонентные диаграммы:

1 типа. Для сплавов, образующих при затвердевании механическую смесь. Их компоненты в твердом состоянии нерастворимы, и не образуют химических соединений.

2 типа. Для сплавов с полной взаимной растворимостью, как в жидком, так и в твердом состоянии.

3 типа. Для сплавов с ограниченной растворимостью в твердом состоянии.

4 типа. Для сплавов с устойчивым химическим соединением.

Диаграмма 1 типа.

Компоненты: вещества А и В. Фазы : жидкий раствор L, кристаллы А и кристаллы В. Максимальное значение фаз – 3.

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

АСВ – ликвидус. DСЕ – солидус. При охлаждении по АС начинают выделяться кристаллы А, по СВ – кристаллы В. На линии DСЕ из жидкости концентрации С одновременно выделяются кристаллы А и В, образуя эвтектику. DСЕ – линия эвтектических превращений.

Ниже линии АС область двухфазная. Здесь существуют одновременно жидкий раствор L и твердая фаза – кристаллы А.

Рассмотрим кривую охлаждения для сплава I. В точке 1 – начало кристаллизации сплава. На кривой охлаждения наблюдается перегиб. В процессе кристаллизации состав жидкости будет меняться по линии АС. В т.2 жидкость будет иметь концентрацию точки С.

При этой температуре из жидкости одновременно выделяются кристаллы А и В, образуя механическую смесь – эвтектику (А+В), т.е. образуются двухфазные кристаллы. Этот процесс изотермический и происходит по линии DСЕ, кот. называется линией эвтектических превращений.

С – тройная точка: при данной температуре и данном составе в системе существует 3 фазы: L, А, В. Кривая охлаждения для сплава I:

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Сплав 1 – доэвтектический. Структура: А + эвтектика (А+В)

Сплав 2 – эвтектический. Структура:  эвтектика (А+В)

Сплав 3 – заэвтектический. Структура В + эвтектика (А + В).

Диаграмма 2 типа.

Компоненты А и В. Фазы: L, α..

Если два компонента неограниченно растворяются в жидком и твердом состояниях, то возможно существование только двух фаз – жидкого раствора L и твердого раствора α. Трех фаз быть не может. Кристаллизация при постоянной температуре не наблюдается и горизонтальной линии на диаграмме нет.

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Диаграмма состояния 3 типа.

Компоненты А, В.  Фазы: L, α., β .

В сплавах такого рода возможно существование  жидкой фазы L, твердого раствора компонента В в А — α.- твердый раствор и твердого раствора  компонента А в В – β-твердый раствор.

В таких сплавах возможно нонвариантное равновесие при одновременном существовании трех фаз: L, α., β . В этой системе не образуется фазы, представляющей собой чистые компоненты.

Из жидкости могут выделяться только твердые растворы α. и  β. 

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Около вертикалей А и В находятся области существования  твердых растворов α. и  β.

Предельная растворимость В в А  определяется линией DF, а предельная растворимость А в В линией ЕG. Сплавы, находящиеся между этими двумя линиями находятся за пределами растворимости  и являются двухфазными, состоящими из α. +  β.

Линия АСВ является на этой диаграмме  линией ликвидуса, АDСЕВ – солидуса. Линия DСЕ – линия эвтектических превращений, С- тройная точка.

  Рассмотрим кристаллизацию сплава 1. Выше т.1 сплав находится в жидком состоянии. В т.1 – начинается выделение кристаллов твердого раствора  α.. В т.2 – кристаллизация заканчивается.

Эти кристаллы не претерпевают изменений  до т.3. Ниже т.3 твердый раствор α  является пересыщенным и выделяет избыточные кристаллы – βII -твердого раствора, которые называются вторичными.

Сплав, концентрация которого лежит левее DF, не будет иметь вторичных выделений.

Линия ЕG, в отличие от линии DF, изображена вертикальной, т.е. растворимость А в В не зависит от температуры. Поэтому вторичных α2- кристаллов нет.

Построение кривых охлаждения

  1. Провести вертикаль через данный состав сплава (например, для сплава 1:20%В и 80%А).
  2. Отметить точки пересечения вертикали с линиями диаграммы (1,2,3,4)
  3. Сделать горизонтальную проекцию на ось температур.
  4. Построить кривые охлаждения, учитывая фазовые превращения. При простом охлаждении процесс идет быстро. При фазовых превращениях охлаждение сплавов замедляется и меняется наклон кривой. При кристаллизации эвтектики на кривой наблюдается горизонтальный участок.

Источник: https://moodle.kstu.ru/mod/book/tool/print/index.php?id=27810

Диаграмма железо-углерод

Диаграмма железо-углерод – это графическое отображение структуры сплавов, состоящих только из железа и углерода, в зависимости от исходной средней концентрации углерода и текущей температуры сплава. Диаграмма железо-углерод позволяет понять процессы, происходящие при термообработке стали

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлажденияДиаграмма железо-углерод (железо-цементит). Упрощенная

Структуры на диаграмме железо-углерод

Напомним о 2 кристаллических формах железа:

  • α-железо. Имеет объемноцентрированную кубическую (ОЦК) решетку;
  • γ-железо. Имеет гранецентрированную кубическую (ГЦК) решетку.

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлажденияКристаллическая решетка железа

Полиморфное превращение одной формы в другую при проведении термообработки сталей происходит при прохождении сплавами линии GSK.

Выделим 4 фазы в системе железо-углерод:

  1. Жидкая фаза. Концентрация углерода не ограничена;
  2. Феррит – это твёрдый раствор углерода в α-железе. Максимальная концентрация углерода – всего лишь 0,025% (точка P). При комнатной температуре – не выше 0,006%. Феррит мягок и пластичен.
  3. Аустенит – твёрдый  раствор углерода в γ-железе. Максимальная концентрация углерода — 2,14 % (точка E). Аустенит имеет невысокую твёрдость, пластичен, не магнитится.
  4. Цементит — химическое соединение железа с углеродом (карбид железа, Fe3C). Концентрация углерода, соответственно, постоянная – 6,67 % углерода. Цементит очень твёрд, хрупок, непластичен.

В зависимости от условий образования выделяют:

  • первичный цементит (образуется из жидкости);
  • вторичный цементит (выделяется из аустенита вокруг его зерен);
  • третичный цементит (выделяется из феррита по границам его зерен);
  • эвтектоидный цементит (является составной частью перлита);
  • эвтектический цементит (является составной частью ледебурита).

Необходимо так же выделить 2 структурные составляющие железоуглеродистых сплавов:

  1. Перлит (эвтектоид) – механическая смесь 2 фаз – пластинок/зерен феррита и цементита. Перлит образуется в результате перлитного превращения аустенита («свободного» или входящего в состав ледебурита) с концентрацией углерода 0,8% при прохождении ниже линии PSK:
Читайте также:  Самодельный рейсмусовый станок из электрорубанка

А0,8→Ф0,025 + Ц6,67

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлажденияСтруктура перлита. Ф — феррит, Ц — цементит

Железо при этом переходит из γ-формы в α-форму. Механические свойства сильно зависят от размера (дисперсности) частичек, из которых состоит данный перлит.

  1. Ледебурит (эвтектика) – механическая смесь 2 фаз – пластинок/зерен аустенита и цементита. Ледебурит образуется из жидкой фазы с концентрацией углерода 4,3% при прохождении ниже линии ECF:

Ж4,3→А2,14 + Ц6,67

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлажденияСтруктура ледебурита. Ц — цементит, А — аустенит.

Повторяясь, напомним, что при прохождении сплавов ниже линии PSK (727°С) аустенит, входящий в состав ледебурита, претерпевает перлитное превращение, разделяясь на феррит и цементит. Ледебурит тверд и хрупок.

При комнатной температуре железоуглеродистые сплавы могут иметь различную структуру, а значит и свойства, хотя и состоят всегда всего из 2 фаз: феррита и цементита. 

Некоторые элементы диаграммы железо-углерод

Выделим несколько границ на диаграмме железо-углерод:

  • линия ACD. Линия ликвидус. При охлаждении сплавов ниже нее начинается их кристаллизация;
  • линия AECF. Линия солидус. При охлаждении сплавов ниже нее весь сплав переходит в твердое состояние;
  • линия ECF. Иногда называется линией ледебуритного превращения. При охлаждении сплавов с содержанием углерода выше 2,14% ниже нее жидкая фаза превращается в ледебурит;
  • линия PSK. Линия перлитного превращения. При охлаждении сплавов ниже нее аустенит превращается в перлит.

 Отметим несколько важных точек на диаграмме:

  • точка E. Точка максимального насыщения аустенита углеродом – 2,14%, при температуре 1147°С;
  • точка P. Точка максимального насыщения феррита углеродом – 0,025%, при температуре 727°С;
  • точка S. Точка «0,8% С-727°С» превращения аустенита с концентрацией углерода 0,8% в перлит (эвтектоид) той же средней концентрации;
  • точка C. Точка «2,14 % С-1147°С» превращения жидкости с концентрацией углерода 2,14% в ледебурит (эвтектику) той же средней концентрации.

Часто значения температур, при которых происходят структурные изменения конкретного сплава обозначают буквами A:

  • A2 – линия MO – точка Кюри, в которой происходит изменение магнитных свойств сплавов;
  • A3 – температуры, соответствующие линии GS;
  • Acm – температуры, соответствующие линии SE.

Поскольку температуры фазовых переходов при нагреве и охлаждении слегка отличаются, то часто вводят дополнительные буквенные обозначения:

  • с – для температур фазовых переходов при нагреве;

например, Ac1 или Ar1.

Чтение диаграммы железо-углерод

Состав сплава с данным исходным содержанием углерода при заданной температуре мы можем увидеть, двигаясь по вертикальной линии, соответствующей содержанию углерода в сплаве.

Рассмотрим, например, область AEC. С ней соседствуют области аустенита AESG и жидкой фазы. Сплавы в ней состоят из жидкой фазы и образующегося твердого аустенита. Как определить концентрацию углерода в разных фазах для данного сплава? Рассмотрим для примера сплав с исходной концентрацией углерода 2,5% при температуре 1250°С.

Проведем из этой точки графика «2,5% C – 1250°С» горизонтальную прямую. Пересечение этой прямой с линией AE, граничащей с областью аустенита, покажет концентрацию углерода в аустените при данной температуре (~1.5%).

Пересечение этой же горизонтальной прямой с линией AС, граничащей с областью жидкой фазы, покажет концентрацию углерода в жидкой фазе при данной температуре (~3.5%).

Именно таким образом мы можем определить концентрацию углерода в фазах любого сплава при заданной температуре:

  • в жидкой фазе и аустените в области AEC;
  • в жидкой фазе в области CDF (концентрация углерода в цементите, конечно, постоянна – 6,67%);
  • в аустените в области SEFK;
  • в феррите в области QPKL;
  • в феррите и аустените в области GPS.

 Как видим, при концентрации углерода выше 2,14% насыщение охлаждаемого расплава углеродом всегда стремится к 4,3% (по линиям AC и DC) по мере приближения к температуре 1147°С (уровень ECF). Далее происходит превращение жидкости в ледебурит (эвтектику). Естественно, с этим же средним содержанием углерода.

По мере приближения к температуре 727°С (уровень PSK) концентрация углерода в аустените («свободном» и/или входящем в состав ледебурита) стремится к 0,8% (по линиям GS и ES). Далее происходит превращение аустенита в перлит (эвтектоид). Перлит, конечно, имеет среднее содержанием углерода 0,8%. 

Классификация железоуглеродистых сплавов

Классификация железоуглеродистых сплавов в зависимости от концентрации углерода в сплаве:

  1. C

Источник: http://kvadromash.ru/diagramma-zhelezo-uglerod/

Диаграмма состояния "железо — углерод"

Диаграмма состояния железо-углерод (цементит) — это графическое отображение фазового состава и структуры сплавов в зависимости от концентрации углерода и температуры

Содержание

Компоненты в системе «железо-углерод»

Компонентами железоуглеродистых сплавов являются железо, углерод и цементит:

Железо

Железо – d-переходный металл серебристо-светлого цвета. Температура плавления – 1539° С. Удельный вес равен 7,86 г/см3. Наиболее существенной особенностью железа является его полиморфизм. В твердом состоянии железо может находиться в двух модификациях — α и γ.

Полиморфные превращения происходят при температурах 911° С и 1392° С. При температуре ниже 911° С и выше 1392° С существует Feα (или α-Fе) с объемно-центрированной кубической решеткой. В интервале температур 911…1392° С устойчивым является Feγ (или γ-Fе) с гранецентрированной кубической решеткой.

При превращении α→γ наблюдается уменьшение объема, так как решетка γ-Fе имеет более плотную упаковку атомов, чем решетка α-Fе. При охлаждении во время превращения γ→α наблюдается увеличение объема. В интервале температур 1392…1539° С высокотемпературное Feα называют Feδ.

Высокотемпературная модификация Feα не представляет собой новой аллотропической формы.

При температуре ниже 768° С железо ферромагнитно, а выше – парамагнитно. Точку 768° С, соответствующую магнитному превращению, т.е. переходу из ферромагнитного состояния в парамагнитное называют точкой Кюри. Модификация Feγ парамагнитна.

Железо технической чистоты обладает невысокой твердостью (80 НВ) и прочностью (временное сопротивление – σв=250 МПа, предел текучести – σт=120 МПа) и высокими характеристиками пластичности (относительное удлинение – δ=50 %, а относительное сужение – ψ=80 %). Свойства могут изменяться в некоторых пределах в зависимости от величины зерна. Железо характеризуется высоким модулем упругости, наличие которого проявляется и в сплавах на его основе, обеспечивая высокую жесткость деталей из этих сплавов.

Железо со многими элементами образует растворы: с металлами – растворы замещения, с углеродом, азотом и водородом – растворы внедрения.

Углерод

Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления – 3500° С, плотность – 2,5 г/см3) или в форме алмаза со сложной кубической решеткой с координационным числом равным четырем (температура плавления – 5000° С).

В сплавах железа с углеродом углерод находится в состоянии твердого раствора с железом и в виде химического соединения – цементита (Fe3C), а также в свободном состоянии в виде графита (в серых чугунах).

Цементит

Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода. Более точные исследования показали, что цементит может иметь переменную концентрацию углерода. Однако в дальнейшем, при разборе диаграммы состояния, сделаем допущение, что Fе3С имеет постоянный состав.

Кристаллическая решетка цементита ромбическая, удельный вес 7,82 г/см3 (очень близок к удельному весу железа). При высоких температурах цементит диссоциирует, поэтому температура его плавления неясна и проставляется ориентировочно – 1260° С. Аллотропических превращений не испытывает.

Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу. При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 210° С.

Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность.

Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: например, азотом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.

Если графит является стабильной фазой, то цементит – это метастабильная фаза. Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.

Фазы в системе «железо-углерод»

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

Феррит

Феррит (Ф, α)- твердый раствор внедрения углерода в α-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).

Свойства феррита близки к свойствам железа. Он мягок (твердость – 80 — 130 НВ, временное сопротивление – σв=300 МПа) и пластичен (относительное удлинение — δ=50 %), магнитен до 768° С.

Под микроскопом феррит выглядит как светлые полиэдрические зерна. В сталях может существовать в виде сетки (разной толщины, в зависимости от содержания углерода), зерен (малоуглеродистые стали), пластин или игл (видманштетт).

Аустенит в сталях

Аустенит (А, γ) – твердый раствор внедрения углерода в γ–железо (по имени английского ученого  Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е).

Аустенит имеет твердость 180 НВ, пластичен (относительное удлинение – δ=40…50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. Под микроскопом выглядит как светлые полиэдрические зерна с двойниками.

Цементит – формы существования

В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений.

Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита).

Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо — цементит и железо — графит.

Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе — С) — графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура — содержание углерода.

Диаграмма состояния системы железо — углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран. Особое место среди них занимают работы Д.К. Чернова.

Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части.

Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Диаграмма состояния железо-углерод

Имеющиеся во всех областях диаграммы фазы видны на рисунке. Значение всех линий указано в таблице.

Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус — по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % — к чугунам.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А.

В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.

Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии GS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) — как Аr1.

Другие структурные составляющие в системе «железо-углерод»

Кроме компонентов и фаз в системе сплавов «железо-углерод» присутствуют другие структурные составляющие — перлит и ледебурит

Перлит

Перлит — эвтектоид, механическая смесь феррита и цементита, полученная в результате распада аустенита при охлаждении сплавов ниже 727° С.

При медленном охлаждении перлит присутствует во всех сплавах с концентрацией углерода от 0,02 до 6,67%. Под микроскопом перлит может выглядеть либо как пластины, либо как зерна — зернистый перлит.

Читайте также:  Восстановление резьбы: внутренней и наружной

Его вид, также как и механические свойства, зависит от скорости охлаждения сплава и вида его термической обработки

Ледебурит в сталях

Ледебурит — эвтектика, механическая смесь аустенита и цементита, выделяющаяся из жидкости при охлаждении сплавов ниже 1147° С.

Принципиальное отличие эвтектикой составляющей от эвтектоидной заключается в том, что первая выделяется из жидкости, а вторая из твердого раствора, в случае железоуглеродистых сплавов — из аустенита.

Название данная структурная составляющая получила в честь имени немецкого ученого-металлурга Ледебура.

Узловые критические точки диаграммы состояния системы железо-углерод

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Узловые критические точки диаграммы железо-углерод

Значение линий диаграммы состояния системы железо-углерод

Значения линий на диаграмме железо-углерод

Всякая диаграмма состояния показывает условия равновесного сосуществования фаз во взятой системе компонентов.

Полное физико-химическое равновесие между фазами может быть достигнуто только в специальных лабораторных условиях, а на практике некоторым приближением к этому состоянию может быть случай чрезвычайно медленного охлаждения или нагрева сплава с весьма длительными выдержками во времени при любых искомых температурах.

Источник: https://HeatTreatment.ru/diagramma-sostoyaniya-zhelezo-uglerod

Диаграмма состояния железоуглеродистых сплавов

Понятие о сплавах, компоненты и фазы. Диаграмма состояния.

Диаграмма состояния железоуглеродистых сплавов дает представ­ление о строении основных конструкционных сплавов — сталей и чугунов.

Компоненты, фазы и структурные составляющие сплавов же­леза с углеродом. Железо — пластичный металл серебристо-белого цвета с невысокой твердостью (НВ 80). Температура плавления — 1539 °С, плотность 7,83 г/см3. Имеет полиморфные модификации (см. раздел 2.1.). С углеродом железо образует химическое соединение и твердые растворы.

Цементит — это химическое соединение железа с углеродом (карбид железа) Fe3С. В нем содержится 6,67 % углерода (по массе). Имеет сложную ромбическую кристаллическую решетку. Характе­ризуется очень высокой твердостью (НВ 800), крайне низкой плас­тичностью и хрупкостью.

Ферритом называется твердый раствор углерода к α- железе. Со­держание углерода в феррите очень невелико — максимальное 0,02% при температуре 727 °С.

Благодаря столь малому содержанию угле­рода свойства феррита совпадают со свойствами железа (низкая твер­дость и высокая пластичность). Твердый раствор углерода в высоко­температурной модификации Feα (т. е.

в Feδ) часто называют δ- ферритом или высокотемпературным ферритом.

Аустенит — это твердый раствор углерода в γ- железе. Макси­мальное содержание углерода в аустените составляет 2,14 % (при температуре 1147 °С). Имеет твердость НВ 220.

Перлит — это механическая смесь феррита с цементитом. Со­держит 0,8% углерода, образуется из аустенита при температуре 727°С. Имеет пластинчатое строение, т.е. его зерна состоят из чередующих­ся пластинок феррита и цементита. Перлит является эвтектоидом. Эвтектоид— это механическая смесь двух фаз, образующаяся из твердого раствора (а не из жидкого сплава, как эвтектика).

Ледебурит представляет собой эвтектическую смесь аустенита с цементитом. Содержит 4,3 % углерода, образуется из жидкого сплава при температуре 1147 °С. При температуре 727 °С аустенит, входя­щий в состав ледебурита превращается в перлит и ниже этой темпе­ратуры ледебурит представляет собой механическую смесь перлита с цементитом.

Фаза цементита имеет пять структурных форм: цементит пер­вичный, образующийся из жидкого сплава; цементит вторичный, образующийся из аустенита; цементит третичный, образующийся из феррита; цементит ледебурита; цементит перлита.

Диаграмма Fе-Fе3С. На рис. 13 приведена диаграмма состояния сплавов железа с цементитом. На горизонтальной оси концентраций отложено содержание углерода от 0 до 6,67 %. Левая вертикальная ось соответствует 100 % содержанию железа.

На ней отложены темпера­тура плавления железа и температуры его полиморфных превраще­ний. Правая вертикальная ось (6,67 % углерода) соответствует 100 % содержанию цементита.

Буквенное обозначение точек диаграммы при­нято согласно международному стандарту и изменению не подлежит.

Линия АВСД диаграммы является линией ликвидус. На ней на­чинается кристаллизация: на участке АВ — феррита, ВС — аустенита и СД — первичного цементита. Линия AHJECF является лини­ей солидус диаграммы.

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

Железоуглеродистые сплавы в зависимости от содержания угле­рода делятся на техническое железо (до 0,02 % С), сталь (от 0,02 до 2,14 % С) и чугун (от 2,14 до 6,67 % С).

Сталь, содержащая до 0,8 % С называется доэвтектоидной, 0,8 % С — эвтектоидной и свыше 0,8 % С — заэвтектоидной.

Чугун, содержащий от 2,14 до 4,3 % С называется доэвтектическнм, ровно 4,3% — эвтектическим и от 4,3 до 6,67 % С — заэвтектическим.

Структура технического железа представляет собой зерна фер­рита или феррит с небольшим количеством третичного цементита. Обязательной структурной составляющей стали является перлит. Структура доэвтектоидной стали, состоит из равномерно распреде­ленных зерен феррита и перлита. Эвтектоидная сталь состоит толь­ко из перлита.

Структура заэвтектоидной стали представляет собой зерна перлита, окруженные сплошной или прерывистой сеткой вто­ричного цементита. Дня чугуна характерно наличие ледебурита в структуре.

Структура доэвтектического чугуна состоит из перлита, вторичного цементита и ледебурита, эвтектического — из ледебури­та и заэвтектического — из ледебурита и первичного цементита.

Значение диаграммы железо — цементит состоит в том, что она позволяет объяснить зависимость структуры и, соответственно, свойств сталей и чугунов от содержания углерода и определить ре­жимы термической обработки для изменения свойств сталей.

Стали

Сталью называется сплав железа с углеродом, в котором углеро­да содержится не более 2,14%. Это теоретическое определение. На практике в сталях, как правило, не содержится углерода более 1,5 %.

Влияние углерода и примесей на свойства стали. Углерод существенно влияет на свойства стали даже при незначительном измене­нии его содержания. В стали имеются две фазы — феррит и цементит (частично в виде перлита).

Количество цементита возрастает прямо пропорционально содержанию углерода.Как уже говорилось, феррит характеризуется высокой пластичностью и низкой твердостью, а це­ментит, напротив, очень низкой пластичностью и высокой твердо­стью.

Поэтому с повышением содержания углерода до 1,2 % снижают­ся пластичность и вязкость стали и повышаются твердость и прочность.

Повышение содержания углерода влияет и на технологические свойства стали. Ковкость, свариваемость и обрабатываемость реза­нием ухудшаются, по литейные свойства улучшаются.

Кроме железа и углерода в стали всегда присутствуют постоянные примеси. Наличие примесей объясняется технологическими особен­ностями производства стали (марганец, кремний) и невозможностью полного удаления примесей, попавших в сталь из железной руды (сера, фосфор, кислород, водород, азот). Возможны также случайные при­меси (хром, никель, медь и др.).

Марганец и кремний вводят в любую сталь для раскисления, т.е. для удаления вредных примесей оксида железа FеО. Марганец также устраняет вредные сернистые соединения железа. При этом содер­жание марганца обычно не превышает 0,8 %, а кремния — 0,4 %. Марганец повышает прочность, а кремний упругость стали.

Фосфор растворяется в феррите, сильно искажает кристалли­ческую решетку, снижая при этом пластичность и вязкость, но по­вышая прочность.

Вредное влияние фосфора заключается в том, что он сильно повышает температуру перехода стали в хрупкое состоя­ние, т.е. вызывает ее хладноломкость.

Вредность фосфора усугубля­ется тем, что он может распределяться в стали неравномерно. По­этому содержания фосфора в стали ограничивается величиной 0,045 %.

Сера также является вредной примесью. Она нерастворима в железе и образует с ним сульфид железа FeS, который образует с железом легкоплавкую эвтектику. Эвтектика располагается по гра­ницам зерен и делает сталь хрупкой при высоких температурах. Это явление называется красноломкостью. Количество серы в стали ог­раничивается 0,05 %.

Водород, азот и кислород содержатся в стали в небольших ко­личествах. Они являются вредными примесями, ухудшающими свой­ства стали.

Классификация сталей. По химическому составу стали могут быть углеродистыми, содержащими железо, углерод и примеси и легированными, содержащими дополнительно легирующие элемен­ты, введенные в сталь с целью изменения ее свойств.

По содержанию углерода стали делятся на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,25 … 0,7 % С) и высокоуглеро­дистые (более 0,7 % С).

По назначению различают стали конструкционные, идущие на изготовление деталей машин, конструкций и сооружений, инстру­ментальные, идущие на изготовление различного инструмента, а также стали специального назначения с особыми свойствами: нержавею­щие, жаростойкие, жаропрочные, износостойкие, с особыми элект­рическими и магнитными свойствами и др..

По показателям качества стали классифицируются на обыкно­венного качества, качественные, высококачественные и особо высо­кокачественные.

Качество стали характеризуется совокупностью свойств, определяемых процессом производства, химическим соста­вом, содержанием газов и вредных примесей (серы и фосфора).

В соответствии с ГОСТом стали обыкновенного качества должны со­держать не более 0,045 % Р и 0,05 % S, качественные — не более 0,035 % Р и 0,04 % S, высококачественные — не более 0,025 % Р и 0,025 % S и особо высококачественные — не более 0,025 % Р и 0,015 % S.

Углероди­стые конструкционные стали могут быть только обыкновенного ка­чества и качественными.

Качественные конструкционные углеродистые стати маркируют­ся цифрами 08, 10, 15, 20, 25, …, 85, которые обозначают среднее содержание углерода в сотых долях процента.

Эти стали отличаются от сталей обыкновенного качества большей прочностью, пластичностью и ударной вязкостью. Если для сталей обыкновенного качества макси­мальная прочность составляет 700 МПа, то для качественной она достигает 1100 МПа.

Более подробно они будут рассмотрены совместно с конструкционными легированными сталями (см. раздел 5.1.).

Чугуны

Чугуном называют сплав железа с углеродом, содержащий от 2,14 до 6,67 % углерода. Но это теоретическое определение. На практике содержание углерода в чугунах находится в пределах 2,5…4,5 %. В качестве примесей чугун содержит Si, Мn, S и Р.

Классификация чугунов. В зависимости от того, в какой форме содержится углерод в чугунах, различают следующие их виды. В бе­лом чугуне весь углерод находится в связанном состоянии в виде це­ментита. Структура белого чугуна соответствует диаграмме Fе-Fе3С.

В сером чугуне большая часть углерода находится в виде графита, вклю­чения которого имеют пластинчатую форму. В высокопрочном чугуне графитные включения имеют шаровидную форму, а в ковком — хлопь­евидную.

Содержание углерода в виде цементита в сером, высоко­прочном и ковком чугунах может составлять не более 0,8%.

Белый чугун обладает высокой твердостью, хрупкостью и очень плохо обрабатывается. Поэтому для изготовления изделий он не ис­пользуется и применяется как предельный чугун, т.е. идет на произ­водство стали.

Для деталей с высокой износостойкостью использу­ется чугун с отбеленной поверхностью, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой — белого чугуна. Машиностроительными чугунами, идущими на изго­товление деталей, являются серый, высокопрочный и ковкий чугуны.

Детали из них изготовляются литьем, так как чугуны имеют очень хорошие литейные свойства. Благодаря графитным включени­ям эти чугуны хорошо обрабатываются, имеют высокую износостой­кость, гасят колебания и вибрации. Но графитные включения умень­шают прочность.

Таким образом, структура машиностроительных чугунов состо­ит из металлической основы и графитных включений.

По металли­ческой основе они классифицируются на ферритный чугун (весь углерод содержится в виде графита), феррито-перлитный и перлит­ный (содержит 0,8% углерода в виде цементита).

Характер ме­таллической основы влияет на механические свойства чугунов: проч­ность и твердость выше у перлитных, а пластичность — у ферритных.

Серый чугун имеет пластинчатые графитные включения. Струк­тура серого чугуна схематически изображена на рис. 14,а. Получают серый чугун путем первичной кристаллизации из жидкого сплава.

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

На графитизацию (процесс выделения графита) влияют скорость охлаждения и химический состав чугуна. При быстром охлаждении графитизации не происходит и получается белый чугун. По мере уменьшения скорости охлаждения получаются, соответственно, пер­литный, феррито-перлитный и ферритный серые чугуны. Способ­ствуют графитизации углерод и кремний.

Кремния содержится в чу­гуне от 0,5 до 5 %. Иногда его вводят специально. Марганец и сера препятствуют графитизации. Кроме того, сера ухудшает механичес­кие и литейные свойства. Фосфор не влияет на графитизацию, но улучшает литейные свойства.

Механические свойства серого чугуна зависят от количества и размера графитных включений. По сравнению с металлической ос­новой графит имеет низкую прочность. Поэтому графитные включе­ния можно считать нарушениями сплошности, ослабляющими ме­таллическую основу.

Так как пластинчатые включения наиболее сильно ослабляют металлическую основу, серый чугун имеет наибо­лее низкие характеристики, как прочности, так и пластичности сре­ди всех машиностроительных чугунов. Уменьшение размера графит­ных включений улучшает механические свойства.

Измельчению графитных включений способствует кремний.

Маркируется серый чугун буквами СЧ и числом, показывающем предел прочности в десятых долях мегапаскаля. Так, чугун СЧ 35 имеет σв=350 МПа. Имеются следующие марки серых чугунов: СЧ 10, СЧ 15, СЧ 20. …, СЧ 45.

Высокопрочный чугун имеет шаровидные графитные включе­ния. Структура высокопрочного чугуна изображена на рис. 14,б.

Получают высокопрочный чугун добавкой в жидкий чугун неболь­шого количества щелочных или щелочноземельных металлов, кото­рые округляют графитные включения в чугуне, что объясняется уве­личением поверхностного натяжения графита.

Читайте также:  Газокислородная резка металла: технология, виды, условия, процесс

Чаще всего для этой цели применяют магний в количестве 0,03…0,07 %. По содержанию других элементов высокопрочный чугун не отличается от серого.

Шаровидные графитные включения в наименьшей степени ос­лабляют металлическую основу. Именно поэтому высокопрочный чугун имеет более высокие механические свойства, чем серый. При этом он сохраняет хорошие литейные свойства, обрабатываемость резанием, способность гасить вибрации и т. д.

Маркируется высокопрочный чугун буквами ВЧ и цифрами, показывающими предел прочности и десятых долях мегапаскаля. Например, чугун ВЧ 60 имеет σв = 600 МПа. Существуют следующие марки высокопрочных чугунов: ВЧ 35, ВЧ 40, ВЧ 45, ВЧ 50, ВЧ 60, ВЧ 70, ВЧ 80, ВЧ 100. Применяются высокопрочные чугуны для изготовления ответственных деталей — зубчатых колес, валов и др.

Ковкий чугун имеет хлопьевидные графитные включения (рис. 14, в). Его получают из белого чугуна путем графитизирующего отжига, ко­торый заключается в длительной (до 2 суток) выдержке при темпера­туре 950…970 °С.

Если после этого чугун охладить, то получается ков­кий перлитный чугун, металлическая основа которого состоит из перлита и небольшого количества (до 20 %) феррита. Такой чугун называют также светлосердечным.

Если в области эвтектоидного пре­вращения (720…760 °С) проводить очень медленное охлаждение или даже дать выдержку, то получится ковкий ферритный чугун, металли­ческая основа которого состоит из феррита и очень небольшого ко­личества перлита (до 10 %). Этот чугун называют черносердечным, так как он содержит сравнительно много графита.

Маркируется ковкий чугун буквами КЧ и двумя числами, пока­зывающими предел прочности в десятых долях мегапаскаля и от­носительное удлинение в %. Так, чугун КЧ 45-7 имеет σв = 450 МПа и δ= 7%.

Ферритные ковкие чугуны (КЧ 33-8, КЧ 37-12) имеют более высокую пластичность, а перлитные (КЧ 50-4, КЧ 60-3) более высокую прочность.

Применяют ковкий чугун для деталей неболь­шого сечения, работающих при ударных и вибрационных нагрузках.

Источник: https://megaobuchalka.ru/9/7197.html

Диаграмма состояния сплавов железо — углерод

Диаграмма железо-углерод (железо-цементит) – это графическое отображение структуры сплавов, состоящих только из железа и углерода, в зависимости от исходной средней концентрации углерода и текущей температуры сплава. Диаграмма железо-углерод позволяет понять процессы, происходящие при термообработке стали.

Диаграмма железо-углерод (железо-цементит). Упрощенная

линия ACD. Линия ликвидус. При охлаждении сплавов ниже нее начинается их кристаллизация;

линия AECF. Линия солидус. При охлаждении сплавов ниже нее весь сплав переходит в твердое состояние;

линия ECF. Иногда называется линией ледебуритного превращения. При охлаждении сплавов с содержанием углерода выше 2,14% ниже нее жидкая фаза превращается в ледебурит;

линия PSK. Линия перлитного превращения. При охлаждении сплавов ниже нее аустенит превращается в перлит.

  •  Отметим несколько важных точек на диаграмме:
  • точка E. Точка максимального насыщения аустенита углеродом – 2,14%, при температуре 1147°С;
  • точка P. Точка максимального насыщения феррита углеродом – 0,025%, при температуре 727°С;
  • точка S. Точка «0,8% С-727°С» превращения аустенита с концентрацией углерода 0,8% в перлит (эвтектоид) той же средней концентрации;

точка C. Точка «2,14 % С-1147°С» превращения жидкости с концентрацией углерода 2,14% в ледебурит (эвтектику) той же средней концентрации.

Чтение диаграммы железо-углерод

Состав сплава с данным исходным содержанием углерода при заданной температуре мы можем увидеть, двигаясь по вертикальной линии, соответствующей содержанию углерода в сплаве.

Рассмотрим, например, область AEC. С ней соседствуют области аустенита AESG и жидкой фазы. Сплавы в ней состоят из жидкой фазы и образующегося твердого аустенита. Как определить концентрацию углерода в разных фазах для данного сплава? Рассмотрим для примера сплав с исходной концентрацией углерода 2,5% при температуре 1250°С.

Проведем из этой точки графика «2,5% C – 1250°С» горизонтальную прямую. Пересечение этой прямой с линией AE, граничащей с областью аустенита, покажет концентрацию углерода в аустените при данной температуре (~1.5%).

Пересечение этой же горизонтальной прямой с линией AС, граничащей с областью жидкой фазы, покажет концентрацию углерода в жидкой фазе при данной температуре (~3.5%).

  1. Именно таким образом мы можем определить концентрацию углерода в фазах любого сплава при заданной температуре:
  2. в жидкой фазе и аустените в области AEC;
  3. в жидкой фазе в области CDF (концентрация углерода в цементите, конечно, постоянна – 6,67%);
  4. в аустените в области SEFK;
  5. в феррите в области QPKL;
  6. в феррите и аустените в области GPS.

 Как видим, при концентрации углерода выше 2,14% насыщение охлаждаемого расплава углеродом всегда стремится к 4,3% (по линиям AC и DC) по мере приближения к температуре 1147°С (уровень ECF). Далее происходит превращение жидкости в ледебурит (эвтектику). Естественно, с этим же средним содержанием углерода.

По мере приближения к температуре 727°С (уровень PSK) концентрация углерода в аустените («свободном» и/или входящем в состав ледебурита) стремится к 0,8% (по линиям GS и ES). Далее происходит превращение аустенита в перлит (эвтектоид). Перлит, конечно, имеет среднее содержанием углерода 0,8%.

20. Кривая охлаждения сплава, содержащего 0,45% С.

В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES).

По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит.

Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).

Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.

Диаграмма состояния сплавов железо-углерод: структуры, кривые охлаждения

  • Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:
  • C = K + 1 – Ф,
  • где С – число степеней свободы системы;
  • К – число компонентов, образующих систему;
  • 1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);
  • Ф – число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 0,45%С, называется доэвтектоидной сталью. Его структура при комнатной температуре – феррит + перлит.

21. Кривая охлаждения сплава, содержащего 0,8% С.

ервичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидко­го раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор).

Процесс кристаллиза­ции сплавов с содержанием углерода до 0,1 % заканчи­вается по линии АН с образованием α (δ)-твердого раст­вора.

На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3% до 6,67% углерода, при темпера­турах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристал­лизующийся из жидкой фазы, называется первичным.

B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3Л[А2,14+Ц6,67].

Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических – аустенит + ледебурит, эвтектических – ледебурит и заэвтектических – цементит (первичный) + ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8% образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,03+Ц6,67].

  1. Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.
  2. Следовательно, сплавы, содержащие менее 0,008% углерода (точка Q), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит + цементит третичный и называются техническим железом.
  3. Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит + перлит и заэвтектоидные – перлит + цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES).

По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит.

Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).

Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.

  • C = K + 1 – Ф,
  • где С – число степеней свободы системы;
  • К – число компонентов, образующих систему;
  • 1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);
  • Ф – число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 0,8% С, называется эвтектоидной сталью. Его структура при комнатной температуре – Перлит.

Классификация сталей

Классификация сталей и сплавов производится по химическому составу, по качеству (по способу производства и содержанию вредных примесей), по степени раскисления и характеру затвердевания .металла в изложнице, а также по назначению.

По химическому составу углеродистые стали различают в зависимости от содержания углерода на следующие группы:

• малоуглеродистые — менее 0,3% С;

• среднеуглеродистые — 0,3…0,7% С;

  1. • высокоуглеродистые — более 0,7 %С.
  2. В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов:
  3. • низколегированные — менее 2,5%;

• среднелегированные — 2,5… 10%;

  • • высоколегированные — более 10%.
  • Легированные стали и сплавы делятся также на классы по структурному составу:
  • в отожженном состоянии — доэвтектоидный, заэвтектоидный, ледвбуритный (карбидный), ферритный, аустенитный;

в нормализованном состоянии — перлитный, мартенситный и аустенитный. К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному — с более высоким и к аустенитному — с высоким содержанием легирующих элементов.

  1. По качеству, то есть по условиям производства (способу производства и содержанию вредных примесей), стали и сплавы делятся на следующие группы:
  2.    сера,% фосфор,%
  3. • обыкновенного качества (рядовые) менее 0,06 менее 0,07;
  4. • качественные менее 0,04 менее 0,035;
  5. • высококачественные    менее 0,025    менее 0,025;
  6. • особо высококачественные   менее 0,015    менее 0,025.

Стали обыкновенного качества по химическому составу — углеродистые стали, содержащие до 0,6% С. Эти стали выплавляются в конвертерах с применением кислорода или в больших мартеновских печах.

Стали обыкновенного качества, являясь наиболее дешевыми, уступают по механическим свойствам сталям других классов, так как отличаются повышенными ликвацией (химической и структурной неоднородностью) и количеством неметаллических включений.

Стали качественные по химическому составу бывают углеродистые или легированные. Они также выплавляются в конвертерах или в основных мартеновских печах, но с соблюдением более строгих требований к составу шихты, процессам плавки и разливки.

Стали обыкновенного качества и качественные по степени раскисления и характеру затвердевания металла в изложнице делятся на спокойные (сп), полуспокойные (пс) и кипящие (кп). Каждый из этих сортов отличается содержанием кислорода, азота и водорода. Так в кипящих сталях содержится наибольшее количество этих элементов.

Стали высококачественные выплавляются преимущественно в электропечах, а особо высококачественные — в электропечах с электрошлаковым переплавом (ЭШП) или другими совершенными методами, что гарантирует повышенную чистоту по неметаллическим включениям и содержанию газов, а следовательно, улучшение механических свойств.

По назначению стали и сплавы классифицируются на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами.

Источник: https://studopedia.net/3_27456_diagramma-sostoyaniya-splavov-zhelezo—uglerod.html

Ссылка на основную публикацию
Adblock
detector