Вихревая труба ранке своими руками

Вихревая труба ранке своими руками А что, если я скажу Вам, что можно «подуть» в Т-образную трубку — и с двух других её концов пойдет воздух «сильно минусовой» и «сильно плюсовой» температуры? Похоже на какой-то бред, не так ли? Тем не менее, такое замечательное устройство вполне себе существует и известно очень давно. Ученые до сих пор расходятся во мнениях относительно того, «как же оно всё-таки работает?!». Предлагаем и Вам ознакомиться с этим любопытным эффектом… ❒ В 1931 г. Жозефом Ранком был открыт вихревой эффект энергетического разделения газов, называемый часто эффектом Ранка. После доклада Ранка Французскому физическому обществу о своем открытии о нем забыли и только с 1946 года вихревой эффект стал объектом исследований ученых разных стран.

В Советском Союзе первые широкие исследования вихревого эффекта были проведены профессором Мартыновским В. С. и доцентом Алексеевым В. П. в Одесском технологическом институте пищевой и холодильной промышленности.

Большую работу по созданию вихревых вакуум-аппаратов провела группа под руководством д-ра техн. наук Дубинского М. Г.; им опубликовано несколько теоретических работ по закрученным потокам. Внешне простой вихревой эффект на самом деле заключает в себе сложный газодинамический процесс, происходящий в пространственном турбулентном потоке вязкого сжимаемого газа. Этим, пожалуй, и объясняется неудача многих попыток найти аналитическое решение задачи.

Несмотря на длительное изучение вихревого эффекта до сих пор отсутствует общепризнанная физико-математическая модель феномена.

Наиболее обоснованной считается гипотеза взаимодействия вихрей, но и она не лишена некоторых неточностей и противоречий. Пока не проведено строго обоснованного прямого эксперимента, способного полностью подтвердить ее достоверность. На основе проведенных исследований разработаны полуэмпирические методики расчета вихревого эффекта и некоторых видов вихревых аппаратов. На этом период первоначального изучения вихревого эффекта закончился и начался период освоения и внедрения его в производство. С 1953 года в Куйбышевском авиационном институте велась работа по исследованию вихревого эффекта и его промышленному использованию. В 1958 году в институте создана лаборатория промышленного применения вихревого эффекта, в которой разработано несколько промышленных образцов вихревых холодильно-нагревательных установок и созданы различные типы вихревых аппаратов. Благодаря своим особенностям вихревой эффект нашел практическое применение в самых различных областях техники и производства. Примером этому может служить то, что в лаборатории Куйбышевского авиационного института были созданы вихревой конденсационный гигрометр, вихревой отсасывающий электросварочный аппарат, вихревой охладитель цилиндрических тел, велись работы по созданию вихревого карбюратора, вихревой кондиционирующей установки для транспортных машин и других вихревых аппаратов. На многих предприятиях СССР работали вихревые холодильные камеры, вихревые термостаты и вихревые вакуум-насосы. В данный момент, вихревые трубы широко используются в разных отраслях промышленности по всему миру: Вихревая труба ранке своими руками Вихревая труба ранке своими руками Вихревая труба ранке своими руками Вихревая труба ранке своими руками

▍Сущность вихревого эффекта и конструкции вихревых труб

Вихревой эффект, или эффект Ранка, проявляется в закрученном потоке вязкой сжимаемой жидкости и реализуется в очень простом устройстве, называемом вихревой трубой (трубой Ранка—Хилша, вихревым энергоразделителем, вихревым холодильником), схематичная конструкция которой изображена на рис.

1. и рис. 2.

То есть, можно сказать, что Вихревой эффект (эффект Ранка — Хилша, англ. Ranque-Hilsch Effect) — эффект температурного разделения газа при закручивании в цилиндрической или конической камере при условии, что поток газа в трубке проходит не только прямо, но и обратно.

Вихревая труба ранке своими рукамиРисунок 1. Вихревая труба ранке своими рукамиРисунок 2. Вихревая труба представляет собой гладкую цилиндрическую трубу 1, снабженную тангенциальным соплом 2, улиткой 3, диафрагмой 4 с осевым отверстием и дросселем 5. При втекании газа через сопло образуется интенсивный круговой поток, приосевые слои которого заметно охлаждаются и отводятся через отверстие диафрагмы в виде холодного потока, а периферийные слои подогреваются и вытекают через дроссель в виде горячего потока. По мере прикрытия дросселя общий уровень давления в вихревой трубе повышается и расход холодного потока через отверстие диафрагмы увеличивается при соответствующем уменьшении расхода горячего потока. При этом температуры холодного и горячего потоков также изменяются. На периферии образуется закрученный поток с большей температурой, а из центра — в противоположную сторону выходит охлажденный поток. Существует распространённое заблуждение, что температурное разделение происходит путём перемещения молекул газа на прямом проходе вихря (в одну сторону). Но объяснимых физикой причин для такого разделения нет, как нет причин и для вращения центрального жгута в противоположную сторону относительно периферии. В противоположную сторону вращаются микровихри между центральным жгутом и периферией, так как жгут вращается с более высокой скоростью относительно периферии. Но катятся они, как ролики в подшипнике, в ту же сторону, в которую вращаются внешний слой и центральный жгут. Температурное разделение происходит путём теплопередачи от сжатого (и потому горячего) кумулятивным эффектом или имплозией центрального жгута к несжатой периферии, имеющей температуру как на входе. По мере движения к «горячему» концу периферия нагревается от двигающегося ей навстречу сжатого горячего центрального жгута, который в свою очередь наоборот остывает. Т. о. образующийся в трубке вихрь является тепловым насосом компрессионного типа с противоточным теплообменником, способным передать до 100 % разницы температур. Поэтому для терморазделения необходим не только прямой, но и обратный проход, как на рисунке. Так как после выхода из трубки жгут расширяется до давления окружающей среды (атмосферного), выходящий из «холодного» конца трубки газ имеет температуру намного ниже температуры окружающей среды (если «горячий» конец не заглушен), а всё утерянное им тепло уносится газом с «горячего» конца.

▍- Достоинства вихревой трубки:

  • Нет движущихся частей;
  • Не требуется обслуживание;
  • Надежность;
  • Без электричества или химикатов;
  • Компактная, легкая;
  • Бюджетная;
  • Мгновенное получение результата;
  • Прочность конструкции;
  • Регулируемая температура;

Парадоксальность эффекта Ранка заключается в том, что горячие слои газа располагаются в вихре — снаружи, а холодные — по центру вихря.

Как известно, более тёплые слои газа или жидкости имеют меньшую плотность и должны подниматься вверх, а в случае центробежных сил — стремиться к центру, более холодные имеют большую плотность и, соответственно, должны стремиться к периферии. Между тем, при большой скорости вращающегося потока всё происходит с точностью до наоборот!

Эффект Ранка проявляется как для потока газа, так и для потока жидкости, которая, как известно, является практически несжимаемой и потому фактор адиабатического сжатия / расширения к ней неприменим. Тем не менее, в случае жидкости эффект Ранка обычно выражен значительно слабее — возможно, именно по этой причине, да и очень малая длина свободного пробега частиц затрудняет его проявление. Но это верно, если оставаться в рамках традиционной молекулярно-кинетической теории, а у эффекта могут быть и совсем другие причины. В результате многочисленных экспериментальных исследований создано несколько конструктивных вариантов вихревых труб. Основным их различием является конструктивное выполнение тангенциального соплового входа сжатого газа и длина цилиндрической части (вихревой зоны) трубы в калибрах.

На рисунке 3 приведены конструктивные особенности исследованных вихревых труб, показавших хорошие результаты.

Вихревая труба ранке своими рукамиРисунок 3. Разработанные Р. Хилшем вихревые трубы имеют один круглый утопленный тангенциальный сопловой вход и входную улитку прямоугольного сечения, ввиду чего на срезе сопла имеется площадка, создающая зону завихрения. Этот недостаток устранен в конструкции В. С. Мартыновского и В. П. Алексеева, которые создали тангенциально-лотковый сопловой вход, имеющий два круглых наполовину утопленных в теле трубы сопловых входа, переходящих в лоток. Подобная конструкция позволила устранить зону завихрения и улучшить эффективность вихревой трубы, хотя и усложнила изготовление соплового входа. Оптимальной длиной вихревой зоны трубы (расстояние от соплового входа до дросселя горячего конца) авторы двух рассмотренных выше конструкций считают 50 калибров. Конструкция Меркулова А. П. имеет сопловой вход прямоугольного сечения и прямоугольную входную улитку, построенную по спирали Архимеда, что обеспечивает устранение зоны завихрения на сопловом срезе при сохранении простоты конструкции.

Второй особенностью этой конструкции является сокращение длины вихревой зоны до 9 калибров, осуществляемое за счет ограничения вихревой зоны спрямляющей четырехлопастной крестовиной, устанавливаемой перед дросселем горячего потока (рис 4. и рис 5. )

Введение этих двух элементов позволило еще более повысить эффективность вихревой трубы и сделать ее значительно компактнее. Вихревая труба ранке своими рукамиРисунок 4. Вихревая труба ранке своими рукамиРисунок 5.

▍Влияние диаметра отверстия диафрагмы

С полным основанием можно ожидать, что на характеристики вихревых труб различных диаметров будут влиять не абсолютные значения диаметров отверстия диафрагмы, а их отношение к диаметру вихревой трубы: Экспериментальные данные трех различных исследований хорошо укладываются на прямую линию (График А). С изменением соотношения, характеристики вихревой трубы заметно меняются (График Б, где µ-относительный весовой расход холодного потока).

▍Влияние длины вихревой зоны трубы

В ряде работ за оптимальную длину L вихревой зоны трубы принималась длина, соответствующая 50 ее калибрам. Это делало вихревую трубу очень громоздкой, поэтому многие исследователи пытались уменьшить ее. В результате было найдено конструктивное решение, обеспечивающее резкое сокращение вихревой зоны.

Читайте также:  Травосборник для газонокосилки своими руками

За счет установки на горячем конце вихревой зоны четырехлопастной крестовины — удалось сократить длину этой зоны до 9 калибров и при этом несколько улучшить эффективность вихревой трубы как по эффекту охлаждения, так и по холодопроизводительности.

На рис.

6 приведены опытные кривые зависимости максимальных значений эффекта охлаждения от относительной длины вихревой зоны для двух отличных друг от друга давлений и проходных сечений соплового входа.

При сокращении длины вихревой зоны до оптимальной наблюдается небольшой рост максимального значения эффекта охлаждения, а при (L/D)компрессор—>ресивер(сойдет даже бутылка 2л от «кока-колы» — это по моему личному, многолетнему опыту). Ресивер нужен для накопления давления, чтобы избежать пульсаций воздух и отстоя паров масла и воды в подаваемом воздухе—>вихревая трубка;

2. На напечатанной с помощью 3d печати вихревой трубке — следует нарезать резьбу М10х1(если вы будете использовать рекомендованные мной компоненты). Так как печатная такая мелкая резьба получается «оплывшей» и лучше ее нарезать плашкой; 3. Ниже вы найдете ссылки на требующиеся в процессе переделки компоненты: 4. Во многом, вихревые трубки изготовляются, основываясь на эмпирических данных, предыдущих исследователей («примерно такого размера и таких параметров — вроде работало…»). Отсутствие общепризнанной теории вихревых труб — сильно осложняет процесс их изготовления согласно заданных параметров (о чём уже было сказано выше). Однако, не всё так плохо, если: а) компрессор справляется с подачей нужного количества воздуха в трубку;

б) трубка изготовлена, опираясь на имеющиеся эмпирические данные (например, рисунок 3.) ❒ — такие трубки работают сразу, почти все. Они отличаются только своими возможностями получения нужных низких/высоких температур.

Самые экстремальные исследователи, могут попробовать запитать вихревую трубку воздухом высокого давления (до 300 атмосфер!) от появившихся в изобилии в последние годы — компрессоров высокого давления для PCP пневматических винтовок.

Полагаем, результат будет весьма впечатляющим.

  • ▍ — Автор данной статьи, в процессе её подготовки, заметил еще один интересный факт, который должен быть озвучен: все публично доступные результаты экспериментов с этими трубами, основываются на стандартных технологиях.
  • Налицо полное игнорирование возможностей изготовления данных трубок с применением 3D печати!
  • А с появлением общедоступных фотополимерных принтеров по недорогой цене, например, Anycubic Photon,- возможно изготовление поистине миниатюрных и сложных кластерных систем, базирующихся на вихревых трубках (в буквальном смысле – микронного масштаба)!

Под этим подразумевается, что для производства данных вихревых труб используется стандартные металлические детали, изготовленные с применением стандартных металлообрабатывающих станков. Однако именно 3D печать может дать новые возможности в изготовлении данных устройств! Например: изготовление микромассива данных трубок, объединённых в миниатюрный кластер. Данный кластер может быть установлен в дальнейшем прямо на критичные электронные компоненты, требующие охлаждения, например процессор компьютера. Таким образом, любой исследователь данного эффекта, имеющий в наличии соответствующей трехмерный принтер и программу инженерного трехмерного проектирования, например, solidworks, может с лёгкостью смоделировать и распечатать вихревую трубку или их кластер любого размера, соответствующего возможностям компрессора, имеющегося в наличии у конкретного исследователя!

Производители на aliexpress тоже не остались в стороне и выпускают весьма интересное устройство — «Мобильный кондиционер сварщика», основанный на данной трубке Ранка-Хилша. Данное устройство позволяет обеспечить комфортным микроклиматом рабочих в цеху — персонально каждого. Это устройство достаточно подключить к цеховой сети сжатого воздуха:

  1. При желании провести ряд собственных экспериментов, там же имеются и готовые вихревые трубки.
  2. ▍ — Желающие более подробно ознакомиться с данным эффектом и вихревыми трубами — могут прочитать следующую литературу (в статье использованы, в частности, материалы следующих книг):

Используя 3d печать, любой исследователь может легко и быстро создать целую серию вихревых трубок, подогнав их размеры и параметры получаемой температуры — под требующиеся именно ему! С 1960-х годов вихревое движение является темой множества научных исследований. Регулярно проводятся специализированные конференции по вихревому эффекту, например, в Самарском аэрокосмическом университете. Следует заметить, что возможности некоторых установок на эффекте Ранка внушают уважение — например, рекордное охлаждение, которого удалось достигнуть на одной ступени, составляет более 200°С!

  • А.П. Меркулов — «Вихревой эффект и его применение в технике»;
  • Ш.А. Пиралишвили, В.М.Поляев, М.Н. Сергеев — «Вихревой эффект. Эксперимент, теория, технические решения».

Вихревой двигатель для отопления

ВТР – это устройства, которые преобразовывают электрическую энергию в тепловую. История их изобретения касается первой половины прошлого века. Позже было налажено массовое производство.

Но сейчас вихревая труба Ранке своими руками – это реальность. При этом для изготовления такого устройства понадобится немногое. Что для этого необходимо, следует разобраться.

Также читают: «Делаем бойлер косвенного нагрева своими руками«.

Технология производства и необходимый инструмент

Вихревая труба ранке своими руками

Готовый тепловой генератор.

В зависимости от типа устройства изменяется и методика его изготовления. Стоит ознакомиться с каждым типом прибора, изучить особенности производства, прежде чем браться за работу.

Простой способ изготовить вихревую трубу Ранке своими руками – использовать готовые элементы. Для этого понадобится любой двигатель.

При этом прибор большей мощности способен подогреть больше теплоносителя, что увеличит продуктивность системы.

Для успешного сооружения следует найти готовые решения. Создать вихревой теплогенератор своими руками, чертежи и схемы которого будут в наличии, можно без особых сложностей. Для проведения работ по сооружению понадобится следующий инструментарий:

  • болгарка;
  • железные уголки;
  • сварка;
  • дрель и набор из нескольких сверл;
  • фурнитура и набор ключей;
  • грунтовка, красящее вещество и кисточки.

Вихревой двигатель — это один из источников альтернативной энергии для отопления дома.

Стоит понимать, что роторные приборы издают достаточно сильный шум при работе. Но в сравнении с прочими устройствами они характеризуются большей производительностью. Чертежи и схемы для изготовления вихревого теплогенератора своими руками можно найти повсеместно. Стоит понимать, что работа будет выполнена успешно исключительно при полном соответствии технологии производства.

Установка насоса вихревого генератора теплоты и сооружение корпуса

Кожух данного устройства изготавливается в виде цилиндра, который должен закрываться со сторон каждой основы. На каждом боку расположены сквозные отверстия.

Используя их, можно подключить вихревой теплогенератор своими руками к системе обогрева дома. Основная особенность такого изделия заключается с том, что внутри кожуха, возле входного отверстия устанавливается жиклер.

Данное приспособления должно подбираться индивидуально для каждого отдельно взятого случая.

Вихревая труба ранке своими руками

Схема вихревого двигателя.

Интересная статья: «Какие преимущества дают тепловые насосы для организации системы отопления дома?«.

Процесс производства включает в себя следующие пункты:

  • отрезание трубы необходимого размера (около 50-60 см);
  • нарезка резьбы;
  • изготовление пары колец из трубы того же диаметра с длиной примерно 50 мм;
  • приваривание крышек к местам, где не нарезалась резьба;
  • вырезание двух отверстий в центре каждой крышки (одно для подключения патрубка, второе – для жиклера);
  • сверление фаски рядом с жиклером для получения форсунки.

Вихревая труба ранке своими рукамиЧтобы сделать печь Кузнецова своими руками нужны чертежи. Есть много вариантов кладки с разным количеством куполов.

Теперь чертеж печи Лачинянка есть в открытом доступе — здесь.

Установка насоса вихревого двигателя проводится после подбора агрегата необходимой мощности. При покупке стоит придерживаться двух правил. Первое – устройство должно быть центробежным. Второе – выбор будет целесообразным лишь в случае, когда устройство будет оптимально функционировать в паре с установленным электродвигателем.

Утепление вихревого двигателя

Перед тем как запускать в работу устройство следует его утеплить. Делается это после сооружения кожуха. Конструкцию рекомендуется обмотать тепловой изоляцией. Как правило, в этих целях используется стойкий к высоким температурам материал. Слой утепления крепится к кожуху прибора проволокой. В качестве тепловой изоляции стоит использовать один из следующих материалов:

Вихревая труба ранке своими руками

Готовый тепловой генератор.

  • стекловата;
  • минеральная вата;
  • базальтовая вата.

Как видно из списка, подойдет практически любая волокнистая теплоизоляция. Вихревой индукционный нагреватель, отзывы о котором можно найти по всему рунету, должен утепляться качественно. В ином случае есть риск, что прибор будет отдавать больше теплоты в помещение, где он установлен. Полезно знать: «Утепление трубопроводов минеральной ватой».

Вихревая труба ранке своими рукамиПо отзывам некоторые самодельные печи длительного горения на одной загрузке топлива работают по 8 часов.

Какими особенностями наделены древесные печи длительного горения читайте в этой статье.

В конце следует дать несколько советов. Первое – поверхность изделия рекомендуется окрасить. Это защитит его от коррозии. Второе – все внутренние элементы прибора желательно сделать потолще.

Такой подход повысит их износостойкость и сопротивляемость агрессивной среде. Третье – стоит изготовить несколько запасных крышек. Они также должны иметь на плоскости отверстия требуемого диаметра в необходимых местах.

Это необходимо, чтобы путем подбора добиться более высокого КПД агрегата.

Подведение итогов

Если все правила изготовления конструкции были учтены, то вихревой генератор прослужит долгое время. Не стоит забывать, что от грамотной установки прибора тоже зависит многое в системе отопления.

В любом случае изготовление такой конструкции из подручных средств обойдется дешевле приобретения готового приспособления.

Однако для оптимального функционирования устройства следует ответственно подойти к процессам изготовления корпуса и обшивки тепловой изоляции.

Читайте также:  Как сделать угловую струбцину своими руками

Эффект Ранка | Perpetuum mobile: «свободная энергия» и вечные двигатели

Эффект Ранка с самого начала привлекал изобретателей кажущейся простотой технической реализации — в самом деле, простейшая реализация вихревой трубы представляет собой кусок трубы самый обычной, куда с одной стороны внутрь тангенциально подаётся исходный поток, а на противополжном торце установлена кольцевая диафрагма, и из её внутреннего отверстия выходит охлаждённая часть потока, а из щели между внешним краем диафрагмы и внутренней поверхностью трубы — его горячая часть. Однако на самом деле не всё так просто — добиться эффективного разделения удаётся далеко не всегда, да и КПД таких установок обычно заметно уступает широко распространённым компрессорным тепловым насосам. Кроме того, обычно параметры установки на эффекте Ранка рассчитаны для конкретной мощности, определяемой скоростью и расходом вещества исходного потока, и когда параметры входного потока отклоняются от оптимальных значений, КПД вихревой трубы существенно ухудшается. Тем не менее следует заметить, что возможности некоторых установок на эффекте Ранка внушают уважение — например, рекордное охлаждение, которого удалось достигнуть на одной ступени, составляет более 200°С!

Впрочем, с учётом нашего климата, гораздо больший интерес представляет использование эффекта Ранка для обогрева, да при этом ещё хотелось бы и не выходить за рамки «подручных средств».

Суть эффекта Ранка    Современное объяснение эффекта Ранка    Другие объяснения эффекта Ранка Классические схемы вихревых труб на эффекте Ранка Вихревые обогревательные установки

Суть эффекта Ранка

При движении потока газа или жидкости по плавно поворачивающей поверхности трубы у её внешней стенки образуется область повышенного давления и температуры, а у внутренней (либо в центре полости, если газ закручен по поверхности цилиндрического сосуда) — область пониженной температуры и давления. Это достаточно хорошо известное явление называется эффектом Ранка по имени открывшего его в 1931 г. французского инженера Жозефа Ранка (G.J.Ranque, иногда пишут «Ранке»), или эффектом Ранка-Хилша (немец Robert Hilsh продолжил исследование этого эффекта во второй половине 1940-х годов и улучшил эффективность вихревой трубы Ранка). Конструкции, использующие эффект Ранка, представляют собой разновидность теплового насоса, энергия для функционирования которого берётся от нагнетателя, создающего поток рабочего тела на входе трубы.

Парадоксальность эффекта Ранка заключается в том, что центробежные силы во вращающемся потоке направлены наружу.

Как известно, более тёплые слои газа или жидкости имеют меньшую плотность и должны подниматься вверх, а в случае цетробежных сил — стремиться к центру, более холодные имеют большую плотность и, соответственно, должны стремиться к периферии. Между тем при большой скорости вращающегося потока всё происходит с точностью до наоборот!

Эффект Ранка проявляется как для потока газа, так и для потока жидкости, которая, как известно, является практически несжимаемой и потому фактор адиабатического сжатия / расширения к ней неприменим.

Тем не менее, в случае жидкости эффект Ранка обычно выражен значительно слабее — возможно, именно по этой причине, да и очень малая длина свободного пробега частиц затрудняет его проявление.

Но это верно, если оставаться в рамках традиционной молекулярно-кинетической теории, а у эффекта могут быть и совсем другие причины.

На мой взгляд, на данный момент наиболее полное и достоверное научное описание эффекта Ранка представлено в статье А.Ф.Гуцола (в формате pdf). Как ни удивительно, в своей основе его выводы о сути явления совпадают с полученными нами «на пальцах».

К сожалению, он оставляет без внимания первый фактор (адиабатическое сжатие газа у внешнего радиуса и расширение у внутреннего), который, на мой взгляд, весьма существенен при использовании сжимаемых газов, правда, действует он только внутри устройства. А второй фактор А.Ф.

Гуцол называет «разделением быстрых и медленных микрообъёмов».

Современное объяснение эффекта Ранка

В настоящее время наиболее общепризнанным объяснением эффекта Ранка является следующее.

Известно, что если измерять температуру движущегося (скажем, в трубе) потока двумя термометрами, то они покажут разную температуру, если один из них неподвижен относительно потока (т.е.

перемещается вместе с ним), а другой вмонтирован в трубу.

При этом температура, измеренная вмонтированным в трубу термометром будет связана с температурой, измеренной термометром, движущимся вместе с потоком, следующим образом:

T0 = T + v2 / (2 · cp)     (1),

где  T0 — температура, измеренная вмонтированным в трубу термометром, «температура торможения»;  T — «собственная» температура потока, измеренная термометром, движущимся вместе с ним, «статическая температура»;  v — скорость движения потока по трубе;  cp — удельная теплоёмкость вещества потока.

Таким образом, мы видим, что температура торможения, измеряемая неподвижным термометром, при одной и той же собственной статической температуре этого потока будет зависеть от его скорости.

Если относительно такого термометра остановить весь газ, то вся его температура поднимется до этого значения — кинетическая энергия преобразуется в тепловую.

Именно это явление вызывает нагрев передних кромок крыла у скоростных самолётов (прежде всего сверхзвуковых), а также сгорание в атмосфере метеоритов и отработавших свой срок космических летательных аппаратов.

Предполагается, что возле выходного отверстия диафрагмы угловые скорости и холодного и горячего потоков равны, то есть весь вихрь вращается как единое твёрдое тело («квазитвёрдый» вихрь).

В таких условиях на разных радиусах вихревой трубы газ имеет различную линейную скорость, соответственно он имеет и различную термодинамическую температуру.

Благодаря эффективному турбулентному перемешиванию внутри вихревой трубки, эти температуры стремятся выровняться, из-за чего и происходит перераспределение собственных («термостатических») температур различных частей потока газа, которое становится явным, когда газ выходит из вихревой трубы.

К сожалению, это объяснение нельзя признать удовлетворительным. Во-первых, оно является «чисто математическим», и если пытаться наполнить его физической сутью, то мы приходим к тому же «разделению быстрых и медленных микрообъёмов».

Во-вторых, не совсем понятно, с какой стати именно температура торможения во всём сечении вихревой трубы априори принимается одинаковой? А приняв в качестве основной гипотезу обмена энергией между различными частями потока, мы должны придти к обратному распределению температур.

В самом деле, внешние слои имеют наибольшую линейную скорость и, следовательно, наибольшую температуру торможения. Следовательно, энергия от них должна перетекать к медленно движущимся центральным слоям, повышая их собственную температуру. Таким образом, из середины должен выходить горячий газ, а из периферийной щели — холодный, что прямо противоречит наблюдаемым фактам.

Поэтому утверждается, что быстро движущийся на периферии газ, попадая в результате турбулентного движения в центр, там тормозится и теряет свою кинетическую энергию. Но опять же, куда может деться эта энергия? Только в тепло, а значит, опять-таки, в середине температура должна расти.

Наконец, есть данные, что вихрь внутри трубы Ранка отнюдь не квазитвёрдый, и более того, его центральная часть может вращаться в противоположную сторону, а в таком случае вся эта теория вообще не соответствует практике. В общем, прежде чем строить теории, необходимы практические измерения хотя бы скоростей и направлений вращения на разных радиусах и на разных расстояниях от диафрагмы.

Другие объяснения эффекта Ранка

Как ни странно, объяснить эффект Ранка можно и с помощью более простых механистических подходов к идеальному газу, изложенных при рассмотрении поворота потока идеального газа.

Если в таких механистических объяснениях есть зерно истины, то для оптимизации устройств на эффекте Ранка будут эффективны следующие советы.

  1. Для наиболее эффективного разделения следует всячески предотвращать возникновение турбулентностей, перемешивающих уже разделённые слои. Отсюда следуют требования к гладкости внутренних поверхностей устройства и необходимость ламинарности входного потока.
  2. Рабочий поток не должен делать слишком много оборотов: практически всё разделение происходит на первых витках, и дальнейшее движение будет лишь приводить к ненужным потерям на трение и увеличивать аэро/гидродинамическое сопротивление, затрудняя работу нагнетателя. Однако, чем выше плотность потока, тем труднее будет идти разделение и тем больше оборотов надо будет сделать.
  3. В наибольшей степени эффект Ранка должен проявляться для разреженного газа, свойства которого близки к свойствам идеального газа. При возрастании плотности газа и тем более при использовании жидкостей сокращение свободного пробега частиц и повышение вязкости среды становится существенным фактором, наряду с турбулентностью ухудшающим температурное разделение исходного потока.
  4. Оптимальная скорость потока должна быть соизмерима со скоростью теплового движения его частиц (как известно, в газах эта скорость близка к скорости звука). Слишком высокая скорость приведёт к тому, что все частицы будут отбрасываться к внешней стенке, и у внутренней стенки образуется бесполезная область вакуума, а слишком низкая ухудшит разделение частиц по их скоростям. Впрочем, в реальности энергозатраты на разгон потока до скорости звука могут оказаться менее выгодными, чем для получения того же количества тепла/холода при меньшей скорости, но большем расходе потока.
Читайте также:  Плавный пуск для электроинструмента своими руками

Есть и другие варианты.

Вот ещё одно заслуживающее внимание объяснение эффекта Ранка от Г.В.Трещалова, правда, оно построено на предположении максвелловского распределения молекул по скоростям в рамках молекулярно-кинетической теории газов.

А вот статья Ю.Оганесяна, в которой, среди прочего, рассмотрена и работа вихревой трубы. Она основывается на взаимодействии слоёв среды. Существование подобных слоёв маловероятно в рамках молекулярно-кинетической теории, зато неизбежно в теории глобулярной организации вещества.

Классические схемы вихревых труб на эффекте Ранка

Классическими устройствами, использующими эффект Ранка, являются вихревые трубы, которые строят по двум основным схемам: прямоточной и противоточной.

Вихревая труба ранке своими рукамиКлассические схемы прямоточной (а) и противоточной (б) вихревых труб на эффекте Ранка. 1 — гладкая цилиндрическая труба, 2 — вход газа (завихритель тангециального или улиточного типа), 3 — дроссель, 4 — выход горячего газа через кольцевую щель, 5 — диафрагма для выхода холодного газа. Источник: А.Ф.Гуцол. «Эффект Ранка» (pdf).

Основное назначение таких вихревых труб — производство холода, и обычно более эффективной для этих целей считается противоточная схема. Кстати, размеры их совсем невелики — например, А.Ф.

Гуцол в качестве оптимальных приводит следующие значения: внутренний диаметр трубы (калибр) D = 94 мм, длина трубы L = 520 мм, отверстие диафрагмы для выхода холодного воздуха d = 35 мм, вход воздуха через два сопла, каждое из которых имеет диаметр 25 мм.

Однако оптимальная скорость воздушного потока на входе совсем не маленькая — 0.4 .. 0.5 М (т.е. 40–50% скорости звука). По этой причине из-за практически неизбежных при таких скоростях мощных турбулентностей устройство оказывается очень шумным, да и о «подручных средствах» (вроде бытового вентилятора в качестве источника потока воздуха) можно забыть.

Характерно, что как при сильном уменьшении скорости входного потока, так и при её приближении к скорости звука, эффективность вихревой трубы стремится к нулю. Уменьшение геометрических размеров относительно оптимальных (особенно при D < 33 мм) также заметно снижает КПД, а вот их увеличение на КПД практически не сказывается.

Очевидно, это связано с физическими характеристиками воздуха — слишком малые размеры не могут предотвратить интенсивное перемешивание разделённых было слоёв воздуха и, вероятно, делают слишком заметным влияние эффектов, возникающих на границе между стремительно движущимся воздухом и неподвижными стенками устройства.

Следует отметить, что в большинстве случаев конструкторы вихревых труб не уделяют большого внимания ламинарности потоков как на входе, так и внутри установки, а некоторые из них, в силу отсутствия общепризнаной теории этого явления, наоборот, уверены, что увеличение турбулентности будет способствовать повышению эффективности процесса. Тем не менее, я считаю, что уделив серьёзное внимание повышению ламинарности потока рабочего тела, можно снизить шумность и повысить эффективность работы. Если верны предположения Ю.Оганесяна, то входной поток также должен быть как можно более ламинарным.

Вихревые обогревательные установки

Безусловно, попытки использовать эффект Ранка не только для охлаждения, но и для обогрева препринимались неоднократно. Более того, некоторые образцы производятся серийно, в том числе и в нашей стране.

Как ни странно, наиболее широко распространены жидкостные конструкции на эффекте Ранка. Очевидно, это объясняется большей энергоёмкостью теплоносителя и меньшей шумностью их работы по сравнению с газовыми, обусловленной меньшими скоростями рабочего тела. Наиболее известной установкой этого класса является ЮСМАР.

К сожалению, следует отметить, что практически все они предназначены для промышленного или полупромышленного применения, о чём свидетельствует хотя бы потребляемая мощность, которая обычно составляет несколько киловатт у «младших» моделей и достигает десятков киловатт у «старших». Заявленный производителем КПД (т.е.

соотношение полученного тепла к затраченной электроэнергии) для разных типов установок составляет от 1.2 до 2.4, причём как именно он измерялся — в большинстве случаев неизвестно.

Следует заметить, что для компрессорных тепловых насосов (скажем, холодильников и кондиционеров) обычно характерно соотношение перекачанного тепла к затраченной электрической энергии в диапазоне от 2 до 3.

В то же время в Интернете существует и много отрицательных отзывов и сообщений об испытаниях, где говорится, что КПД вихревых установок меньше 100% и выход тепла не превышает затраченной электроэнергии.

Следует отметить, что здесь принципиально важен сам подход к таким установкам.

Если рассматривать их как разновидность «вечного двигателя» со сверхъединичным КПД, то такую установку следует поставить целиком в одно помещение и мерить температуру всей системы в целом — она должна давать тепла больше, чем было потрачено электричества.

Если же рассматривать их как тепловой насос, то необходимо разделять зоны отбора и отдачи тепла и оценивать именно эффективность его перекачки — ведь если пытаться оценить эффективность, скажем, обычного холодильника, меряя температуру в кухне, где он стоит, то это будет очевидной глупостью.

Наконец, позволю себе заметить, что возможно, некоторые подобные конструкции, внешне воспринимаемые как вихревые, на самом деле используют совсем другие принципы, а вращение или вихревое движение в них являются важными, но вспомогательными средствами. Ярким примером такого устройства, по моему убеждению, является двигатель Клема. ♦

Трубка Ранка

В трубке Ранка

Рисунок 1

формируется вихрь Бенара, хобот которого «уходит» в обратном направлении, а «периферия» в прямом. Стандартный вихрь Бенара обладает основанием и вершиной. Но неужели трубка обходится без торцевых украшений и периферия полностью уходит в прямом направлении, а хобот в обратном? Конечно же нет.

Ведь объект вращения преобразуется в вихрь Бенара только при наличии в нём вершины с основанием. В вихре ведь всё так же действует правило прецессии, обеспечивающее преобразование потоков в перпендикулярных направлениях. Осевое направление движения одного потока обязано преобразоваться в тангенциальное направление вращения другого потока.

А этот процесс может происходить только в вершине и в основании вихря.

Вершина обеспечивает преобразование осевого направления движения хобота в тангенциальное направление вращения периферии. Основание же обеспечивает преобразование осевого направления движения периферии в тангенциальное направление вращения хобота.

Трубка Ранка не может являться исключением из этого правила (которое назовём правилом вершины с основанием).

Но если торнадо функционирует в неподвижной атмосфере, своим существованием внося в ней возмущения, то вихрь Бенара в трубке Ранка вынужден приспосабливаться к существованию в подвижной среде, в которой среда обтекает его и снаружи и изнутри.

Рисунок 2

Но в условиях трубки вихрь себя чувствует не очень комфортно. Основание вихря в трубке расположено вверху. Поэтому движение среды из периферии в канал внутри вихря совпадает с движением среды в основании.

В вершине же вихря, расположенной у обратного выхода, среда снаружи устремляется во внутренний канал. И её движение идёт против шерсти: ведь в вершине среда из хобота переходит на периферию и тут же идёт входной поток в трубку, стремящийся уничтожить движение в вершине вихря.

Поэтому в трубке Ранка и существует ограничение по верхнему пределу давления в 9 атм.

Но почему же возникает в трубке нижний предел в 5 атм? Ведь нам с сыном удалось создать вихрь в трубке с заглушенным обратным выходом.

Рисунок 3

Заглушенный обратный выход позволяет формировать вихрь Бенара практически с любыми параметрами. В этом случае тангенциальный входной поток имеет направление вращения, совпадающее с направлением вращения периферии вихря. И для создания вихря нам только надо уменьшить сечение для выхода.

И как только сформируется вихрь, его хобот уменьшит сечение для прохода входного потока к выходу. Как и положено, в этом варианте работает правило стакана. Т.е. наружный поток от входа к выходу двигается подобно твёрдому телу с постоянной угловой скоростью для любого радиуса.

И вновь как это и положено для вихря, работает правило вершины с основанием, которое согласовывает движение «твёрдого» тела хобота с «твёрдым» телом периферии.

При заглушенном обратном выходе правило вершины с основанием позволяло создавать полноценный вихрь Бенара практически при любых условиях.

При наличии обратного выхода у нас появляется в центре вихря поток, направление вращения которого совпадает с направлением вращения хобота вихря. Таким образом, в трубке Ранка правило стакана должно работать как снаружи, так и внутри вихря.

Внутри же вихря появляется поток, который не возвращается на его периферию. Поэтому для обеспечения полноценного функционирования вихря и требуется давление 5 атм, которое компенсирует потери хоботом массы среды через обратный выход. При давлениях же меньших 5 атм вихрь Бенара всё же создаётся.

Но он является слабым, аналогичным неполноценному вихрю над нагретым солнцем склоном холма. Тем не менее, и в полноценном, и в слабом вихре Бенара трубки Ранка поступление среды в трубку равно исходу из трубки через прямой и обратный выходы.

Вихрь же Бенара при этом хоть и служит в качестве бесплатного приложения, тем не менее именно он является кукловодом, создающим параметры трубки.

Ссылка на основную публикацию
Adblock
detector