Вакуумная металлизация: технологический процесс, область применения, преимущества

Существует много способов декорирования поверхностей, и к одним из основных относится вакуумная металлизация. Предметов с таким покрытием вокруг множество. Даже предметы из обычного пластика можно сделать похожими на металлические – с помощью этой технологии напыления металла они приобретут красивую серебристую или золотистую поверхность.

С помощью такой технологии происходит обработка поверхностей изделий путём переноса мелких металлических частиц в вакууме. Они покрывают изделия плотным слоем. Для этого используется специальное оборудование, довольно дорогостоящее, для которого необходимо подходящее производственное помещение. В небольшой мастерской такой процесс работы не выполнить.

Вакуумная металлизация широкое применение получила сравнительно недавно, но уже показала, что этот способ, несмотря на использование дорогого оборудования, намного дешевле гальванического нанесения, а по сравнению с лакокрасочными покрытиями слой значительно насыщенней и поверхность получается более красивая.

Вакуумная металлизация: технологический процесс, область применения, преимущества

На какие поверхности можно наносить

Способом вакуумного напыления металла можно покрывать предметы из металлов, керамики, стекла, пластмасс. При этом, в отличие от гальванического нанесения, для создания эффекта глянцевого хромирования, меднения, золочения, никелирования поверхностей не требуется предварительная полировка деталей.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Вообще, металлизировать таким способом можно любые материалы, которые устойчивы к нагреву до +80  и воздействию специальных лаков.

А также материалы не должны быть пористыми, чтобы в процессе металлизации в вакуумной камере не выделялся атмосферный или другой газ, что приведёт к некачественному покрытию. К ним относится плохо обработанная керамика, древесина, бетон.

Но даже на них можно нанести таким способом декоративные покрытия, если предварительно загрунтовать специальными составами.

Чаще всего сегодня обрабатываются таким способом предметы из пластмасс и металлов. Этот процесс только усиливает их положительные свойства. Напыление наносится на металлические поверхности изделий, состоящие из различных сплавов. При этом создаётся защита от коррозии, изменяются электропроводные свойства металла в сторону повышения, улучшается внешний вид предметов.

Металлизация пластмасс позволяет изготавливать красивые, практичные изделия из дешёвого сырья. В автомобилестроении пластмассовые детали устанавливают для снижения веса. Решётки радиаторов, корпуса, колпаки колёс и другие детали, к которым не требуется обладание повышенной прочностью, изготавливаются из прочных марок пластмасс и обрабатываются под металл.

У этой технологии, как и у других таких же сложных, имеются свои плюсы и минусы:

Вакуумная металлизация: технологический процесс, область применения, преимущества

  • необходимость использования дорогостоящего оборудования,
  • большие расходы электроэнергии,
  • потребность в просторном производственном помещении для размещения всех приспособлений и для полного технологического цикла изготовления.
  • Дополнительные расходы средств требуются при этом на технический процесс нанесения дополнительного слоя – защитного лака.
  • Установки вакуумного напыления представляют собой совокупность устройств, которые последовательно и самостоятельно выполняют ряд функций, необходимых для технологического процесса металлизации.
  • Основные функции:
  • откачка воздуха для получения условий разрежения,
  • распыление в определённых условиях металлических частиц на поверхность предметов,
  • транспортировка обрабатываемых деталей,
  • контроль режимов происходящих процессов вакуумного напыления,
  • электропитание и другие вспомогательные приспособления.

Составляющие узлы вакуумной установки:

Вакуумная металлизация: технологический процесс, область применения, преимущества

  • Рабочая камера. В ней происходит сам процесс металлизации.
  • Источник испаряемых металлов вместе с управляющими и энергообеспечивающими устройствами.
  • Системы контроля и управления для регулировки температуры, скорости напыления, толщины плёнки, её физических свойств.
  • Откачивающая и газораспределительная система, обеспечивающая получение вакуума и регулировку газовых потоков.
  • Системы блокировки рабочих узлов, блоки электропитания.
  • Транспортирующее устройство, определяющее подачу-извлечение из вакуумной камеры, смену положений деталей при нанесении металлопокрытия.
  • Вспомогательные устройства – заслонки, внутрикамерные манипуляторы, газовые фильтры и др.

Особенности оборудования

Вакуумная металлизация: технологический процесс, область применения, преимущества

Установки для вакуумного процесса нанесения металлического слоя бывают магнетронные и ионно-плазменные. В любых из них необходимо достигать испарения вещества с поверхности металлических болванок, минуя стадию расплава металла.

При сублимационном способе процесс нагрева происходит быстро до температуры испарения, не допуская расплава. Для этого используются нагреватели, способные повышать кинетическую энергию вплоть до разрушения кристаллической решётки. Но некоторые металлы не сублимируют в вакууме, и поэтому с ними стадии расплава не избежать. Поэтому в таких случаях применяются дополнительные системы фильтров.

Способом вакуумного напыления металлического слоя покрываются изделия разных размеров: крупные (до 1 м) и совсем мелкие. Существуют технологии металлопокрытия многометровых тканей и плёнок – они перематываются из одного рулона в другой в процессе напыления в вакуумной камере. Поэтому бывают установки с рабочими камерами разных размеров:

  • небольшие – несколько литров,
  • крупные – несколько кубометров.

Технологический процесс

Вакуумная металлизация, основанная на испарении и выпадении частиц металла на подложку, представляет собой ряд последовательно происходящих процессов. Они довольно сложные.

Вакуумная металлизация: технологический процесс, область применения, преимущества

На качество готового изделия влияют многие факторы. Главные из них – физико-технические характеристики материалов заготовок и выдерживаемые условия процесса металлизации. Образование слоя покрытия происходит в два основных этапа. Это перенос массы и энергии от источника и их равномерное распределение по поверхности обрабатываемого изделия.

Напыление металла на поверхности изделий методом вакуумной металлизации производится по технологии, состоящей из нескольких этапов:

Вакуумная металлизация: технологический процесс, область применения, преимущества

  • Деталь подготавливается к процессу нанесения покрытия. Для этой цели подходят только заготовки несложных форм, которые не имеют острых углов или участков, труднодоступных для прямолинейного попадания конденсата.
  • Процесс нанесения защитного слоя. На полимеры с содержанием низкомолекулярных наполнителей предварительно наносятся слои антидиффузионных лаковых покрытий.
  • Сушка и обезжиривание. Заготовки проходят этап сушки адсорбированной влаги в течение трех часов при температуре +80 .
  • Процесс обезжиривания происходит уже на подготовительном этапе в вакуумной камере путём воздействия тлеющего разряда.
  • Проведение отжига на этой стадии особенно благоприятно для полимерных материалов – положительно сказывается на их структуре, снижается при этом внутреннее напряжение.
  • Проводится активационная обработка перед нанесением металлического слоя на поверхность для повышения её адгезии. Используемые методы зависят от материала заготовки.
  • Нанесение металлического покрытия. При этом слой покрытия формируется путём конденсации пересыщенных паров металлов на холодную поверхность заготовки.
  • Затем проводится контрольная проверка качества металлического слоя. Для декоративных изделий она заключается в осмотре поверхности с определением прочности и равномерности слоя. Для технических деталей используются дополнительные испытания. На практике применяются методы отслаивания липкой лентой, истирание, разрушение УЗ колебаниями и др.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Сферы применения

Технология обработки поверхностей методом вакуумной металлизации применяется в производстве многих товаров:

  • Сантехнической фурнитуры – сильфонов, кнопок смыва и др. Самая распространённая металлизация — алюминием, придающая изделиям хромированный вид.
  • Мебельная фурнитура – ручки для мебельных дверок и ящиков, декоративные отделочные детали, вешалки для одежды и др.
  • Зеркальные покрытия. Небьющиеся зеркала изготавливаются способом металлизации полимерных плёнок, натянутых на рамки.
  • Кожгалантерея – пряжки для ремней, пуговицы, люверсы.
  • Упаковочные материалы – крышки для флаконов с парфюмерией, дозаторы косметических средств, декоративные коробочки для бижутерии и др.
  • В производстве бижутерии, декоративных сувениров и подобных изделий.
  • При изготовлении предметов геральдики – гербов и других предметов.
  • Радиоэлектроника – приборные панели телевизоров, крышки мониторов, кнопки и др.
  • Микроэлектроника – изготовление интегральных микросхем, полупроводников и других деталей. Обычно применяется напыление меди.
  • Автомобильная промышленность – внутренняя светоотражающая часть фар и многие декоративные детали снаружи и внутри машины.
  • Светотехнические изделия – для декорации деталей светильников.

Вакуумная металлизация: технологический процесс, область применения, преимуществаВакуумная металлизация: технологический процесс, область применения, преимущества

Визуально можно сделать имитацию под любой драгоценный или полудрагоценный металл.

Вакуумная металлизация придаёт изделиям не только красивые декоративные свойства, но и создаёт защитный слой от коррозии для металлов, износа для других материалов.

Металлизация пластмасс позволяет из дешёвых материалов создавать практичные и красивые изделия. Стойкое покрытие обеспечивает долгий срок эксплуатации изделий.

Выводы

По времени использования наибольший срок сохранения декоративного слоя у предметов, находящихся в закрытых помещениях. Те, что часто подвергаются атмосферным воздействиям, могут со временем повреждаться.

Но для их защиты обычно используются специальные лаковые слои, которые продлевают срок службы таких изделий.

К преимуществам покрытий вакуумным способом относится их экологичность, по сравнению с другими аналогичными технологиями.

Загрузка…

Источник: https://xn—-ntbhhmr6g.xn--p1ai/metallyi/tehnologicheskie-osobennosti-vakuumnoy-metallizatsii

Вакуумное напыление

Вакуумная металлизация: технологический процесс, область применения, преимущества

  • Вакуумное напыление — это категория способов напыления покрытий (не толстой плёнки) в вакуумной среде, при каковых возмещение выходит путём прямого конденсирования пара, наносимого вещества.
  • Навигация:
  • Различают последующие периоды вакуум напылений:
  • Создание газов (паров) с элементов, образующих покрытие;
  • Транспортировка паров к подложке;
  • Конденсация пара в подложке и развитие напыления;
  • К группе способов вакуумного напыления принадлежат приведенные ниже технологические процессы, а кроме того реактивные виды данных действий.

Методы теплового напыления:

  • Испарение электрическим лучом;
  • Испарение лазерным лучом.

Испарение вакуумной дугой:

  • Сырье улетучивается в катодном пятне гальванической дуги;
  • Эпитаксия моляльным лучом.

Ионное рассеивание:

  • Первоначальное сырье распыляется бомбардировкой гетерополярным потоком и действует на подложку.

Магнетронное распыление:

  • Напыление с гетерополярным ассистированием;
  • Имплантация ионов;
  • Фокусируемый ионный пучок.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Вакуумное напыление

Применение

Вакуумное покрытие используют с целью формирования в плоскости элементов, приборов и оснащения многофункциональных покрытий — проводящих, изолирующих, абразивостойких, коррозионно-устойчивых, эрозионностойких, антифрикционных, антизадирных, барьерных и т. д.

Процедура применяется с целью нанесения декоративных покрытий, к примеру, при изготовлении часов с позолотой и оправ для очков. Единственный из ключевых действий микроэлектроники, где используется с целью нанесения проводящих оболочек (металлизации).

Вакуумное покрытие применяется с целью получения оптических покрытий: просветляющих, отображающих, фильтрующих.

Материалами для напыления предназначаются мишени с разных веществ, металлов (титана, алюминия, вольфрама, молибдена, железа, никеля, меди, графита, хрома), их сплавов и синтезов (Si02,Ti02,Al203).

В научно-техническую сферу способен быть добавлен электрохимически динамичный метан, к примеру, ацетилен (с целью покрытий, включающих углерод), азот, воздух.

Хим реакция в плоскости подложки активизируется нагревом, или ионизацией и диссоциацией газа той либо другой конфигурацией газового ряда.

С поддержкой способов вакуумного напыления обретают напыления толщиной с нескольких ангстрем вплоть до нескольких микрон, как правило в последствии нанесения напыления плоскость не требует добавочного обрабатывания.

Методы вакуумного напыления

Вакуумное покрытие — перенесение элементов напыляемого материала с источника (зоны его переведения в газовую фазу) к плоскости детали исполняется согласно прямолинейным траекториям при вакууме 10-3 Па и ниже (вакуумное улетучивание) и посредством дифузного и конвекционного перенесения в плазме при давлениях 1 Па (катодное рассеивание) и 10-1-10-3 Па (магнетронное и ионно-плазменное рассеивание). Участь любой из крупиц напыляемого элемента при соударении с поверхностью детали находится в зависимости от ее энергии, температуры плоскости и хим сродства веществ оболочки и составляющих. Атомы либо молекулы, достигнувшие плоскости, имеют все шансы или отразиться от нее, или адсорбироваться и спустя определенный период времени, покинуть ее (десорбция), или адсорбироваться и формировать в плоскости поликонденсат (уплотнение). При высочайших энергиях крупиц, высокой температуре плоскости и небольшом хим сродстве, часть отображается поверхностью. Температура плоскости детали, больше которой все частички отражаются с нее и оболочка не сформируется, именуется опасной температурой напыления вакуумного, её роль находится в зависимости от природы веществ оболочки и плоскости детали и от состояния плоскости. При весьма небольших струях испаримых частиц, в том числе и в случае если данные частички в плоскости адсорбируются, однако нечасто сталкиваются с иными подобными же частичками, они десорбируются и не могут формировать зачатков, т.е. оболочка никак не увеличивается. Опасной частотой струи испаримых элементов для переданной температуры плоскости именуется минимальная уплотненность, при которой частички конденсируются и образовывают пленку.

Читайте также:  Кованые ворота (50 фото): распашные и откатные

Вакуумная металлизация: технологический процесс, область применения, преимущества

Метод вакуумного напыления

Вакуумно-плазменное напыление

Согласно данному способу тонкие оболочки толщиной 0,02-0,11 мкм выходят в следствии нагрева, улетучивания и осаждения элемента на подложку в изолированной камере при сокращенном давлении газа в ней. В камере с поддержкой вакуумного насоса формируется максимальное влияние остаточных газов примерно 1,2х10-3 Па.

Рабочая камера предполагает собою металлический либо стеклянный колпак с концепцией внешнего водяного остужения. Камера размещена в основной плите и формирует с ней вакуумно-непроницаемое объединение. Адгерент, в котором проводится напыление, зафиксирован на держателе.

К подложке прилегает электронагреватель, раскаляющий подложку вплоть до 2500-4500 оС, с целью усовершенствования адгезии напыляемой оболочки. Теплообменник содержит в себе отопитель и ресурс напыляемого элемента. Переломная затворка закрывает течение паров с испарителя к подложке.

Покрытие длится в ходе времени, когда заслонка не закрыта.

Для нагрева напыляемого элемента в основном применяется 2 вида испарителей:

  • Прямонакальный проволочный или ленточный испаритель, изготавляемый с вольфрама либо молибдена;
  • Электронно-радиальные испарители с нагревом испаримого элемента электрической бомбардировкой.

Для напыления пленок с многокомпонентых веществ используется подрывное улетучивание. При данном теплообменник разогревается вплоть до 20000 оС и посыпается порошком из смеси испаримых веществ. Подобным способом удаётся обретать композиционные покрытия.

Некоторые известные вещества с целью покрытий (к примеру, золото) обладают плохой адгезией с кремнием и иными полупроводниковыми веществами.

В случае некачественной адгезии испаримого вещества к подложке, улетучивание прокладывают в 2 слоя.

Вначале сверху подложки наносят слой сплава, обладающего отличной адгезией к полупроводниковой подложке, к примеру, Ni, Cr либо Ti. Далее напыляют главный пласт, у которого прилипание с подслоем ранее превосходное.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Вакуумно-плазменное напыление

Ионно-вакуумное напыление

Данный способ состоит в разбрызгивании вещества наносимого элемента, пребывающего под отрицательным потенциалом, вследствие бомбардировки ионами пассивного газа, появляющихся в ходе возбужденности перетлевающего разряда изнутри конструкции вакуумного напыления.

Материал негативно заряженного электрода распыляется перед воздействием ударяющихся о него ионизованных атомов пассивного газа. Данные пульверизированные промежуточные атомы и осаждаются сверху подложки. Основным превосходством ионно-вакуумного способа напыления представляется отсутствие потребности нагрева испарителя вплоть до высочайшей температуры.

Механизм происхождения тлеющего разряда. Разлагающийся разряд прослеживается в камерах с невысоким давлением газа меж 2-я железными электродами, на которые подается большой вольтаж вплоть до 1-4 кВ.

При данном отрицательный электрод как правило заземлен. Катодом представляется мишень с распыляемого вещества.

С камеры заранее откачивается воздушное пространство, далее запускается газ вплоть до давления 0,6 Па.

Тлеющий разряд приобрел собственное наименование из-за присутствия в мишени (катоде) так именуемого перетлевающего свечения.

Данное сверкание обуславливается огромным падением возможности в тесном пласте объёмного заряда возле катода.

К области TC прилегает сфера фарадеева тёмного пространства, переходящая в позитивный столбик, что представляется самостоятельной долею разряда, никак не подходящей с других слоев разряда.

Вблизи анода, кроме того, существует легкий пласт объёмного заряда, именуемый анодным пластом. Прочая часть межэлектродного интервала захвачена квазинейтральной плазмой. Таким способом, в камере прослеживается растровое сверкание с чередующихся тёмных и ясных полос.

Для прохождения тока меж электродами нужна стабильная эмиссия электронов катода. Данную эмиссию допускается спровоцировать по принуждению посредством нагрева катода, либо облучения его ультрафиолетовым светом. Такого рода разряд представляется несамостоятельным.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Ионно-плазменное напыление

Вакуумное напыление алюминия

В некоторых случаях, особенно при напылении пластика, применяется металлизирование алюминием, а этот металл — материал довольно легкий и никак не износоустойчивый, в данном случае необходимы некоторые особые научно-технические приемы. Пользователю следует понимать, что подобные составляющие правильнее всего оберегать от засорения сразу же по прошествии штамповки, а кроме того, вредно использовать разные смазывающие порошки и присыпки в пресс-фигурах.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Вакуумное напыление алюминия

Вакуумное напыление металлов

Вакуумная металлизация: технологический процесс, область применения, преимущества

Вакуумное напыление металлов

Вакуумное ионно-плазменное напыление

Для происхождения независимого перетлевающего разряда следует спровоцировать эмиссию электронов с катода посредством подачи высочайшего напряжения размером 2-4 кВт меж электродами.

В случае если вложенный вольтаж превосходит возможности ионизации газа в камере (как правило Ar), в таком случае, в результате конфликтов электронов с молекулами Ar, метан ионизируется с образованием положительно заряженных ионов Ar+.

В следствии, в зоне катодного черного пространства появляется ограниченный пространственный разряд и поэтому, мощное гальваническое поле.

Ионы Ar+, приобретающие энергию в данной области, выбивают атомы вещества катода, в то же время инициируя эмиссию второстепенных электронов с катода. Данная эмиссия и удерживает независимый тлеющий разряд. Промежуточные атомы с вещества катода доходят подложки и осаждаются на ее плоскости.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Вакуумное ионно-плазменное напыление

Установка вакуумного напыления УВН

Конструкция оснащена важным комплексом прогрессивных устройств и приборов, которые обеспечивают оседание покрытий металлов их синтезов и PC сплавов с установленными свойствами, превосходной адгезией и высочайшей равномерностью по части площади.

Комплекс приборов и устройств, которые входят в структуру агрегата:

  • полуавтоматический (механический) блок управления вакуумной системой;
  • магнетронная распылительная концепция в стабильном токе (с 1 вплоть до 4 магнетронов);
  • концепция нагревания (с контролированием и поддержанием установленной температуры);
  • концепция очищения напыляемых продуктов в зоне тлеющего разряда;
  • концепция передвижения продуктов в вакуумной среде (простая либо планетарная карусель);
  • числовой вакуумметр;
  • концепция контролирования противодействия возрастающих пленок;
  • инверторный блок питания магнетронов (мощность вплоть до 9 кВт).

Вакуумная металлизация: технологический процесс, область применения, преимущества

Установка вакуумного напыления

Источник: https://vakuumtest.ru/vakuumnoe-napylenie/

Технология выполнения металлизации пластмасс: разбираем обстоятельно

Существует много способов декорирования поверхностей, и к одним из основных относится вакуумная металлизация. Предметов с таким покрытием вокруг множество. Даже предметы из обычного пластика можно сделать похожими на металлические – с помощью этой технологии напыления металла они приобретут красивую серебристую или золотистую поверхность.

Понятие о вакуумной металлизации

С помощью такой технологии происходит обработка поверхностей изделий путём переноса мелких металлических частиц в вакууме. Они покрывают изделия плотным слоем. Для этого используется специальное оборудование, довольно дорогостоящее, для которого необходимо подходящее производственное помещение. В небольшой мастерской такой процесс работы не выполнить.

Вакуумная металлизация широкое применение получила сравнительно недавно, но уже показала, что этот способ, несмотря на использование дорогого оборудования, намного дешевле гальванического нанесения, а по сравнению с лакокрасочными покрытиями слой значительно насыщенней и поверхность получается более красивая.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Это интересно: Обзор методов фосфатирования металлов — познаем по порядку

Как выполнить металлизацию пластика в домашних условиях

Металлизированный пластик можно получить и в домашних условиях. Для этого применяют несколько распространенных методик.

Наиболее популярная и доступная из них – химическая, для ее реализации не потребуется специальное оборудование.

При помощи данной технологии на поверхность пластика можно нанести тонкий слой меди или серебра, что придаст готовому изделию исключительную декоративность.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Вне зависимости от выбранного способа металлизации обрабатываемую деталь следует очистить от механических загрязнений

Меднение пластика

Металлизацию пластика при помощи меди выполняют в несколько этапов.

  • Тщательное ошкуривание поверхности, в процессе которого с нее необходимо удалить все выпуклости и другие дефекты. После ошкуривания изделие необходимо обработать абразивным порошком.
  • Обезжиривание поверхности. Изделия, изготовленные из полиакрилатов, обезжириваются перед металлизацией в растворе каустической соды, в который деталь помещается на сутки. Для обезжиривания полиамидных материалов используется обычный бензин.
  • Промывка обезжиренного изделия в дистиллированной воде.
  • Сенсибилизация – процесс формирования на пластике пленки из гидроокиси олова. Для этого изделие на минуту помещают в полупроцентный раствор хлористого олова, на литр которого добавляют 40 граммов соляной кислоты.
  • Активация поверхности, для которой изделие на 3–4 минуты помещают в раствор азотнокислого серебра.
  • После активации изделие на 60 минут погружают в раствор для металлизации, состоящий из следующих компонентов: карбоната меди (200 г/л), 90-процентного глицерина (200 г/л), 20-процентной каустической соды (1 литр). Температура такого раствора для металлизации должна составлять 18–25°.

После выполнения всех этих процедур вы получите на пластиковом изделии красивое медное напыление.

Серебрение пластика

Металлизацию пластика слоем серебра выполняют в следующей последовательности.

  1. Ошкуривание поверхности и ее обработка абразивным порошком.
  2. Промывка изделия мыльным раствором и дистиллированной водой.
  3. Обезжиривание поверхности в растворе, состоящем из ангидрида хрома (100 г/л) и сульфата железа (10 г/л).
  4. Промывка детали в дистиллированной воде.
  5. Сенсибилизация, для выполнения которой используют раствор хлористого олова (2 г/л).
  6. Погружение изделия на 60 минут в раствор, состоящий из следующих компонентов: нитрата серебра (3 г/л), каустической соды (3,5 г/л), 25-процентного аммиака (8 мл/л), глюкозы (2,5 г/л). Температура раствора – 18–25°.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Гальванические серебряные покрытия обладают низкой стойкостью к механическим повреждениям, но хорошо противостоят химическим воздействиям

Если поверхность была недостаточно хорошо обезжирена, то в результате металлизации может получиться покрытие не очень хорошего качества. В таком случае его можно удалить, используя специальный раствор, и повторить всю процедуру заново.

Сформированный на пластике по вышеописанным методикам слой металла лучше всего покрыть защитным лаком. Кроме того, металлизированные таким образом пластиковые изделия можно подвергнуть дальнейшей гальванической обработке (например, выполнить их хромирование или покрыть слоем никеля).

На какие поверхности можно наносить

Способом вакуумного напыления металла можно покрывать предметы из металлов, керамики, стекла, пластмасс. При этом, в отличие от гальванического нанесения, для создания эффекта глянцевого хромирования, меднения, золочения, никелирования поверхностей не требуется предварительная полировка деталей.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Способы металлизации проще всего классифицировать по технологическим приемам получения покрытия

Вообще, металлизировать таким способом можно любые материалы, которые устойчивы к нагреву до +80  и воздействию специальных лаков.

А также материалы не должны быть пористыми, чтобы в процессе металлизации в вакуумной камере не выделялся атмосферный или другой газ, что приведёт к некачественному покрытию. К ним относится плохо обработанная керамика, древесина, бетон.

Читайте также:  Абразивные полировальные пасты гои, 3m для металла, стекла и др.

Но даже на них можно нанести таким способом декоративные покрытия, если предварительно загрунтовать специальными составами.

Чаще всего сегодня обрабатываются таким способом предметы из пластмасс и металлов. Этот процесс только усиливает их положительные свойства. Напыление наносится на металлические поверхности изделий, состоящие из различных сплавов. При этом создаётся защита от коррозии, изменяются электропроводные свойства металла в сторону повышения, улучшается внешний вид предметов.

Металлизация пластмасс позволяет изготавливать красивые, практичные изделия из дешёвого сырья. В автомобилестроении пластмассовые детали устанавливают для снижения веса. Решётки радиаторов, корпуса, колпаки колёс и другие детали, к которым не требуется обладание повышенной прочностью, изготавливаются из прочных марок пластмасс и обрабатываются под металл.

Этапы выполнения вакуумной металлизации

Напыление металла на поверхности изделий методом вакуумной металлизации производится по технологии, состоящей из нескольких этапов:

Вакуумная металлизация: технологический процесс, область применения, преимущества

Цели металлизации

  • Деталь подготавливается к процессу нанесения покрытия. Для этой цели подходят только заготовки несложных форм, которые не имеют острых углов или участков, труднодоступных для прямолинейного попадания конденсата.
  • Процесс нанесения защитного слоя. На полимеры с содержанием низкомолекулярных наполнителей предварительно наносятся слои антидиффузионных лаковых покрытий.
  • Сушка и обезжиривание. Заготовки проходят этап сушки адсорбированной влаги в течение трех часов при температуре +80 .
  • Процесс обезжиривания происходит уже на подготовительном этапе в вакуумной камере путём воздействия тлеющего разряда.
  • Проведение отжига на этой стадии особенно благоприятно для полимерных материалов – положительно сказывается на их структуре, снижается при этом внутреннее напряжение.
  • Проводится активационная обработка перед нанесением металлического слоя на поверхность для повышения её адгезии. Используемые методы зависят от материала заготовки.
  • Нанесение металлического покрытия. При этом слой покрытия формируется путём конденсации пересыщенных паров металлов на холодную поверхность заготовки.
  • Затем проводится контрольная проверка качества металлического слоя. Для декоративных изделий она заключается в осмотре поверхности с определением прочности и равномерности слоя. Для технических деталей используются дополнительные испытания. На практике применяются методы отслаивания липкой лентой, истирание, разрушение УЗ колебаниями и др.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Изделия после вакуумной металлизации

Преимущества вакуумной металлизации

У данной технологии есть довольно большое количество преимуществ:

  1. Возможность автоматизации процесса. Как ранее было отмечено, устанавливаемое оборудование позволяет максимально автоматизировать рассматриваемый процесс, за счет чего снижается вероятность появления дефектов из-за ошибки человека.
  2. Получаемая поверхность будет равномерной, что обеспечивает привлекательный вид и высокие эксплуатационные качества детали. Как правило, после металлизации поверхность полимеров напоминает шлифованный металл.
  3. При соблюдении технологии напыления поверхностный слой может прослужить в течении многих лет. Этап контроля качества позволяет исключить вероятность откалывания поверхностного напыляемого слоя или его быстрое истирание.
  4. Подобным образом можно придать изделию самые различные качества: коррозионную стойкость, электрическую проводимость, уменьшить степень трения, повысить твердость поверхности. В большинстве случаев вакуумная металлизация применяется для декорирования деталей.
  5. Основные эксплуатационные качества подложки остаются практически неизменными. Нагрев материала при этапе просушки проходит до температуры, которая не приведет к перестроению его структуры.
  6. Технология может применяться на финишном этапе изготовления детали. При правильном выполнении всех этапов проводить доработку обрабатываемых деталей не нужно.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Вакуумная металлизация декоративных изделий

Если рассматривать недостатки, то следует отметить сложность процесса перехода напыляемого вещества из одного состояния в другой. Обеспечить требуемые условия можно исключительно при установке специального оборудования. Поэтому своими руками провести вакуумную металлизацию с обеспечением высокого качества поверхности практически не возможно.

В заключение отметим, что даже небольшая толщина металлического слоя на полимерном покрытии способна придать полимерам металлический блеск и электропроводность, защитить структуру от воздействия солнечного света и атмосферного старения.

При этом создаваемый слой может иметь толщину всего несколько долей миллиметра, за счет чего вес изделия остается практически неизменным.

Кроме этого вакуумная металлизация позволяет получить совершенно уникальный материал, который будет обладать гибкостью и легкостью, а также свойствами, которые присущи металлам.

Область применения вакуумной металлизации

При рассмотрении области применения данной технологии отметим, что она может применяться для покрытия следующих материалов:

  1. пластика;
  2. алюминия;
  3. различных полимеров;
  4. стекла;
  5. керамики;
  6. металлов.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Вакуумная металлизация изделий из стекла

Наибольшее распространение получила металлизация пластмассовых изделий. Это связано с тем, что подобным образом изделие из дешевого пластика приобретает более привлекательный вид.

Если нужно сэкономить на производстве, но при этом обеспечить высокие декоративные качества, проводится напыление алюминия или других металлов.

Примером назовем изготовление деталей автомобилей, которые используются при отделке салона. Китайские и японские автопроизводители давно начали применять рассматриваемую технологию для удешевления своих автомобилей.

При этом применение вакуумной металлизации проводится не только в декоративных целях, за счет более высокой прочности поверхностного слоя детали служат дольше, снижается степень трения.

Однако металлизация не позволяет повысить прочность всего полимерного изделия.

Данная технология применяется и при производстве различных вещей, применяемых в быту, недорогих украшений. Большое распространение связано с тем, что поверхностный слой не истирается на протяжении длительного периода эксплуатации. Ранее применяемые технологии напыления не предусматривали создание высокой адгезии между подложкой и декоративным покрытием.

Выводы

По времени использования наибольший срок сохранения декоративного слоя у предметов, находящихся в закрытых помещениях. Те, что часто подвергаются атмосферным воздействиям, могут со временем повреждаться.

Но для их защиты обычно используются специальные лаковые слои, которые продлевают срок службы таких изделий.

К преимуществам покрытий вакуумным способом относится их экологичность, по сравнению с другими аналогичными технологиями.

Видео по теме: Вакуумная металлизация стекла — отжиг покрытия

Поделитесь в соц.сетях:

Источник: https://wizard-aerosol.com/spetsialnye-materialy/metallizacii-plastmass-raznovidnosti-tehnologiy-i-ih-osobennosti.html

Что такое металлизация

Современные способы защиты поверхностей предполагают широкий спектр методов, которые способны справиться с поставленной задачей. Чтобы понять, какой из них оптимальный в конкретных условиях, необходимо разобраться с технологиями, оценить достоинства и недостатки.

Очень часто хотят понять: металлизация – что это за процедура и как она производится. В соответствии с названием это нанесение слоя определенного металла на выбранную поверхность. Такому процессу подвергаются не только металлические изделия. Это могут быть деревянные, пластиковые, стеклянные и другие поверхности.

Описание и назначение металлизации

Любой процесс металлизации позволяет решать несколько технологических задач. К ним относятся:

  • антикоррозийная защита;
  • устранение мелких дефектов, возникших в процессе обработки;
  • восстановление первоначальных размеров;
  • изменение физических и механических свойств поверхностного слоя для улучшения потребительских характеристик;
  • декоративное покрытие.

Способ нанесения покрытия выбирается исходя из поставленных задач. Благодаря выбранному способу удается получить различные характеристики поверхности детали. Толщина слоя наносимого металла определяет область будущего применения.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Металлизация может проводиться несколькими способами:

  • физическим воздействием на поверхность (например, механическим или термическим);
  • химическим;
  • электростатическим.

Для реализации каждого способа разработаны специальные устройства. Они применяются в зависимости от решаемых задач, марки наносимого металла и степени оснащенности предприятия.

Особенности металлизации металлов и сплавов

Металлизация поверхности деталей, изготовленных из металлов или их сплавов, определяется их физическими свойствами. Большое количество качеств, различных для каждого соединения, требует индивидуального подхода.

Для некоторых групп металлов и сплавов нанесение тонкого слоя чужеродного металла не представляется возможным. Это зависит от совместимости их физических и химических свойств.

В этом случае применяются другие методы обработки.

Для других металлов и сплавов, наоборот, нанесение металлической пленки не вызывает трудностей, и металлизация является оптимальным способом обработки поверхности. Учитывая все свойства, выбирают наиболее приемлемые методы.

Виды металлизации

Современные технологии позволяют проводить процедуру с применением различных физических, механических и химических методов. Основные виды металлизации:

  • термическая обработка;
  • гальваническая;
  • электродуговая;
  • газоплазменное напыление;
  • плазменная металлизация;
  • с использованием эффекта диффузии;
  • химическая металлизация;
  • плакирование;
  • вакуумная обработка.

Под термической обработкой понимают нанесение на поверхность металлизирующего слоя при погружении в ванну с расплавленным металлом. Такая обработка допустима только в том случае, если температура плавления детали значительно выше температуры плавления наносимого металла.

Гальванический способ предполагает использование специального электролита. Обработка происходит под воздействием протекающего тока. Этот способ позволяет проводить покрытие металлом любой поверхности, так как не требует дополнительного нагрева. Нанесенная пленка получается одинаковой толщины на всей поверхности.

Диффузионное напыление – это насыщение поверхностного слоя одним из цветных металлов (цинком, алюминием, хромом или бором). Это приводит к улучшению прочностных показателей. С его помощью восстанавливают изношенные детали.

При химической металлизации применяются различного рода реагенты. Они изготавливаются в жидком виде или в форме порошков. Для проведения операции подготавливают ванну с раствором и затем в нее опускают деталь. Для каждого состава существует свое эффективное время воздействия на поверхность.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Под плакированием понимают металлизацию с дальнейшей горячей прокаткой.

Вакуумная

Данная металлизация основана на последовательном испарении (адсорбции) и последующем выпадении частиц металла на поверхность обрабатываемой детали. Технологический процесс ее реализации довольно сложный и затратный. Потому его применяют на предприятиях и в условиях мастерских.

Этот метод обладает рядом преимуществ, что позволяет использовать его для деталей из различных материалов (дерева, пластика, керамики, стекла и других полимерных соединений). Особое распространение он получил для металлизации пластмассы на автомобильных заводах.

Вакуумная металлизация позволяет получить изделие с эффектным внешним видом, но не улучшает прочностных характеристик.

Газовая

Эта методика носит название газопламенной металлизации. Сущность процесса заключается в применении газовой струи для нагрева подаваемой проволоки, которая является источником напыляемого металла. Благодаря высокой температуре проволока расплавляется, и капли, ударяясь о поверхность, образуют на ней довольно ровный слой.

Толщина этого слоя зависит от объема используемой проволоки. После нанесения покрытия его обрабатывают с помощью шлифовального оборудования. С помощью газовой металлизации восстанавливают коленчатые и распределительные валы автотракторной техники.

Для реализации этого метода применяют оборудование и газы, используемые при проведении сварочных работ.

Вместо газовых горелок применяют специальные пистолеты-металлизаторы инжекторного типа. В некоторых случаях метод применяют для формирования не металлических покрытий. В газовую струю подают порошок из стекла, эмали, специальных пластмасс.

Цинкование

Широко распространенным способом защиты черных металлов от коррозии является цинкование. В качестве материала используется цинк, который наносится на поверхность различными методами (горячим, холодным, гальваническим, термодиффузионным).

Технологии реализации этих методов отличаются только используемым материалом. Процесс нанесения цинка, или оцинковка, применяется для обработки листового проката, труб, изделий произвольной геометрической формы.

Оборудование и материалы

Оборудование зависит от выбранного метода обработки. При термической металлизации необходимы приспособления, позволяющие создавать растворы с высокой температурой. В качестве источников подогрева используют электрические тэны.

Читайте также:  1а62 токарно-винторезный станок: характеристики, паспорт, устройство

При газовом методе используют технологию, применяемую в газосварочных работах: емкости с газами, редукторы и подводящие шланги, вместо газовых горелок – специальные распылители.

Для химической металлизации необходимо иметь набор реактивов и емкости, стойкие к вредному воздействию реактивных жидкостей.

Химическая металлизация в домашних условиях

Металлизация различных деталей – это интересный и довольно творческий процесс. Он позволяет реализовать самые интересные дизайнерские решения. Используя различные химические соединения, можно создать такую лабораторию в домашних условиях.

Последовательность действий выглядит следующим образом:

  1. Предварительная подготовка поверхности (очистка, шлифовка, обезжиривание).
  2. Промывка подготовленного изделия.
  3. Если не вся поверхность будет подвержена металлизации, необходимо тщательно укрыть оставшуюся часть детали.
  4. Разработать систему надежного крепления заготовки к каркасу, который будет опускаться в раствор.
  5. Приготовить раствор в ванной требуемых размеров.
  6. После металлизации заготовку просушивают и при необходимости полируют.

Обработка в домашних условиях не всегда дает сразу ожидаемый эффект. Поэтому после просушки следует аккуратно обработать полученный слой. Для автоматизации процесса можно изготовить простую установку.

Вакуумная металлизация: технологический процесс, область применения, преимущества

Особое внимание следует уделить вопросам безопасности при работе с ядовитыми жидкостями и высоким напряжением.

Техника безопасности

Любой метод металлизации относится к категории вредных и небезопасных технологических процессов. Основными источниками повышенной опасности при работе являются:

  • наличие высоких температур, являющихся катализаторами процесса;
  • необходимость применения источников повышенного напряжения;
  • использование открытого пламени при газовом методе;
  • применение различных химических соединений, пары которых оказывают негативное воздействие на органы дыхания.

При проведении работ необходимо строго соблюдать все пункты техники безопасности, которые приведены в инструкции к конкретной установке или аппарату. Если работы проводятся самостоятельно в домашней мастерской, необходимо позаботиться о наличии средств защиты органов дыхания, зрения, открытых частей тела. Исключить возможность поражения электрическим током.

Источник: https://WikiMetall.ru/metalloobrabotka/metallizatsiya.html

Полезно — Вакуумная металлизация и напыление

Отправлено 20 февр. 2015 г., 01:03 пользователем Dmitry AIST SEO
Технология вакуумного напыления применяется для того, что изделие приобретало дополнительные защитные характеристики: износостойкость, коррозионная стойкость, изоляция, антифрикация и проч.

Также вакуумное напыление осуществляется сугубо в декоративных целях, например, при производстве часов.Вакуумное напыление для прочности материала наносится чаще всего на поверхность изделия, которое состоит из твердосплавных металлов .

Упрочняющее покрытие – это, можно сказать, внедрение в слой поверхности материала частиц титана и прочих металлических сплавов, которые связаны между собой на основе общих молекул.

Что дает упрочняющее покрытие:

  • стойкость к изменениям климата;
  • высокая коррозийная стойкость;
  • долгий срок эксплуатации.

2. Нанесение покрытия для декоративных работ

Декоративное покрытие – это распыление металлов на поверхность изделия, которое выполняется по технологии «лак-металл-лак». Тонкий слой, который образуется в результате процесса нанесения металла, придает изделию зеркальный блеск.

Сфера применения декоративного напыления достаточно широка, это могут быть какие-то декоративные элементы, которые используются в дизайне интерьеров, или сувенирная продукция, церковная утварь или детали для тюннинга автомобиля.

Отправлено 20 февр. 2015 г., 00:52 пользователем Dmitry AIST SEO

Никелированию подвергаются большая часть стальных, а также цветных металлов. После никелирования изделия получат новые характеристики: коррозийная стойкость, твердость, а также некоторые декоративные свойства. Металл, на поверхность которого был нанесен слой никеля, приобретает своеобразный красивый блеск, что позволяет изделие использовать в декоративно -отделочных работах.

Никелевое покрытие может играть самостоятельную роль покрытия, или служить в качестве подслоя, на который наносится еще одно гальваническое покрытие.

  • декоративное свойство (покрытию присущ зеркальный блеск, который с течение времени не тускнеет, поэтому никелем покрывают разные декоративные элементы дома, сада, инструменты и оборудование).
  • физико-технические характеристики (никелевое покрытие наносится на изделия, которые используются во влажной среде, чтобы защитить их от коррозии).
  • аналог хромированию (хромовое покрытие заменяется на никель при условии, когда хром трудно технологически нанести на изделие со сложной геометрической поверхностью. Если соблюдать все технологические процессы, то разница в покрытиях может быть минимальной).

Очень часто никель наносят на металл вместе с хромом и медью. При этом никель служит прослойкой для того, чтобы обеспечить изделие коррозийной стойкостью и предохранить медь от диффузии через поры хрома.

Помимо этого, никелевое покрытие обеспечивает ещё больший блеск хромовому слою.

Источник: https://www.sites.google.com/site/vakuumnaametallizaciahelp52/vakuumnoe-napylenie-tehnologia/polezno

Технология вакуумного напыления

Главная » Литература » Статьи » Технология вакуумного напыления

Описание и возможности применения.

Напыление вакуумное — нанесение пленок или слоев на поверхность деталей или изделий в условиях вакуума (1,0-1 • 10-7 Па).

Напыление вакуумное используют в планарной технологии полупроводниковых микросхем, в производстве тонкопленочных гибридных схем, изделий пьезотехники, акустоэлектроники и др.

(нанесение проводящих, диэлектрических, защитных слоев, масок и др.), в оптике (нанесение просветляющих, отражающих и др.

покрытий), ограниченно — при металлизации поверхности пластмассовых и стеклянных изделий, тонировании стекол автомобилей.

Методом напыления вакуумного наносят металлы (Al, Au, Cu, Cr, Ni, V, Ti и др.), сплавы (например, NiCr, CrNiSi), химические соединения (силициды, оксиды, бориды, карбиды и др.), стекла сложного состава (например, I2О3 • В2О3 • SiO2 • Аl2О3 • СаО, Та2О • В2О3 • I2О3 • GeO2), керметы.

Напыление вакуумное основано на создании направленного потока частиц (атомов, молекул или кластеров) наносимого материала на поверхность изделий и их конденсации.

Процесс включает несколько стадий:

  • переход напыляемого веществава или материала из конденсирированной фазы в газовую,
  • перенос молекул газовой фазы к поверхности изделия,
  • конденсацию их на поверхность,
  • образование и рост зародышей, формирование пленки.

По способу перевода вещества из конденсированной в газовую фазу различаютвакуумное испарение и ионное распыление.

При ионном распылении частицы наносимого вещества выбиваются с поверхности конденсирируемой фазы путем ее бомбардировки ионами низкотемпературной плазмы. Вариантами ионного распыления являются катодное, магнетронное, ионно-плазменное и высокочастотное распыление, которые отличаются друг от друга условиями формирования и локализацией в пространстве низкотемпературной плазмы.

Если распыление проводится в присутствии химических реагентов (в газовой фазе), то на поверхности изделия образуются продукты их взаимодействия с распыляемым веществом (например, оксиды, нитриды). Такое распыление называют реактивным.

Перенос частиц напыляемого вещества от источника (места его перевода в газовую фазу) к поверхности детали осуществляется по прямолинейным траекториям при вакууме 10-2 Па и ниже (вакуумное испарение) и путем диффузионного и конвективного переноса в плазме при давлениях 1 Па (катодное распыление) и 10-1-10-2 Па (магнетронное и ионно-плазменное распыление).

Судьба каждой из частиц напыляемого вещества при соударении с поверхностью детали зависит от ее энергии, температуры поверхности и хим. сродства материалов пленки и детали.

Атомы или молекулы, достигшие поверхности, могут либо отразиться от нее, либо адсорбироваться и через некоторое время покинуть ее (десорбция), либо адсорбироваться и образовывать на поверхности конденсат (конденсация).

При высоких энергиях частиц, большой температуре поверхнсти и малом химическом сродстве частица отражается поверхностью.

Температура поверхности детали, выше которойрой все частицы отражаются от нее и пленка не образуется, называетсякритической температурой вакуумного напыления; ее значение зависит от природы материалов пленки и поверхности детали и от состояния поверхности.

При очень малых потоках испаряемых частиц, даже если эти частицы на поверхности адсорбируются, но редко встречаются с другими такими же частицами, они десорбируются и не могут образовывать зародышей, т.е. пленка не растет.

Критической плотностью потока испаряемых частиц для данной температуры поверхности называется наименьшая плотность, при которой частицы конденсируются и формируют пленку. Структура напыленных пленок зависит от свойств материала, состояния и температуры поверхности, скорости напыления.

Пленки могут быть аморфными (стеклообразными, например оксиды, Si), поликристаллическими (металлы, сплавы, Si) или монокристаллическими (например, полупроводниковые пленки, полученные молекулярно-лучевой эпитаксией).

Для упорядочения структуры и уменьшения внутренних механических напряжений пленок, повышения стабильности их свойств и улучшения адгезии к поверхности изделий сразу же после напыления без нарушения вакуума производят отжиг пленок при температурах, нескольео превышающих температуру поверхности при напылении. Часто посредством вакуумного напыления создают многослойные пленочные структуры из различных материалов.

  • Вакуумно-напылительные установки.
  • Для вакуумного напыления используют технологическое оборудование периодического, полунепрерывного и непрерывного действия.
  • Установки периодического действия осуществляют один цикл нанесения пленок при заданном числе загружаемых изделий.

Установки не прерывного действия используют при серийном и массовом производстве. Они бывают двух видов: многокамерные и многопозиционные однокамерные.

Первые состоят из последовательно расположенных напылительных модулей, в каждом из которых осуществляется напыление пленок определенных материалов или их термическая обработка и контроль.

Модули объединены между собой шлюзовыми камерами и транспортирующим конвейерным устройством. Многопозиционные однокамерные установки содержат несколько напылительных постов (расположенных в одной вакуумной камере), соединяемых транспортным устройством конвейерного или роторного типа.

Основные узлы и системы установок для вакуумного напыления представляют собой самостоятоятельные устройства, выполняющие заданные функции:

  • создание вакуума,
  • испарение или распыление материала пленок,
  • транспортировку деталей,
  • контроль режимов вакуумного напыления и свойств пленок,
  • электропитание,
  • др.

Обычно установка для вакуумного напыления включает следующие узлы:

  • рабочую камеру, в которой осуществляется напыление пленок;
  • источники испаряемых или распыляемых материалов с системами их энергопитания и устройствами управления;
  • откачную и газораспределительную системы, обеспечивающие получение необходимого вакуума и организацию газовых потоков (состоят из насосов, натекателей, клапанов, ловушек, фланцев и крышек, средств измерения вакуума и скоростей газовых потоков);
  • систему электропитания и блокировки всех устройств и рабочих узлов установки;
  • систему контроля и управления установкой вакуумного напыления, обеспечивающую заданные скорость напыления, толщину пленок, температуру поверхности деталей, температуру отжига, физические свойствава пленок (содержит набор датчиков, связанных через управляющую микропроцессорную ЭВМ с исполнит. механизмами и устройствами вывода информации);
  • транспортирующие устройства, обеспечивающие ввод и вывод деталей в рабочую камеру, точное размещение их на постах напыления и перевод из одной позиции напыления на другую при создании многослойной системы пленок;
  • систему вспомогательных устройств и технологическую оснастку (состоят из внутрикамерных экранов, заслонок, манипуляторов, гидро- и пневмоприводов, устройств очистки газов).

Литература:

  • Технология тонких пленок. Справочник, под ред. Л. Майссела, Р. Глэнга, пер. с англ., т. 1-2, М., 1977;
  • Плазменная металлизация в вакууме, Минск, 1983;
  • Черняев В.Н., Технология производства интегральных микросхем и микропроцессоров, 2 изд., М., 1987;
  • Волков С. С., Гирш В. И., Склеивание и напыление пластмасс, М., 1988;
  • Коледов Л. А., Технология и конструкция микросхем, микропроцессоров и микросборок, М., 1989. Л. А. Коледов.
Скачать файл — Технология вакуумного напыления

Источник: http://echemistry.ru/literatura/stati/tehnologiya-vakuumnogo-napyleniya.html

Ссылка на основную публикацию
Adblock
detector