Тиристорный регулятор мощности своими руками

Создав регулятор напряжения 220 В (в дальнейшем РН), пользователь получит возможность определять его величину, поступающую в электроприборы.

Станет возможной настройка уровня нагрева, света, оборотов не слишком мощных моторов бытовых аппаратов простым поворотом селектора на такой самоделке. Сборка не слишком сложная, поэтому кустарное изготовление целесообразное.

Мы выбрали и рассмотрели самые понятные схемы с обозначением характеристик деталей для конструирования РН 0–220 В своими руками.

Что такое регулятор напряжения 220 В

Сокращенное название рассматриваемого прибора — РН 0–220 В. Самый простой такой аппарат — это диммер для ламп накаливания. Устройство настраивает сетевые параметры напряжения, повышает/понижает степень выходного сигнала на диапазоне, зависимом от значения разности потенциалов на его выходе. Поддерживает заданный вольтаж цепи потребителя.

Аппарат регулирует (плавно или ступенчато) именно саму величину напряжения, вольтаж, от которого также зависит мощность в диапазоне возможностей подключенного агрегата. Работает с нагрузкой реактивной, активной, только надо уточнять, подходит ли конкретная сборка, особенно для последней. А также всегда надо сопоставлять, на какую обслуживаемую мощность (Ватты) рассчитана схема.

РН изменяет согласно настройкам пользователя уровень выходного сигнала из сети 220 В, подаваемый на подключенную к нему нагрузку. Таким образом, устанавливается параметр, подходящий для запитывания конкретного прибора, а чаще для регулировки его работы (снижение/повышение оборотов маломощных электромоторов, яркости света).

Тиристорный регулятор мощности своими руками

Важно: РН-220 В понижает/повышает только значение напряжения (В), выходящего из сети 220 В — ток (Амперы), мощность (Вт, кВт) он не регулирует, эти величины изменяются уже самой полезной нагрузкой, ограниченной рамками своих характеристик, согласно поданным вольтам. Прибор иногда называют «регулятором мощности», так как изменяются также возможности подключенного потребителя по указанным параметрам. Но РН надо отличать от такового, как и от регулятора тока.

Регулятор напряжения применяют:

  • для изменения оборотов небольших моторчиков бытовых устройств (скорости блендера, фена), реже, поскольку не все схемы подходят, — для более мощных двигателей (например, дрели);
  • для других приборов, работу которых можно настраивать. А чаще (и это наиболее корректное и эффективное использование) для уровня освещенности (диммер), громкости звука, нагрева ТЭНов, паяльника,
  • во всех случаях, если на цепи надо создать определенное напряжение, например, 12 В.

Чаще всего бытовой РН 0–220 В применяется для плавного вкл./выкл. приборов.

Тиристорный регулятор мощности своими руками

В заводских моделях обычно также есть микросхема для стабилизации напряжения при его скачках, обеспечивающая работу приборов в любом режиме. Тиристорный регулятор по англоязычным стандартам именуют Voltage Controller. РН снабжают универсальные блоки питания, на которых можно настраивать вольтаж.

Виды, принцип работы, особенности

РН по нашей теме предназначен только для переменного напряжения, то есть для обычной домашней сети 220 В.

Чаще всего собирают на базе таких деталей:

  • тиристоры;
  • симисторы;
  • транзисторы.

В схемах присутствуют также конденсаторы, резисторы постоянные, настроечные. Именно селекторами последних осуществляется регулировка. Сложные сборки могут включать микросхемы.

Тиристорный регулятор мощности своими руками

РН максимально результативные для резистивных (активных, омических) нагрузок, то есть являющихся частью потребляемой мощности подсоединяемого/отключаемого потребителя. Это сопротивление движению тока, например, в виде резистора, на точке, где электричество преобразовывается в тепло.

Тиристорный регулятор мощности своими руками

Резистивная нагрузка — это нагревательные элементы, ТЭНы, лампы накаливания (не «экономки»).

Тиристорный регулятор мощности своими руками

В индуктивной нагрузке ток (там он значительно ниже, чем при резистивной) отстает от напряжения, создается реактивная мощность. Это асинхронные электродвигатели, электромагниты, дроссели, трансформаторы, выпрямители. С ними РН не будут работать или будут, но не эффективно, создавая риск поломки оборудования. Там регуляторы напряжения не всегда целесообразные.

Тиристорный регулятор мощности своими руками

Тиристорный прибор нельзя использовать со светодиодными (экономными) и люминисцентными лампами. Конденсаторные регуляторы не позволяют плавно менять напряжение.

Сборка регулятора напряжения на симисторах

В основе работы симисторного РН — фазовое смещение открывания ключа. Детали схемы можно разделить на две группы:

  • силовые (ключ) — симистор;
  • создающие управляющие импульсы, база на симметричном динисторе.

Тиристорный регулятор мощности своими руками

С помощью резисторов R1 и 2 сконструирован делитель напряжения. Сопротивление на первом переменное, что дает возможность регулировать значение на отрезке R2–C1. Между указанными деталями поставлен динистор DB3. Конструкция работает с мощностью около 100–150 Вт.

Алгоритм работы:

  1. В момент достижения напряжения на конденсаторе C1 точки открытия динистора, на симистор (он же является силовым ключом) VS1 поступает импульс для управления — он активируется.
  2. Через симистор начинает протекать ток на подключенный прибор.
  3. Положением регулятора выставляют часть фазы волны, где срабатывает силовой ключ.

Второй вариант

Данный способ сборки на симисторе своими руками почти аналогичен предыдущему. Схема базируется на дешевом симисторе BT136. Сборка предназначена для работы в пределах 100 Вт.

Тиристорный регулятор мощности своими руками

Потребуется следующее:

Тиристорный регулятор мощности своими руками

Как работает: через цепь DN1 (динист.) — C1 (конд.) — D1 (диод) ток течет на DN2 (симист.). Последний открывается и момент этого зависит от емкости C1, заряжаемого через R1 и 2 (резисторы). Получается требуемый алгоритм: модуляцией сопротивления R1 настраивается скорость заряда конденсатора.

Конструкция чрезвычайно простая, но отлично справляется с настройкой вольтажа нагревательных приборов с вольфрамовой нитью. Но есть минус: отсутствует обратная связь, поэтому применять самоделку для регулировки оборотов коллекторного электродвигателя нельзя.

Третий вариант РН на симисторе с иллюстрацией этапов, фото деталей

Нижеуказанная схема может обслужить нагрузку до 1 кВт. Потребуется конденсатор 0.1 мкФ×400 В и следующее:

  • Тиристорный регулятор мощности своими руками
  • Графически схема выглядит так:
  • Детали можно спаять между собой, но рассмотрим вариант с платой — ее вытравливают и лудят стандартными методами, макет ниже:

Припаиваем симистор, переменный резистор. Конденсатор в нашем случае на плате со стороны лужения, так как у пользователя он был со слишком короткими ножками.

Далее, динистор: у него нет полярности, вставляем как угодно. Затем установка всего остального: диода, резистора, светодиода, перемычки, винтового клеммника.

  1. Конструкция помещается в любую коробочку, пример:

Самоделка в дополнительных настройках не нуждается. Можно применять не только для сети 220 В на стандартные приборы, но и для любого источника с переменным током от 20 до 500 В. Данный диапазон определен предельными характеристиками радиоэлементов.

На транзисторах

Сборки на транзисторах больше подходят для индуктивной нагрузки, ими можно регулировать обороты электродвигателей.

Простая схема

Данная сборка очень практичная — этот регулятор напряжения представляет собой простой блок питания, универсальный адаптер к радиоустройствам на разные напряжения (вольтаж). Собрать сможет даже пользователь с начальными познаниями и небольшим опытом.

Элементы:

  • транзистор КТ815Г, можно и 817 Г;
  • переменник на 10 кОм;
  • резистор стандартный 0.125 Вт на 1 кОм
  • Спаять элементы можно без площадки, но покажем, как это сделано с ней. Создаем плату:
  • Пайка компонентов:
  1. Транзистор, важно не перепутать его выводы (эмиттер и базу).
  2. Резистор на 1 кОм.
  3. Впаиваем с проводами переменник на 10 кОм. Можно применить и другой, припаять сразу, без них, если позволяет типоразмер.
  4. Четыре вывода — к питанию, к выходам.

Подсоединяем к питанию, выход оснащаем светодиодом, подключаем нагрузку (лампу), моторчик, тот же светодиод (в нашем примере он). Двигаем регулятор — наблюдаем изменение напряжения.

Особенность: диапазон обслуживаемой мощность и ток нагрузки ограничены предельными характеристиками транзистора — примерно половина 1 Ампера. Для увеличения диапазона такого регулируемого стабилизатора надо брать транзисторы КТ805, 819.

Другие варианты маломощных транзисторных схем

С 2 деталями: транзистором и переменником. Алгоритм элементарный: последний указанный элемент индуцирует (отпирает) первый. Чем ниже номинал настроечного резистора, тем более плавная регулировка. Это вариант для маломощной нагрузки, например, для вентиляторов, слабых электромоторчиков, светодиодов. Транзистор нагревается сильно, поэтому радиатор желательный.

Мощная сборка

Опишем особо мощный регулятор для нагрузки в несколько кВт. Тут ток на нагрузку идет также через симистор, но управляется все через каскад транзисторов. Переменником настраивается ток, поступающий в базу первого транз.

(маломощного), а тот посредством коллекторно-эмиторного перехода осуществляет управление базой уже мощного транз., который реализует открывание/закрывание симистора.

Так создается возможность очень плавной настройки огромных токов на нагрузке.

Схема самодельного РН 220 В с тиристорами

Тиристорные сборки также эффективные, одновременно они не отличаются особой сложностью. Силовым ключом тут выступает тиристор. Главное отличие от самоделок на симисторах — каждая полуволна имеет свой индивидуальный ключ, снабженный динистором для управления.

Для схемы взяли отечественные детали. При установке тиристора VS1, диодов VD1–VD4 на радиаторы (охладители), то устройство сможет работать с нагрузкой в 10 А: при 220 В можно будет обслуживать 2.3 кВт.

В сборке лишь 2 силовых элемента: диодный мост, тиристор. Детали рассчитаны на 400 В, ток 10 А. мост трансформирует переменное напряжение в однополярное пульсирующее, фазовую настройку полупериодов обеспечивает тиристор.

R1 и 2, стабилитрон VD5 — это параметрический стабилизатор, ограничивающий напряжение, подаваемое в узел управления на отметке 15 В. Последовательное размещение резисторов требуется для повышения пробивного напряжения и рассеиваемой мощности.

C1 без заряда, в месте соединения R6 и 7 тоже нулевое напряжение, но постепенно оно там растет.

Читайте также:  Самый тугоплавкий металл в мире

Чем ниже сопротивление на резисторе R4, тем быстрее через эммитер VT1 перегонится напряжение на его базе, транзистор откроется. VT1 и 2 (транзисторы) — это состав маломощного тиристора.

При достижении значения на переходе база/эмиттер VT1 пороговой отметки транзистор открывается и отпирает VT2, а тот в свою очередь — тиристор.

Второй вариант

Описанным ниже регулятором настраивают скорость вращения электродвигателей, нагрев паяльника и подобное.

Такой прибор отчасти верно назвать регулятором мощности, но правильно будет также именовать его и РН, так как, по сути происходит регулировка фазы — времени, за которое сетевая полуволна попадает в нагрузку.

С одной стороны настраивается напряжение через скважность импульса, с иной — мощность появляющаяся на нагрузке.

Наиболее результативный прибор для резистивной нагрузки — лампочек, нагревателей. С индуктивной будет справляться, но не так эффективно, при слишком малой величине точность диапазона настройки снизится. Существуют две почти идентичные схемы по описываемому варианту:

Схема регулятора состоит из доступных деталей, ее можно полностью собрать из таковых даже советского периода. При включении (как на изображении) выпрямительных диодов прибор выдержит до 5 А, что соответствует 800 Вт…1  кВт. Но надо поставить радиаторы для охлаждения.

Основа изделия:

  • тирист. КУ202Н;
  • Т1–Т2 (КТ315 и КТ361) — это аналог 1-переходного транзистора.

Алгоритм:

  1. Когда напряжение на конд. С1 (470 nF) сравнивается таковому в точке соединения резист. R3 и 4 (10 кОм и 2.2 кОм), тогда транзисторы открываются.
  2. От них подается импульс управляющему электроду тиристора.
  3. При этом C1 тратит свой заряд, тиристор открывается до следующего полупериода.

Мощность можно повысить, если заменить диоды, рассчитанные на больший необходимый ток. Также можно вместо тиристора КУ202 с пределом в 10 А поставить помощнее: Т122, Т132, Т142.

Деталей не много, допустим навесной монтаж, но с платой сборка будет красивее и комфортнее. Стабилитрон Д814В можно поменять на любой с 12–15 В. Из коробочки выведен разъем для вилки.

Модификация, особенности, демонстрация работы

Схема также может поместиться в корпусе наружной розетки, в маленькой пластиковой распаячной коробке. Мощность самоделки ограничена диодным мостом (1000 В, 4 А), тиристором. Напомним, в нашем примере предел чуть больше 800 Вт, максимум — 1000 Вт. Для бытовых условий этого более чем достаточно.

  1. Радиаторы на тиристоры и диоды крайне рекомендованы — в данном случае они не просто желательные, а жизненно необходимые, так как перегрев может быть значительным. Минимальная мощность резистора R1 — 2 Вт
  2. Демонстрация:

Другие популярные схемы

Приведем простые, доступные проверенные схемы. Опишем их кратко, так как на самом изображении есть расшифровка элементов.

Для паяльника

  • Чрезвычайно простые схемы для плавной регулировки нагрева паяльника применяют для предотвращения перегрев жала.
  • Первая схема включает мощный симистор, управляющий линией тиристор-переменник.
  • Другой простейший вариант для паяльника: нагрузка управляется одним тиристором, степень включения его определяется регулировкой переменного резистора, диод поставлен для защиты от обратного напряжения.

На микросхеме

Применена микросхема фазового регулирования 1182ПМ1. Этот контроллер управляет уровнем открытия симистора, который контролирует нагрузку. Хорошо подойдет для настройки яркости лампочек накаливания.

Для лампочек накаливания с тиристором

Данная сборка регулирует накал обычных лампочек. Регулятор напряжения 220 В на тиристоре своими руками конструируется из диодного моста, конденсатора, двух резисторов — постоянного и переменника. Селектором последнего меняется влияние на ключ этого тиристора, что модулирует его пропускную способность по току.

Советы

Фазные регуляторы создают значительные помехи в сети, поэтому на кабель питания ставят сглаживающие фильтры. Самыми элементарными такими приспособлениями являются ферритовые кольца (часто их имеют шнуры компьютерные, от мониторов). Есть разборные блочки с ними, устанавливаемые защелкиванием, но также можно такие кольца взять от трансформаторов от б/у плат с микросхемами.

Все элементы обязательно изолируют, учитывают, что на них подается 220 В и значительный ток.

Предостережения по индуктивной нагрузке

При высокоиндуктивной нагрузке, для которой характерно отставание тока напряжения, тиристоры могут не закрываться до конца, есть риск поломки обслуживаемых приборов — дрелей, шлифмашинок, болгарок. Поэтому надо уточнять на спецфорумах параметры сборки для такого оснащения, для него есть именно специализированные устройства — регуляторы оборотов.

Тиристорный РН хорошо функционирует в коллекторных двигателях со щеточными узлами, в асинхронных устройствах изменять обороты не сможет.

Видео по теме

Тиристорный регулятор мощности своими руками: схемы

Тиристорные регуляторы мощности применяются как в быту (в аналоговых паяльных станциях,  электронагревательных приборах и т.д.), так и на производстве (например, для запуска мощных силовых установок). В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные.

Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке (подробнее об этом методе будет рассказано ниже).

Принцип работы фазового регулирования

Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.

Тиристорный регулятор мощности своими рукамиМинимальная мощность

На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной). Рассмотрим случай, представленный на следующем графике.

Тиристорный регулятор мощности своими рукамиПоловинная мощность

Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.

Тиристорный регулятор мощности своими рукамиМощность, близкая к максимальной

Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) — незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.

Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.

Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа — создание высокого уровня помех в электросети.

В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.

Тиристорный регулятор мощности своими рукамиПереключение тиристора через «ноль»

Обозначения:

  • A – график полуволн переменного напряжения;
  • B – работа тиристора при 50% от максимальной мощности;
  • C – график, отображающий работу тиристора при 66%;
  • D – 75% от максимума.

Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.

Видео: Испытания тиристорного регулятора мощности

Схема простого регулятора мощности

Регулировать мощность паяльника можно используя для этой цели аналоговые или цифровые паяльные станции. Последние стоят достаточно дорого, и собрать их, не имея опыта, не просто. В то время как аналоговые устройства (являющиеся по сути регуляторами мощности) не составит труда сделать своими руками.

Приведем несложную схему прибора на тиристорах, благодаря которому можно регулировать мощность паяльника.

Тиристорный регулятор мощности своими рукамиПростейший регулятор

Радиоэлементы, обозначенные на схеме:

  • VD – КД209 (или близкий ему по характеристикам)
  • VS- KУ203В или его аналог;
  • R1 – сопротивление с номиналом 15кОм;
  • R2 – резистор переменного типа 30кОм;
  • С –емкость  электролитического типа ч номиналом 4,7мкФ и напряжением от 50В;
  • Rn – нагрузка (в нашем случае в качестве нее выступает паяльник).

Данное устройство регулирует только положительный полупериод, поэтому минимальная мощность паяльника будет вполовину меньше номинальной. Управляется тиристор через цепь, включающую в себя два сопротивления и емкость. Время зарядки конденсатора (оно регулируется сопротивлением R2)  влияет на длительность «открытия» тиристора. Ниже показан график работы устройства.

Тиристорный регулятор мощности своими рукамиВлияние сопротивления R2 на работу регулятора

Пояснение к рисунку:

  • график A – показывает синусоиду переменного напряжения, поступающего на нагрузку Rn (паяльник) при сопротивлении R2 близком к 0 кОм;
  • график B – отображает амплитуду синусоиды поступающего на паяльник напряжения при сопротивлении R2 равном 15 кОм;
  • график C, как видно из него, при максимальном сопротивлении R2 (30 кОм) время работы тиристора (t2) становится минимальным, то есть паяльник работает с мощностью примерно около 50% от номинальной.

Схема устройства довольно простая, поэтому собрать ее самостоятельно смогут даже те, кто не очень хорошо разбирается в схемотехнике.  Необходимо предупредить, что при работе данного прибора в его цепи присутствует опасное для жизни человека напряжение, поэтому все его элементы должны быть надежно заизолированы.

Читайте также:  Как выкрутить болт с сорванной резьбой? способы, инструменты

Как уже описывалось выше, устройства, работающие по принципу фазового регулирования, являются источником сильных помех в электросети. Существует два варианта выхода из подобной ситуации:

    • подавать напряжение через сглаживающий фильтр (его схему несложно найти), самый простой вариант реализации – ферритовое кольцо с обмотанным вокруг него сетевым кабелем;
      Тиристорный регулятор мощности своими рукамиФильтр на основе ферритового кольца от кабеля монитора
    • собрать устройство, не создающее помехи, приведем пример такой схемы.

Регулятор работающий без помех

Ниже представлена схема регулятора мощности, не создающего помехи, поскольку он не «обрезает» полуволны, а «отрезает» их определенное количество. Принцип работы такого устройства мы рассматривали в разделе «Принцип работы фазового регулирования», а именно, переключение тиристора через ноль.

Также как и в предыдущей схеме, регулировка мощности происходит в диапазоне от 50 процентов до величины близкой к максимальной.

Тиристорный регулятор мощности своими рукамиРегулятор, не создающий помехи

  • Перечень используемых в приборе радиоэлементов, а также варианты их замены:
  • Тиристор VS – КУ103В;
  • Диоды:
  • VD1-VD4 – КД209 (в принципе можно использовать любые аналоги, которые допускают величину обратного напряжения более 300В, а ток свыше 0,5А); VD5 и VD7 – КД521 (допускается ставить любой диод импульсного типа); VD6 – KC191 (можно использовать аналог с напряжением стабилизации равным 9В)
  • Конденсаторы:
  • С1 – электролитического типа с емкостью 100мкФ, рассчитанный на напряжение не менее 16В; С2 – 33Н; С3 – 1мкФ.
  • Резисторы:
  • R1 и R5 – 120кОм; R2-R4 – 12кОм; R6 – 1кОм.
  • Микросхемы:
  • DD1 — K176 ЛЕ5 (или ЛА7); DD2 –K176TM2. В качестве альтернативы можно использовать логику серии 561;
  • Rn – паяльник, подключенный в качестве нагрузки.

Если при сборке тиристорного регулятора мощности не было допущено ошибок, то устройство начинает работать сразу после включения, настройка для него не требуется. Имея возможность измерить температуру жала паяльника, можно сделать градацию шкалы для резистора R5.

В том случае, когда устройство не заработало, рекомендуем проверить правильность распайки радиоэлементов (не забудьте перед этим отключить его от сети).

Тиристорный регулятор мощности

Тиристорный регулятор мощности своими руками

В быту иногда возникает необходимость регулировки небольших мощностей, с этой задачей с легкостью справляются симмисторные или тиристорные регуляторы. Типовые схемы тиристорных регуляторов очень подробно описывались в журнале Радио №12 за 1971г и №10 за 1975г. С учетом того, что схемы достаточно простые, надежные и не содержат дефицитных компонентов, они до сих пор не утратили свою актуальность. Сегодня мы соберем довольно простой тиристорный регулятор мощности своими руками, а также посмотрим, как он работает.

Тиристорный регулятор мощности – схема

Тиристорный регулятор мощности своими руками

Основным элементом в этой схеме является тиристор КУ202Н. Транзисторы T1-T2 (КТ315 и КТ361) составляют аналог однопереходного транзистора.

Когда напряжение на конденсаторе 470 nF будет равно напряжению в точке соединения резисторов R3 и R4 (10 кОм и 2,2кОм), тогда транзисторы откроются и подадут сигнал на управляющий электрод тиристора, при этом конденсатор С1 разряжается, а тиристор откроется до следующего полупериода.

Тиристорный регулятор мощности своими руками

Как видим, данная схема содержит минимальное количество компонентов и с легкостью сможет поместиться даже в корпусе от обычной розетки.

Тиристорный регулятор мощности своими руками

Мощность данного регулятора ограничена диодным мостом и тиристором. В нашем случае, слабое звено — диодный мост RS407 (1000В; 4А), это даст возможность регулировать  мощность лишь до 800Вт, что для бытовых нужд более чем достаточно.

Если надо больше, то самодельные тиристорные регуляторы мощности необходимо снабжать более мощными тиристорами и диодными мостами, установленными на радиаторы достаточной площади. Вот такой получился у нас тиристорный регулятор мощности своими руками.

Тиристорный регулятор мощности своими руками

Тиристорный регулятор мощности своими руками

Тиристор, а также диодный мост желательно устанавливать на небольшой радиатор. Резистор R1 необходимо брать мощностью минимум 2Вт. Стабилитрон Д814В можно заменить любым другим с напряжением стабилизации 10-15В.

Демонстрация работы регулятора

  • Схема начинает работать с пол оборота и дополнительной настройки не требует.
  • Тиристорный регулятор мощности своими руками
  • Тиристорный регулятор мощности своими руками
  • Тиристорный регулятор мощности своими руками

Из недостатков данного регулятора можно отметить, что в нем немного греются диоды и тиристор, а также резистор R1. Такой тиристорный регулятор отлично справляется с резистивной нагрузкой (лампочки, ТЭНы и др.), а при подключении индуктивной нагрузки — стабильность регулировки заметно снижается, для таких целей рационально использовать немного другие схемы.

Тиристорный регулятор напряжения своими руками: конструктивные особенности

Из-за использования в повседневной жизни большого количества электрических приборов (микроволновок, электрочайников, компьютеров и т.д.) нередко возникает необходимость регулировки их мощностей. Для этого применяют регулятор напряжения на тиристоре. Оно имеет простую конструкцию, поэтому собрать его самостоятельно несложно.

Нюансы в конструкции

Тиристорный регулятор мощности своими рукамиРегулятор напряжения на тиристоре

Тиристор – это управляемый полупроводник. При необходимости он может очень быстро провести ток в нужном направлении. От привычных диодов устройство отличается тем, что имеет возможность контролировать момент подачи напряжения.

Регулятор состоит из трех компонентов:

  • катод – проводник, подключаемый к отрицательному полюсу источника питания;
  • анод – элемент, присоединяемый к положительному полюсу;
  • управляемый электрод (модулятор), который полностью охватывает катод.

Тиристорный регулятор мощности своими руками

Регулятор функционирует при соблюдении нескольких условий:

  • тиристор должен попадать в схему под общее напряжение;
  • модулятор должен получать кратковременный импульс, позволяющий устройству контролировать мощность электроприбора. В отличие от транзистора регулятору не требуется удержание этого сигнала.

Тиристор не применяется в схемах с постоянным током, поскольку он закрывается, если нет напряжения в цепи. В то же время в приборах с переменным током регистр необходим. Это связано с тем, что в подобных схемах имеется возможность полностью закрыть полупроводниковый элемент. С этим справится любая полуволна, если возникнет такая потребность.

Тиристор обладает двумя устойчивыми положениями («открыто» или «закрыто»), которые переключаются при помощи напряжения. При появлении нагрузки он включается, при пропадании электрического тока выключается.

Собирать подобные регуляторы учат начинающих радиолюбителей. Заводские паяльники, имеющие регулировку температуры жала, стоят дорого.

Гораздо дешевле купить простой паяльник и самому собрать для него регистр напряжения.

Существует несколько схем монтажа устройства. Самый несложный – это навесной тип. При его сборке не используют печатную плату. Не потребуется также специальные навыки при монтаже. Сам процесс занимает мало времени. Поняв принцип работы регистра, будет просто разобраться в схемах и рассчитать оптимальную мощность для идеальной работы оборудования, где тиристор установлен.

Область применения и цели использования

Тиристорный регулятор мощности своими рукамиПрименение тиристорного регулятора мощности

Используют тиристор во многих электроинструментах: строительных, столярных бытовых и прочих. Он играет в схемах роль ключа при коммутации токов, при этом работая от малых импульсов. Выключается только при нулевом уровне напряжении в цепи. К примеру, тиристор контролирует скорость работы ножей в блендере, регулирует быстроту нагнетания воздуха в фене, координирует мощность нагревательных элементов в приборах, а также выполняет другие не менее важные функции.

В схемах с высокоиндуктивной нагрузкой, где ток отстает от напряжения, тиристоры могут не закрываться полностью, что приведет к поломке оборудования. В строительных приборах (дрелях, шлифовальных машинах, болгарках и т.д.) тиристор переключается при нажатии кнопки, которая находится в общем с ним блоке. При этом происходят изменения в работе двигателя.

Тиристорный регулятор отлично работает в коллекторном двигателе, где есть щёточный узел. В асинхронных движках устройство менять обороты не сможет.

Принцип действия

Специфика работы прибора заключается в том, что напряжение в нем регулируется мощностью, в также электроперебоями в сети. Регулятор тока на тиристоре при этом пропускает его только в одном конкретном направлении. Если устройство не отключить, оно так и будет продолжать работать, пока его не выключат после определенных действий.

Изготавливая тиристорный регулятор напряжения своими руками, в конструкции следует предусмотреть достаточно свободного места для установки управляющей кнопки или рычага.

При сборке по классической схеме имеет смысл использовать в конструкции специальный выключатель, который при изменении уровня напряжения светит разными цветами.

Это обезопасит человека от возникновения неприятных ситуаций, поражений током.

Способы закрывания тиристора

Тиристорный регулятор мощности своими рукамиВыключение тиристора путем изменения полярности напряжения между катодом и анодом

Подача импульса на управляющий электрод неспособна прекратить его работу или закрыть. Модулятор только включает тиристор. Прекращение действия последнего происходит только после того, как на ступени катод-анод прерывается подача тока.

Регулятор напряжения на тиристоре ку202н закрывается следующими способами:

  • Отключить схему от блока питания (батарейки). Устройство при этом не заработает до тех пор, пока не будет нажата специальная кнопка.
  • Размокнуть соединение анод-катод с помощью проволоки или пинцета. Через эти элементы идет все напряжение, поступая в тиристор. Если перемычку разомкнуть, уровень тока окажется нулевым и устройство выключится.
  • Уменьшить напряжение до минимального.
Читайте также:  Предел текучести стали: определение, гост, значения

Простой регулятор напряжения

Тиристорный регулятор мощности своими рукамиСхема регулятора мощности для паяльника

Даже самая простая радиодеталь состоит из генератора, выпрямителя, аккумулятора, а также переключателя напряжения. Такие устройства обычно не содержат стабилизаторов. Сам же тиристорный регулятор тока состоит из таких элементов:

  • диод – 4 шт.;
  • транзистор – 1 шт;
  • конденсатор – 2 шт.;
  • резистор – 2 шт.

Чтобы избежать перегрева транзистора, к нему устанавливают систему охлаждения. Желательно, чтобы последняя имела большой запас мощности, которая позволит заряжать в дальнейшем аккумуляторы с невысокой емкостью.

Способы регулирования фазового напряжения в сети

Изменяют переменное электрическое напряжение при помощи таких электрических приборов, как: тиратрон, тиристор и прочие. При изменении угла этих структур на нагрузку подаются неполными полуволнами, а в результате регулируется действующее напряжение. Искажение вызывает возрастание тока и падение напряжения. Последнее меняет форму из синусоидальной в несинусоидальную.

Схемы на тиристорах

Тиристорный регулятор мощности своими руками

Система включится после того, как на конденсаторе соберется достаточно напряжения. При этом момент открытия контролируется при помощи резистора. На схеме он обозначен как R2. Чем медленнее заряжается конденсатор, тем больше сопротивления у этого элемента. Регулируется электроток через управляющий электрод.

Эта схема дает возможность контролировать полную мощность в устройстве, так как регулируются два полупериода. Это возможно благодаря установке в диодном мосте тиристора, который воздействует на одну из полуволн.

Тиристорный регулятор мощности своими руками

Регулятор напряжения, схема которого представлена выше, имеет упрощенную конструкцию. Контролируется здесь одна полуволна, в то время как другая без изменений проходит через VD1. Работает по аналогичному сценарию.

При работе с тиристором импульс на управляющий электрод следует подавать в определенный момент, чтобы срез фаз достиг требуемой величины. Нужно определять переход полуволны в нулевой уровень, иначе регулировка не будет эффективной.

Тиристорный регулятор напряжения простая схема, принцип работы

Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии.

Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания).

Из этого тиристор в основном применяются для коммутирования переменного тока.

Фазовое регулирование напряжения

Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения.

А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход.

Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.

Тиристорный регулятор мощности своими руками

Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.

Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.

Тиристорный регулятор мощности своими руками

На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.

Схема тиристорного регулятора напряжения

Тиристорный регулятор мощности своими руками

Таблица номиналов элементов

  • C1 – 0,33мкФ напряжение не ниже 16В;
  • R1, R2 – 10 кОм 2Вт;
  • R3 – 100 Ом;
  • R4 – переменный резистор 33 кОм;
  • R5 – 3,3 кОм;
  • R6 – 4,3 кОм;
  • R7 – 4,7 кОм;
  • VD1 .. VD4 – Д246А;
  • VD5 – Д814Д;
  • VS1 – КУ202Н;
  • VT1 – КТ361B;
  • VT2 – КТ315B.

Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.

В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.

Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.

В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение.

Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор.

При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.

Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.

Тиристорный регулятор мощности с плавным пуском на 1000 Вт

Предыстория создания девайса такова. Задумал я как то покрасить крыло своего автомобиля. Приехал в гараж, подготовился. Так как погода была прохладная, то для быстрой сушки крыла его нужно было нагреть. Из подручных средств, для бесконтактной сушки, я не нашёл ни чего лучше чем прожектор ПКН мощностью 1 кВт.

Однако его лампа выдерживала 10-15 включений. А такую лампу в моём городе найти не такая уж легкая задачка. По этой причине я вооружился давно знакомой мне микросхемкой К1182ПМ1, двумя завалявшимися тиристорами и сделал устройство для плавного включения ПКН. Сначала было собрано устройство без внешних органов управления.

Но позднее я подумал, что такую мощную штуковину можно использовать не только как плавный пуск, но и как регулятор мощности для устройств, потребляющих чисто активную нагрузку. Например, электронагреватель. И тогда было принято решение «прикрутить» к устройству ещё и переменный резистор для ручной регулировки мощности.

Получалось следующее.

Схема устройства проста.

На ней к сети ~220 В последовательно подключается предохранитель на 8 А, нагрузка в виде лампы, и 2 тиристора Т142-80-4-2 включенные встречно параллельно.

Для того чтобы через цепи управления каждого из тиристоров, в нерабочий полупериод, не протекал ток управления, используется развязка из диодов КД411ВМ.

Это гарантирует правильную работу тиристоров во время рабочего полупериода сетевого напряжения.

Резистор 600 Ом используется для ограничения тока управления. А при помощи регулировочного резистора 68 кОм меняется мощность, отдаваемая в нагрузку (в моём случае в качестве нагрузки выступает прожектор).

Принцип работы устройства можно понять из рисунка. Для регулировки мощности изменяется угол открытия тиристоров. Чем больше угол α, тем меньшая часть синусоиды пропускается в нагрузку. Когда α = 1800 оба тиристора полностью закрыты и мощность в нагрузку не передаётся.

Когда α = 00 в нагрузку поступает вся синусоида полностью и соответственно передаётся полная мощность. В первый момент после включения нагрузки угол α всегда равен 1800. Далее он начинает плавно уменьшаться до значения соответствующего текущему положению регулировочного резистора.

За счёт этого и достигается плавный пуск.

Замечу, что данное устройство можно использовать только с активной нагрузкой, так как в случае реактивной нагрузки используются несколько иные способы регулирования мощности.

Максимально допустимый средний ток в открытом состоянии для данных тиристоров составляет 80 А. Не трудно подсчитать, что максимальная мощность, которую можно через них пропустить, равна Р=220*80=17600 Вт.

Однако это теоретическое значение, которое я не проверял на практике и поэтому не возьмусь утверждать что система выдержит мощность в 17 кВт. На практике мной подключалась нагрузка в 1 кВт. При этом радиаторы совершенно не грелись.

Такие большие радиаторы я применил только по той причине, что тиристоры уже были прикручены к ним. Поэтому для данной конструкции подойдут и радиаторы, гораздо меньшего размера.

На этой фотографии к устройству ещё не подключена розетка и сетевой шнур.

P.S. Первоначально печатка разводилась под другие диоды. Но потом жизнь внесла свои коррективы. Поэтому, даже если вы будете ставить диоды КД411ВМ, то печатку лучше переделать под их реальные размеры. Хотя у меня и так влезло

Разработано и изготовлено Дмитрием Чупановым (DIMA86_1@mail.ru)

Скачать список элементов (PDF)

Прикрепленные файлы:

  • Даташиты.rar (1129 Кб)
  • плавный пуск.rar (5 Кб)

Dimas

Ссылка на основную публикацию
Adblock
detector