Сварка под флюсом: режимы, гост, схема, способы

В строительстве и промышленности сейчас часто используют сварку под флюсом, чтобы соединять металлические детали. Распространенность подобного метода сваривания обусловлена его многочисленными достоинствами.

Сварка под флюсом: режимы, ГОСТ, схема, способы

Сущность процесса

При подобном методе соединения изделий электрическая дуга прогорает под гранулированным материалом, который называется сварным флюсом.

Под тепловым воздействием дуги плавится проволока электрода и металлическая поверхность детали, часть флюса. В сварной области создается полость, которая заполнена металлическими и флюсовыми парами, газами.

Полость газа ограничивается сверху оболочкой расплавившегося флюса.

Плавленый флюс при окружении полости газа обеспечивает защиту электрической дуги и детали в сварочной области от негативного влияния окружающей среды. Кроме того, деталь металлургически обрабатывается в сварной ванне.

По мере удаления дуги расплавившийся флюс, вступивший в реакцию с металлом, твердеет, формируя на шве корку шлака. По окончании флюсовой сварки и остывания металла корка шлака отсоединяется от шовного соединения.

Неизрасходованный флюс особым пневматическим прибором собирается в специальный аппарат, применяется для последующих свариваний.

Сварка под флюсом: режимы, ГОСТ, схема, способы

Применяемое оборудование

Когда речь заходит о выполнении электродугового сваривания на промышленном предприятии, то, прежде чем приступать к работе, рабочий закрепляет соединяемые изделия на особом сборочном стенде либо посредством специальных инструментов. Благодаря этому возможно предотвратить перемещения обрабатываемых деталей при осуществлении ручной сварки.

При прокладывании труб обычно применяют мобильные сварные головки. Для изготовления листовых конструкций используют или стационарные аппараты, или универсальные мобильные (например, сварной трактор).

Трактор для сваривания под флюсовым слоем представляет собой тележку-самоход с электрическим мотором, на которой монтирована автоматическая сварная головка.

Подобный аппарат способен передвигаться продольно соединяемым изделиям по рельсам.

Еще на производстве часто применяются мобильные либо стационарные сварные колонны. Они, в сочетании с опорами на роликах либо вращателями, позволяют сваривать продольные, а также кольцевые швы.

Используемые материалы

От правильности выбора проволоки электрода зависит качество сваривания. Химический состав проволоки определяет шовные характеристики. Желательно использовать проволоку из стали, соответствующую ГОСТ 2246-70. Она производится из легированной, высоколегированной, малоуглеродистой стали. Размеры готовой проволоки соответствуют стандарту (диаметр составляет 0,3-12 миллиметров).

Поставляется проволока обычно в восьмидесятиметровых бухтах. Иногда, с разрешения покупателя, используются кассеты, катушки. Перед применением проволоки, которая определенный период хранилась в складском помещении, эксперты рекомендуют очищать ее, обрабатывать бензином/керосином. Это дает возможность устранить с нее ржавчину и грязь.

Для соединения деталей из алюминия используется проволока, соответствующая ГОСТ 7871-75. Нередко используют проволоку, покрытую медью. Ее не нужно предварительно обрабатывать.

Качество сварки, осуществляемой флюсовой проволокой без газа, прямо зависит от характеристик флюса. От состава флюса зависят показатели газовой среды, жидкого шлака. Взаимодействуя с деталью, шлак определяет структуру шовного металла.

От его структуры зависит устойчивость изделия к растрескиванию.

Флюс используется для того, чтобы:

  • легировать шовный металл;
  • изолировать сварную ванну от внешних воздействий;
  •  создавать шовную поверхность;
  • стабилизировать дуговой разряд.

Сварка под флюсом: режимы, ГОСТ, схема, способы

Технология сварки

Технология автоматической сварки под флюсом различается с обычной сваркой тем, что электрическая дуга при ее осуществлении прогорает под особым веществом (флюсом). При зажигании дуги изделие и электрод подвергаются плавлению вместе с флюсом.

Как автоматическая дуговая сварка под флюсом, так и механизированная располагают следующими особенностями:

  1. Сварочный процесс возможно выполнять с применением токов большой величины. Обычно сила электрического тока при осуществлении подобной процедуры составляет 1000 – 2000 ампер. Иногда ее значение может равняться 4000 ампер. Обыкновенное дуговое сваривание проводится при силе тока, не превышающей 600 ампер. Последующее повышение данного показателя является причиной того, что металл разбрызгивается, становится невозможно создать сварное соединение. Однако чем больше сила тока, тем быстрее проходит сваривание и тем качественнее и надежнее шов.
  2. Автоматическая сварка под слоем флюса предполагает формирование закрытой электрической дуги, расплавляющей металлическое изделие достаточно глубоко. Благодаря этому кромки обрабатываемого изделия возможно не подготавливать перед началом сварочного процесса.
  3. Ввиду того что при флюсовом сваривании используется сильный ток, процедура проходит достаточно быстро. Если провести сравнение скорости флюсового сваривания со скоростью обычной сварки, становится ясно, что первый показатель превышает второй в десять раз.
  4. Пузырь газа, формируемый при проведении флюсового сварного процесса, не дает разбрызгиваться металлу, из которого изготовлена обрабатываемая рабочим деталь. Благодаря этому возможно создавать высококачественные сварные соединения. Кроме того, сильно уменьшаются потери металла электрода, составляющие 2% от веса расплавившегося материала (максимальное значение). Благодаря этому обеспечивается экономия электрода, электроэнергии.

Сварка под флюсом: режимы, ГОСТ, схема, способы

Режимы сварки под флюсом выбираются при учете:

  • размера применяемой проволоки электрода;
  • вида электрического тока, его полярности;
  • скорости выполнения сварочного процесса;
  • напряжения, формирующего сварную дугу.

Дополнительными показателями, которые влияют на выбор сварочного режима, считаются:

  • величина частичек, состав и плотность применяемого флюса;
  • значение вылета проволоки электрода;
  • взаимное расположение электродного элемента и обрабатываемого изделия.

Подготовка кромок изделий, сборка конструкций под сварку

Данная процедура должна осуществляться опытным рабочим. Обусловлено это текучестью плавленого металла и флюса, сильным проваром. Нужно соблюдать точность разделки кромок, учитывать конструктивные особенности деталей.

Вся необходимая для использования технологии сварки под флюсом информация содержится в ГОСТ 8713-79. После разметки изделий выполняют их вырезание, применяя газовое/плазменное резание. Затем, если нужно, проводят разделку кромок.

Перед сборкой изделий соединяемые кромки очищают посредством щеточек из металла, шлифовочных кругов. В особенности хорошо нужно очищать торцевые части. Для сборки сварного соединения применяют струбцины, скобы.

Вместо прихваток возможно использовать беспрерывный шов малого сечения, который выполняется качественным электродным элементом. Сваривание рекомендуется начинать со стороны, противоположной данному шву. По окончании сваривания прихватки, кромки, шов очищают, проверяют. При обнаружении подрезов и трещинок их необходимо выплавить.

Сварка под флюсом: режимы, ГОСТ, схема, способы

Достоинства и недостатки процесса

Полуавтоматическая сварка под флюсом располагает такими преимуществами:

  1. КПД, если сравнивать с ручным свариванием, повышается в 5 – 12 раз. При флюсовом сваривании ток проходит по проволоке лишь в ее вылете. Возможно применять сварной ток увеличенной (25-100 А/кв. мм) плотности, не опасаясь, что электрод значительно перегреется. Применение сильного тока позволяет материалу проплавляться намного глубже. Возможно сваривать детали большой толщины, не разделывая кромки. Под флюсом соединяют металл толщиной 2 – 60 миллиметров. Скорость однодугового сваривания составляет до 7 метров в час. Использование многодугового сваривания дает возможность увеличить скорость до 30 метров в час.
  2. Отличное качество шва обеспечивается хорошей защитой расплавившегося материала от воздействия воздуха, металлургическим обрабатыванием, легированием шлаком. Шлак на шовной поверхности снижает быстроту кристаллизации металла сварной ванны и его остывания. Благодаря этому шовный металл не имеет пор, заключает в себе немного посторонних примесей. Флюсовое сваривание осуществляется при производстве больших резервуаров, строительных сооружений, стальных/никелевых/медных/алюминиевых/титановых трубопроводов.

К минусам флюсовой сварки полуавтоматом/сварочным автоматом возможно причислить сильную текучесть расплавившегося металла и флюса. Ввиду этого сварку нужно выполнять в нижнем положении, отклоняя шовную плоскость от горизонтали на 10 – 15 градусов, не больше. В противном случае, соединение будет сформировано неправильно, появятся подрезы, иные дефекты.

Это основная причина, по которой флюсовую сварку не используют для того, чтобы соединять кольцевые поворотные стыки труб, имеющих радиус меньше 75 миллиметров. Также данный метод сварки предполагает тщательную сборку кромок. Выполнить это под силу далеко не каждому рабочему. Ознакомиться с тонкостями флюсовой сварки возможно, посмотрев соответствующее видео.

Скачать ГОСТ

ГОСТ 8713-79 Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры

Что такое автоматическая сварка под флюсом, особенности технологии
Ссылка на основную публикацию

Сварка под флюсом: режимы, ГОСТ, схема, способы

Сварка под флюсом: режимы, ГОСТ, схема, способы

Источник: https://oxmetall.ru/svarka/avtomaticheskaoe-svarivanie-pod-flyusom

Технология автоматической сварки под флюсом

Любому практикующему сварщику известно, что кислород оказывает негативное влияние на качество и долговечность шва. Попадая в сварочную ванну кислород способствует повышенному окислению и становится причиной трещин. Чтобы избавиться от этой проблемы существует множество способов: начиная от специальной обработки металла, заканчивая применением особых комплектующих, например, флюсов.

Сварка под флюсом: режимы, ГОСТ, схема, способы

Один из наиболее популярных методов качественного соединения металлов — автоматическая сварка под слоем флюса. С ее помощью можно сварить такие непростые металлы, как медь, алюминий и нержавеющую сталь.

Автоматическая сварка ускоряет и упрощает работу, а флюс выполняет защитную функцию.

В этой статье мы кратко расскажем, что такое автоматическая дуговая сварка под флюсом и какова техника автоматической сварки под флюсом.

Общая информация

Автоматическая дуговая сварка под слоем флюса — это технология, суть которой ничем не отличается от классической дуговой сварки. Металл плавится из-за высокой температуры, которая формируется благодаря электрической дуге. Ниже изображена схема автоматической дуговой сварки под флюсом.

Сварка под флюсом: режимы, ГОСТ, схема, способы

Отличие автоматической сварки от любой другой заключается лишь в том, что большинство процессов выполняется не вручную, а с помощью специальных станков. Например, подача проволоки и движение дуги. Ну а в нашем конкретном случае все эти операции производятся под слоем флюса, нанесенного на поверхность металла.

Область применения

Автоматическая наплавка под флюсом применяется во многих сферах. С ее помощью можно организовать быстрое крупносерийное производство, в том числе конвейерное.

По этой причине данная технология незаменима при сборке кораблей, производстве крупногабаритных труб и емкостей для нефтеперерабатывающей отрасли.

Автоматическая сварка обеспечивает высокое качество швов, поэтому завоевала свое уважение в таких ответственных отраслях.

Роль флюса

С автоматической сваркой все ясно. А вот что насчет флюса? Что это такое?

Сварка под флюсом: режимы, ГОСТ, схема, способы

Флюс — это специальное вещество (может выпускаться в виде порошка, гранул, паст и жидкостей), обладающее положительными свойствами.

Флюсы толстым слоем подаются прямо в сварочную зону, защищая ее от негативного влияния кислорода.

Также флюс защищает сам металл, способствует устойчивому горению дуги, уменьшает вероятность разбрызгивания металла и даже изменяет химический состав шва при необходимости.

Виды применяемых флюсов

Перед тем, как провести сварку под флюсом, неплохо было бы узнать, какие вообще бывать разновидности. Прежде всего, всю флюсы делятся по назначению. Они могут быть для сварки углеродистых и легированных сталей, для высоколегированных сталей и для цветных металлов. Это первое, на что стоит обратить внимание перед покупкой флюса.

Читайте также:  Как сделать бумагу своими руками

Сварка под флюсом: режимы, ГОСТ, схема, способы

Также флюсы могут быть плавлеными или керамическими. Их отличие в составе. В большинстве случаев используется именно плавленый флюс, поскольку он относительно универсальный и стоит недорого.

С его помощью можно эффективно защитить сварочную ванну от кислорода. Но не ждите от плавленого флюса каких-то особых качеств. Если вам необходимы действительно отличные свойства шва, то выберите керамический флюс.

Он обеспечивает отличное качество.

Также флюсы могут быть химически активными и химически пассивными. Активный флюс содержит в составе кислоты, способные не только защитить металл при сварке, но и привести к коррозии.

Так что тщательно удаляйте флюс после работы. Пассивные флюсы в автоматической сварке не применяются, поскольку не обладают достаточными для этого свойствами.

Зачастую вы встретите пассивный вещества при пайке в виде воска или канифоли.

Кстати, о производителях. Это давний спор всех начинающих и опытных сварщиков. Кто-то считает, что отечественные компании производят недорогой и эффективный флюс, а кто-то всеми руками за импортные комплектующие. Мы не будем однозначно говорить, что лучше, скажем лишь то, что на практике и отечественные, и импортные флюсы показывают себя хорошо, если соблюдена технология сварки.

Достоинства и недостатки

У автоматической сварки с применением флюса есть много плюсов. Ее главное достоинство — возможность полной автоматизации процесса сварки. От сварщика не нужно даже уметь варить, достаточно знать, как настроить оборудование. Также такой метод сварки гарантирует отличное качество сварочных соединений, поскольку отсутствует человеческий фактор.

Сварка под флюсом: режимы, ГОСТ, схема, способы

У технологии сварки деталей автоматической наплавкой под слоем флюса есть и недостатки. Во-первых, вы сможете варить только нижний швы. Также детали должны быть очень точно подогнаны, ведь машина формирует шов в четко заданном месте, и любая ошибка при стыковке приведет к браку. Кроме того, нужна очень тщательная подготовка металла перед сваркой.

Учтите, что у вас не получится сварить металл на весу. Деталь нужно будет зафиксировать на горизонтальной поверхности и предварительно проварить корень сварного соединения. Еще один существенный недостаток — большая стоимость как оборудования для автоматической сварки, так и комплектующих.

Теперь, когда вам все известно, пора узнать, какова технология автоматической сварки под флюсом.

Технология сварки

Прежде всего, перед сваркой необходимо подготовить металл. Для каждого металла подготовка своя, но мы дадим общие рекомендации. Нужно очистить деталь от грязи, краски и коррозии. Затем нужна тщательная зачистка поверхности с помощью металлической щетки или шлифовального круга. Только после подготовительных операций можно приступать к сварке.

Технология сварки под флюсом проста за счет того, что многие процессы выполняет не человек, а машина.

Мастеру не нужна зажигать дугу, следить за ее стабильностью, выбирать скорость подачи проволоки и так далее. Все, что от вас требуется — правильно настроить режимы сварки под флюсом.

По сути, задать машине программу действий. Ниже таблица с перечислением режимов автоматической сварки под флюсом.

Сварка под флюсом: режимы, ГОСТ, схема, способы

Это режимы автоматической сварки под флюсом для стыковых соединений. Естественно, существуют и другие типы соединений, поэтому для них нужно произвести расчет режимов сварки. Здесь мы не будем касаться этой темы, поскольку она очень обширна (сколько типов соединений, столько и формул), поэтому изучите эту информацию самостоятельно. В интернете много способов расчета.

При работе также используется специальная присадочная проволока для сварки под флюсом. Ее подача тоже автоматизирована, нужно лишь загрузить бобину в подающий механизм. Рекомендуем приобретать проволоку, изготовленную из того же металла, что и деталь.

Теперь немного о флюсе. Он тоже подается автоматически, только предварительно его нужно насыпать в специальный резервуар. Толщина слоя флюса зависит от толщины свариваемого металла. Чем металл толще, тем больше нужно флюса.

У вас может возникнуть закономерный вопрос: а плавится ли флюс? И влияет ли он на структуру шва? Да, конечно флюс плавится под действием температуры. Но при этом он никак не нарушает структура шва, а лишь улучшает ее. Но при этом застывший флюс превращается в шлак, который после сварки нужно удалить. Остатки неиспользованного флюса можно использовать повторно.

Подобная технология применения флюса при автоматической сварке позволяет существенно увеличить скорость работ, при этом не потеряв в качестве.

Вместо заключения

Теперь вам известна автоматическая сварка с флюсом и что это такое. Конечно, помимо автоматической сварки есть еще ручная сварка под флюсом, полуавтоматическая сварка под флюсом и механизированная сварка под флюсом.

Но в рамках одной статьи не раскроешь всех нюансов этих видов сварки, поэтому мы рассказываем вам о них постепенно. Статьи на эти, и многие другие темы вы сможете найти на нашем сайте. Делитесь в х своим мнением и опытом. Мастера могут рассказать свои секреты применения флюса при автоматической сварке и поделиться знаниями.

Желаем удачи! 

Источник: https://svarkaed.ru/svarka/vidy-i-sposoby-svarki/tehnologiya-avtomaticheskoj-svarki-pod-flyusom.html

Сварочные ГОСТы

Сварка под флюсом: режимы, ГОСТ, схема, способы Сварка под флюсом: режимы, ГОСТ, схема, способы Сварка под флюсом: режимы, ГОСТ, схема, способы

ГОСТ (сокращенное  название от Государственный стандарт, Государственный стандарт, ГОСТ) – это одна из важных категорий системы сварочных стандартов в СССР, которая и сейчас является стандартом в современных странах СНГ. Принимается таки органом, как МГС (межгос. советом по стандартизации, метрологии и сертификации.

В период социализма все гос. Стандарты по сварке  сохранялись для производства продукции, и имели обязательный характер для использования в тех областях техники, которые определялись сферой возможного использования ГОСТа.

Сварочные ГОСТы:

Вы можете подробно ознакомиться со сварочными гостами ниже, они разделены по групам:

ГОСТы: процессы сварки

ГОСТ 19521-74 Сварка металлов. Классификация

ГОСТ 3.1705-81 Единая система технологической документации. Правила записи операций и переходов. Сварка

  • ГОСТ 2601-84 Сварка металлов. Термины и определения основных понятий
  • ГОСТ 11969-79 Сварка плавлением. Основные положения и их обозначения
  • ГОСТ 29273-92 Свариваемость. Определение
  • ГОСТ 23870-79 Свариваемость сталей. Метод оценки влияния сварки плавлением на основной металл
  • ГОСТ 30430-96 Сварка дуговая конструкционных чугунов. Требования к технологическому процессу
  • ГОСТ 30482-97 Сварка сталей электрошлаковая. Требования к технологическому процессу
  • ГОСТ 29297-92 Сварка, высокотемпературная и низкотемператупная пайка, пайкосварка металлов. Перечень и условные обозначения процессов

ГОСТ 2.312-72 Единая система конструкторской документации. Условные изображения и обозначения швов сварных соединений.

ГОСТ 20549-75 Диффузионная сварка в вакууме рабочих элементов разделительных и формообразующих штампов. Типовой технологический процесс

ГОСТ Р ИСО 17659-2009 Сварка. Термины многоязычные для сварных соединений.

ГОСТ Р ИСО 857-1-2009 Сварка и родственные процессы. Словарь. Часть 1. Процессы сварки металлов. Термины и определения.

Сварочные ГОСТы: соединения, элементы и размеры.

ГОСТ: ручная дуговая сварка

ГОСТ 5264-80 Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ 11534-75 Ручная дуговая сварка. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры

ГОСТ: сварка под флюсом

ГОСТ 8713-79 Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ 11533-75 Автоматическая и полуавтоматическая дуговая сварка под флюсом. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры

гост сварка +в среде защитных газов

ГОСТ 14771-76 Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ 23518-79 Дуговая сварка в защитных газах. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры

Гост: сварка алюминия

ГОСТ 14806-80 Дуговая сварка алюминия и алюминиевых сплавов в инертных газах. Соединения сварные.
Основные типы, конструктивные элементы и размеры

ГОСТ 27580-88 Дуговая сварка алюминия и алюминиевых сплавов в инертных газах. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры

гост точечная сварка

ГОСТ 14776-79 Дуговая сварка. Соединения сварные точечные. Основные типы, конструктивные элементы и размеры

ГОСТ 28915-91 Сварка лазерная импульсная. Соединения сварные точечные. Основные типы, конструктивные элементы и размеры

ГОСТ: cварка трубопроводов

ГОСТ 16037-80 Соединения сварные стальных трубопроводов. Основные типы, конструктивные элементы и размеры

ГОСТ 16038-80 Сварка дуговая. Соединения сварные трубопроводов из меди и медно-никелевого сплава. Основные типы, конструктивные элементы и размеры

ГОСТ 16310-80 Соединения сварные из полиэтилена, полипропилена и винипласта. Основные типы, конструктивные элементы и размеры

ГОСТ 15164-78 Электрошлаковая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ 15878-79 Контактная сварка. Соединения сварные. Конструктивные элементы и размеры

ГОСТ 16098-80 Соединения сварные из двухслойной коррозионностойкой стали. Основные типы, конструктивные элементы и размеры

ГОСТ 16310-80 Соединения сварные из полиэтилена, полипропилена и винипласта. Основные типы, конструктивные элементы и размеры.

ГОСТ 16130-90 Проволока и прутки из меди и сплавов на медной основе сварочные. Технические условия

ГОСТы: сварочные материалы

ГОСТ Р ЕН 13479-2010 Материалы сварочные. Общие требования к присадочным материалам и флюсам для сварки металлов плавлением

ГОСТ Р 53689-2009 Материалы сварочные. Технические условия поставки присадочных материалов. Вид продукции, размеры, допуски и маркировка

ГОСТ 7871-75 Проволока сварочная из алюминия и алюминиевых сплавов. Технические условия

ГОСТ 9466-75 Электроды покрытые металлические для ручной дуговой сварки сталей и наплавки. Классификация и общие технические условия

ГОСТ Р ИСО 2560-2009 Материалы сварочные. Электроды покрытые для ручной дуговой сварки нелегированных и мелкозернистых сталей. Классификация

ГОСТ Р ИСО 3580-2009 Материалы сварочные. Электроды покрытые для ручной дуговой сварки жаропрочных сталей. Классификация

ГОСТ Р ИСО 3581-2009 Материалы сварочные. Электроды покрытые для ручной дуговой сварки коррозионно-стойких и жаростойких сталей. Классификация

  1. ГОСТ 2246-70 Проволока стальная сварочная. Технические условия
  2. ГОСТ 9467-75 Электроды покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей. Типы
  3. ГОСТ 10051-75 Электроды покрытые металлические для ручной дуговой наплавки поверхностных слоев с особыми свойствами. Типы
  4. ГОСТ 10052-75 Электроды покрытые металлические для ручной дуговой сварки высоколегированных сталей с особыми свойствами. Типы
  5. ГОСТ 10543-98 Проволока стальная наплавочная. Технические условия
  6. ГОСТ 21448-75 Порошки из сплавов для наплавки. Технические условия
  7. ГОСТ 21449-75 Прутки для наплавки. Технические услови
  8. ГОСТ 23949-80 Электроды вольфрамовые сварочные неплавящиеся. Технические условия
  9. ГОСТ 26101-84 Проволока порошковая наплавочная. Технические условия
  10. ГОСТ 26271-84 Проволока порошковая для дуговой сварки углеродистых и низколегированных сталей. Общие технические условия
  11. ГОСТ 26467-85 Лента порошковая наплавочная. Общие технические условия
  12. ГОСТ 9087-81 Флюсы сварочные плавленые. Технические условия
  13. ГОСТ 28555-90 Флюсы керамические для дуговой сварки углеродистых и низколегированных сталей. Общие технические условия
  14. ГОСТ Р ИСО 14174-2010 Материалы сварочные. Флюсы д
  15. ГОСТ 30756-2001 Флюсы для электрошлаковых технологи
Читайте также:  Бугельный подъемник своими руками

ГОСТ 5.1215-72 Электроды металлические марки АНО-4 для дуговой сварки малоуглеродистых конструкционных сталей. Требования к качеству аттестованной продукции

ГОСТ 22366-93  Лента электродная наплавочная спеченная на основе железа. Технические условия.

ГОСТы на технические газы

ГОСТ 4417-75 Песок кварцевый для сварочных материалов

ГОСТ Р ИСО 14175-2010 Материалы сварочные. Газы и газовые смеси для сварки плавлением и родственных процессов

ГОСТ 5583-78 Кислород газообразный технический и медицинский. Технические условия.

ГОСТ 10157-79 Аргон газообразный и жидкий. Технические условия.

ГОСТ 8050-85 Двуокись углерода газообразная и жидкая. Технические условия.

ГОСТ 5457-75 Ацетилен растворенный и газообразный технический. Технические условия.

ГОСТ 3022-80 Водород технический. Технические условия.

ГОСТ 9293-74 Азот газообразный и жидкий. Технические условия.

ГОСТ 1460-81 Карбид кальция. Технические условия.

ГОСТ 4421-73 Концентрат плавиковошпатовый для сварочных материалов. Технические условия

ГОСТ Р 51526-99 Совместимость технических средств электромагнитная. Оборудование для дуговой сварки. Требования и методы испытаний

ГОСТ 1429.1-77 Припои оловянно-свинцовые. Методы определения сурьмы

ГОСТ 17349-79 Пайка. Классификация способов

ГОСТ 28920-95 Вращатели сварочные роликовые. Типы, основные параметры и размеры

ГОСТ 16883.3-71 Серебряно-медно-цинковые припои. Спектральный метод определения свинца, железа и висмута

  • ГОСТ 21548-76 Пайка. Метод выявления и определения толщины прослойки химического соединения
  • ГОСТ 21694-94 Оборудование сварочное механическое. Общие технические условия
  • ГОСТ 7219-83 Электропаяльники бытовые. Общие технические условия
  • ГОСТ 26054-85 Роботы промышленные для контактной сварки. Общие технические условия
  • ГОСТ 23338-91 Сварка металлов. Методы определения содержания диффузионного водорода в наплавленном металле и металле шва
  • ГОСТ 7237-82 Преобразователи сварочные. Общие технические условия

ГОСТ 22974.5-96 Флюсы сварочные плавленные. Методы определения оксида кальция и оксида магния
ГОСТ 11930.9-79 Материалы наплавочные. Методы определения бора

ГОСТ 22974.12-96 Флюсы сварочные плавленные. Метод определения серы

ГОСТ 1429.11-77 Припои оловянно-свинцовые. Метод определения кадмия

ГОСТ 5191-79 Резаки инжекторные для ручной кислородной резки. Типы, основные параметры и общие технические требования

ГОСТ 1429.15-77 Припои оловянно-свинцовые. Спектральный метод определения примесей сурьмы, меди, висмута, мышьяка, железа, свинца

ГОСТ 22974.0-85 Флюсы сварочные плавленые. Общие требования к методам анализа

ГОСТ 29090-91 Материалы, используемые в оборудовании для газовой сварки, резки и аналогичных процессов. Общие требования

ГОСТ 12221-79 Аппаратура для плазменно-дуговой резки металлов. Типы и основные параметры

ГОСТ 11930.7-79 Материалы наплавочные. Методы определения железа

ГОСТ 1429.8-77 Припои оловянно-свинцовые. Метод определения цинка

ГОСТ 27776-88 Модули производственные гибкие дуговой сварки и плазменной обработки. Основные параметры

ГОСТ 14782-86 Контроль неразрушающий. Соединения сварные. Методы ультразвуковые

ГОСТ 28920-91 Вращатели сварочные роликовые. Типы, основные параметры и размеры

ГОСТ 23055-78 Контроль неразрушающий. Сварка металлов плавлением. Классификация сварных соединений по результатам радиографического контроля

ГОСТ 28228-89 Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Руководство по испытанию Т: Пайка

ГОСТ 1429.0-77 Припои оловянно-свинцовые. Общие требования к методам анализа

ГОСТ 23240-78 Конструкции сварные. Метод оценки хладостойкости по реакции на ожог сварочной дугой

ГОСТ 3.1704-81 Единая система технологической документации. Правила записи операций и переходов. Пайка и лужение
ГОСТ 16882.2-71 Серебряно-медно-фосфорные припои. Методы определения массовой доли фосфора, свинца, железа и висмута

ГОСТ 23556-90 Колонны для сварочных автоматов. Типы, основные параметры и размеры

ГОСТ 27387-87 Роботы промышленные для контактной точечной сварки. Основные параметры и размеры

ГОСТ 22974.10-96 Флюсы сварочные плавленные. Методы определения оксида натрия и оксида калия

  1. ГОСТ 19249-73 Соединения паяные. Основные типы и параметры
  2. ГОСТ 30260-96 Оборудование для наплавки поверхностей тел вращения. Типы, основные параметры и размеры
  3. ГОСТ 14327-82 Слюда мусковит молотая электродная. Технические условия
  4. ГОСТ 30295-96 Кантователи сварочные. Типы, основные параметры и размеры
  5. ГОСТ 8856-72 Аппаратура для газопламенной обработки. Давление горючих газов

ГОСТ 22974.12-85 Флюсы сварочные плавленые. Метод определения серы

ГОСТ 28332-89 Модули производственные гибкие дуговой сварки. Нормы надежности и основные требования к методам контроля

ГОСТ 8213-75 Автоматы для дуговой сварки плавящимся электродом. Общие технические условия

ГОСТ 16883.1-71 Серебряно-медно-цинковые припои. Метод определения массовой доли серебра

ГОСТ 11930.10-79 Материалы наплавочные. Метод определения вольфрама

ГОСТ 31.2031.01-91 Приспособления сборно-разборные переналаживаемые для сборки деталей под сварку. Типы, параметры и размеры

  • ГОСТ 30220-95 Манипуляторы для контактной точечной сварки. Типы, основные параметры и размеры
  • ГОСТ 19140-94 Вращатели сварочные горизонтальные двухстоечные. Типы, основные параметры и размеры
  • ГОСТ 26388-84 Соединения сварные. Методы испытаний на сопротивляемость образованию холодных трещин при сварке плавлением
  • ГОСТ 1077-79 Горелки однопламенные универсальные для ацетилено-кислородной сварки, пайки и подогрева. Типы, основные параметры и размеры и общие технические требования

ГОСТ 31.211.42-93 Детали и сборочные единицы сборно-разборных приспособлений для сборочно-сварочных работ. Технические требования. Правила приемки. Методы контроля. Маркировка, упаковка, транспортирование и хранение

  1. ГОСТ 14792-80 Детали и заготовки, вырезаемые кислородной и плазменно-дуговой резкой. Точность, качество поверхности реза
  2. ГОСТ 18130-79 Полуавтоматы для дуговой сварки плавящимся электродом. Общие технические условия
  3. ГОСТ 25445-82 Барабаны, катушки и сердечники для сварочной проволоки. Основные размеры

ГОСТ 1429.2-77 Припои оловянно-свинцовые. Метод определения олова

ГОСТ 21547-76 Пайка. Метод определения температуры распайки

ГОСТ 25616-83 Источники питания для дуговой сварки. Методы испытания сварочных свойств

ГОСТ 11930.2-79 Материалы наплавочные. Метод определения серы

ГОСТ 22974.9-96 Флюсы сварочные плавленные. Методы определения оксида титана (IV)

ГОСТ 1429.13-77 Припои оловянно-свинцовые. Спектральный метод определения примесей сурьмы, меди, висмута,

мышьяка, железа, никеля, цинка, алюминия с использованием синтетических градуировочных образцов

ГОСТ 14111-90 Электроды прямые для контактной точечной сварки. Типы и размеры

ГОСТ 11930.8-79 Материалы наплавочные. Метод определения фосфора

ГОСТ 22974.2-85 Флюсы сварочные плавленые. Методы определения оксида кремния

ГОСТ 19248-90 Припои. Классификация и обозначения

ГОСТ 22974.2-96 Флюсы сварочные плавленные. Методы определения оксида кремния

ГОСТ 22974.5-85 Флюсы сварочные плавленые. Методы определения оксида кальция и оксида магния

  • ГОСТ 20485-75 Пайка. Метод определения затекания припоя в зазор
  • ГОСТ 23556-95 Колонны для сварочных автоматов. Типы, основные параметры и размеры
  • ГОСТ 28944-91 Оборудование сварочное механическое. Методы испытаний
  • ГОСТ 3242-79 Соединения сварные. Методы контроля качества
  • ГОСТ 30242-97 Дефекты соединений при сварке металлов плавлением. Классификация, обозначение и определения
  • ГОСТ 19143-84 Вращатели сварочные универсальные. Типы, основные параметры и размеры

ГОСТ 1429.3-77 Припои оловянно-свинцовые. Метод определения железа

ГОСТ 13861-89 Редукторы для газопламенной обработки. Общие технические условия

ГОСТ 31.211.41-83 Детали и сборочные единицы сборно-разборных приспособлений для сборочно-сварочных работ. Основные конструктивные элементы и параметры. Нормы точности

ГОСТ 23904-79 Пайка. Метод определения смачивания материалов припоями

ГОСТ 1429.10-77 Припои оловянно-свинцовые. Метод определения мышьяка

ГОСТ 22974.13-96 Флюсы сварочные плавленные. Метод определения углерода

Источник: http://svarak.ru/svarochnyie-gostyi/

Выбор режимов автоматической сварки под слоем флюса. Отличие параметров сварки низкоуглеродистых сталей, меди и титана

Выбор режима автоматической сварки под слоем флюса зависит от наименования основного металла, его толщины и формы разделки кромок. Выделяют 4 основных регулируемых параметра:

  • диаметр сварочной электродной проволоки;
  • сила и род тока, его полярность;
  • скорость перемещения дуги;
  • напряжение источника сварки.

Также имеются дополнительные параметры, влияющие на определение режима сварки:

  • состав (марка) и физико-химические свойства используемого флюса;
  • вылет проволоки из токоподводящего наконечника;
  • угол наклонения электрода к оси шва.

Порядок расчета режимов

В конструкторской документации задаются толщина свариваемых деталей, тип и форма разделки сварных швов по ГОСТ для соответствующих видов металла и его марок. Технология выполнения работ определяет параметры режима сварки и операции по подготовке свариваемых комок.

Используются следующие формулы для расчета параметров сварки:

Q=(I * U * 60) * к / V, где:

  • Q – удельная тепловая энергия (кДж/мм);
  • I – сварочный ток (А);
  • U – напряжение на дуге (В);
  • V – скорость сварки (мм/мин.);
  • к – коэффициент полезного тепловложения (для сварки под флюсом К = 0,9).

Коэффициент формы сечения шва рекомендуется в диапазоне 1…1,5. F=S / h, где:

  • S – ширина шва;
  • h – глубина проплавления.

Режимы автоматической сварки различных металлов под слоем флюса

Рекомендуемые (ориентировочные) режимы стыковых соединений.

h, мм ∅, мм I, (A) U, (B) V, (м/ч) ∅, мм I, (A) U, (B) V, (м/ч) ∅, мм I, (A) U, (B) V, (м/ч)
6 4 530 42 40 3 240-260 30-32 45-55 4 530-550 28-30 40
8 4 600 44 40 3 390-420 32-34 45-55 4 620-650 28-32 40
10 5 710 44 32 4 580-600 30-32 40-45 4 625-675 32-36 35
12 5 850 45 23 3 440-460 32-34 45-55 5 700-750 34-36 30
16 5 1100 46 16 3 460-500 32-34 40-45 5 750-780 36-40 27
18 5 1250 46 12 4 580-600 30-32 40-45 5 900-950 38-40 20
20 6 1650 48 10 4 600-620 32-34 40-45 5 950-1000 40-42 17

Табличные режимы сварки являются ориентировочными. Точные параметры режима определяются при сварке опытных соединений на контрольных планках. Это особенно актуально для автоматической сварки под флюсом, так как зона плавления не поддается визуальному контролю во время ведения процесса.

Сварочный ток (I)

Сила тока в сварочной дуге оказывает существенное влияние на глубину провара. Выбор этого параметра зависит от вида металла, его толщины и формы разделки свариваемых кромок.

Читайте также:  Дом из металлических сэндвич панелей

Полярность тока влияет на перераспределение тепловой энергии между плавящимся электродом и основным металлом. Прямая полярность применяется для увеличения доли наплавляемого металла в металле шва, но отрицательно влияет на устойчивость горения дуги и разбрызгивание сварочной ванны.

Как правило, для сварки под флюсом большинства металлов (за исключением алюминия) применяется подключение сварочного источника с обратной полярностью.

Скорость сварки (V)

Выбор оптимальной скорости сварки обеспечивает правильную форму сечения шва, влияет на время нахождения ванны в жидком виде и протекание тепловых и металлургических процессов при сварке. Оказывает обратное влияние на тепловые вложения и погонную энергию.

Сварка под флюсом: режимы, ГОСТ, схема, способыСхема процесса автоматической сварки под своем флюса

Изменение скорости сварки приводит к изменению коэффициента формы сечения сварного шва, его глубины и ширины.

Напряжение сварочного тока (U)

Увеличение напряжения ведет к увеличению контактного пятна сварочной дуги на поверхности металла и, соответственно, к увеличению ширины шва. При низком напряжении формируется вогнутый валик без усиления и образуются подрезы по линии сплавления. Повышенное напряжение приводит к образованию высокого усиления шва с узкой зоной проплавления.

Диаметр электрода (проволоки), (∅)

При установленном токе существует обратно пропорциональная зависимость плотности тока от диаметра проволоки.

Чем меньше диаметр электрода, тем выше плотность тока. С повышением плотности тока коэффициент формы шва стремится к уменьшению.

Сварка под флюсом: режимы, ГОСТ, схема, способыПримерная стоимость проволоки для автоматической сварки под своем флюса на Яндекс.маркет

Влияние дополнительных настроек режима сварки на шов

Для правильного формирования сварного шва необходимо соблюдать соответствие параметров процесса сварки конструкции сварного соединения. Важность правильной настройки особенно актуальна для сварки химически активных при высоких температурах металлов и сплавов. Не следует пренебрегать опытными работами при настройке режима.

Влияние параметров дуги

Напряжение сварочной дуги растет при увеличении ее длины. Это оказывает влияние на образование дугового разряда и стабильность процесса горения.

Повышенное напряжение ведет к росту контактного пятна на поверхности металла и расширению шва.

Влияние угла наклона электрода

Позиционирование электрода относительно поверхности детали оказывает влияние на глубину провара и размеры сварочной ванны. Обычно применяют перпендикулярное расположение электрода к плоскости сварки.

Влияние вылета электрода из токоподающего наконечника

Увеличение вылета приводит к дополнительному нагреву сварочной проволоки, её ускоренному расплавлению и повышению доли электродного металла в металле сварного шва. Оптимальный вылет электродной проволоки в зависимости от ее диаметра указан в таблице.

Диаметр проволоки, мм 2-2,5 3-4 5
Вылет из наконечника, мм 14-16 17-19 20-22

Источник: https://elsvarkin.ru/texnologiya/pod-flyusom-2/

Режимы сварки под флюсом стыковых соединений

Технология автоматической сварки под флюсом предусматривает более тщательную подготовку металла под сварку и сборку свариваемых деталей, чем при ручной дуговой сварке.

Тщательность подготовки под сварку обуславливается условиями автоматической сварки.

Как известно, сварочный автомат настроен под определённый режим сварки и чётко следует ему, не учитывая погрешности сборки и не выправляя отклонения, допущенные при подготовке сварных кромок.

Разделка сварных кромок под сварку автоматом производится на металлорежущих станках, или на машинах кислородной или плазменно-дуговой резки.

Кромки изделий под сварку необходимо хорошо очистить от различных загрязнений, которые могут стать причиной образования дефектов в сварных швах, таких как поры, раковины и др. Очищать сварные кромки рекомендуется пескоструйной обработкой, или протравливанием и пассивированием. Очищаемый участок должен быть шириной не менее 50мм от каждой стороны разделки.

До начала автоматической сварки, свариваемые изделия необходимо надёжно зафиксировать в нужном положении. Для этого используют сборочные стенды, или различные приспособления.

Допускает прихватывать изделия между собой ручной дуговой сваркой покрытыми электродами. Прихватки выполняют длиной до 70мм, на расстоянии до 400мм друг от друга. При этом, крайние прихватки не должны быть ближе 200мм от края шва.

Выполненные прихватки необходимо тщательно очистить от шлака и сварных брызг.

Если выполняется сварка продольных швов, то необходимо применять вводные и выводные планки, которые приваривают к сварным кромкам. Эти планки необходимы для введения электрода в шов в начале сварки и для выведения электрода за пределы шва после окончания сварки. На вводных и выводных планках необходимо выполнять разделку кромок, совпадающую с разделкой на свариваемых деталях.

Технология автоматической сварки допускает сварку стыковых швов без разделки кромок, с односторонней разделкой или с двухсторонней разделкой. Это зависит от конструктивных особенностей свариваемого изделия и от толщины свариваемого металла.

Односторонняя сварка применяется при сварке малоответственных металлоконструкций, или в тех случаях, когда нет возможности выполнить двухстороннюю сварку из-за особенностей конструкции.

Особенностями односторонней стыковой сварки являются большое количество жидкого металла, большая глубина проплавления и перегрев сварочной ванны. Всё это может стать причиной вытекания жидкого металла через зазоры и нарушить формирование сварного шва.

Для того, чтобы этого не допустить, необходимо выполнить подварку стыка с обратной стороны, закрыв, таким образом, зазор, или закрыть оборотную сторону шва металлической (медной или стальной) подкладкой или же закрыть этот зазор с оборотной стороны слоем флюса.

Существует четыре самых распространённых способа односторонней автоматической сварки стыковых швов, которые позволяют выполнить сварной шов требуемой конфигурации и получить высокое качество сварки. Рассмотрим эти способы подробнее.

Сварка под флюсом: режимы, ГОСТ, схема, способы

Слой флюса исключает вытекание жидкого металла через зазор и обеспечивает хорошее формирование сварного шва и высокое качество сварки. Приблизительные режимы автоматической односторонней стыковой сварки, выполняемой на слое флюса, представлены в таблице ниже:

Режимы сварки под флюсом имеют основные и дополнительные параметры. К основным относят: ток, его род и полярность, напряжение дуги, диаметр электродной проволоки, скорость сварки. Дополнительные параметры режима — вылет электродной проволоки, состав и строение флюса (плотность, размеры частиц), положение изделия и электрода при сварке.

Параметры режима сварки зависят от толщины и свойств свариваемого металла и обычно приводятся в технических условиях на сварку конкретного изделия и корректируются при сварке опытных образцов. При отсутствии таких данных режимы подбирают экспериментально. Основным условием для успешного ведения процесса сварки является поддержание стабильного горения дуги .

Для этого определенной силе сварочного тока должна соответствовать своя скорость подачи электродной проволоки . Скорость подачи должна повышаться с увеличением вылета электрода. При его постоянном вылете увеличение скорости подачи уменьшает напряжение дуги.

При использовании легированных проволок, имеющих повышенное электросопротивление, скорость подачи должна возрастать.

На рис . 1 показано влияние изменения основных параметров сварки на размеры шва. Закономерности относятся к случаю наплавки , когда глубина провара ≤0 ,8 толщины основного металла. При большей глубине провара ухудшение теплоотвода от нижней части шва при водит к резкому росту провара — вплоть до прожога.

Рисунок 1. Изменение ширины е и выпуклости q шва и глубины проплавления h в зависимости от параметров режима (а — в) и вылета электрода (г): Uд — напряжение дуги; Iсв — сварочный ток ; Vсв — скорость сварки .

Наибольшее влияние на форму и размеры шва оказывает сварочный ток. При его увеличении (см . рис . 1, а) интенсивно повышаются глубина проплавления и высота усиления шва, а его ширина в озрастает незначительно.

Повышение напряжения на дуге увеличивает ширину сварного шва, глубина проплавления практически не меняется , высота выпуклости снижается (см. рис. 1, б).

Влияние скорости сварки (см . рис. 1, в) на глубину проплавления и ширину шва носит сложный характер . Сначала при увеличении скорости сварки давление дуги в се больше вытесняет жидкий металл, толщина прослойки жидкого металла под дугой уменьшается и глубина проплавления возрастает.

При дальнейшем увеличении скорости сварки (>20 м/ч) заметно снижается погонная энергия и глубина проплавления начинает уменьшаться . В о всех случаях при увеличении скорости свар ки ширина шва уменьшается . При скорости сварки >70. 80 м/ч по обеим сторонам шва возможны несплавления с кромкой или подрезы.

Если необходимо вести сварку на больших скоростях, применяют специальные методы (сварка трехфазной дугой , двухдуговая и др .).

Диаметр электродной проволоки заметно влияет на форму и размеры шва, особенно на глубину проплавления. Как видно из табл . 1, при отсутствии источников, обеспечиваюших необходимый сварочный ток, требуемая глубина проплавления может быть достигнута при уменьшении диаметра используемой электродной проволоки.

Таблица 1. Глубина проплавления шва при различных диаметрах электродной проволоки и величинах сварочного тока (А) (сварка под флюсом) .

Режимы сварки под флюсом

и техника сварки швов различных типов :

Стыковые швы выполняют односторонней однопроходной сваркой, двусторонней одно- или многопроходной сваркой.

При односторонней сварке металла толщиной до 4. 6 мм без разделки кромок зазор при сборке устанавливают минимальным.

Для металла толщиной 10. 12 мм стыки собирают с зазором. Тонкие листы (до 10 мм) и цилиндрические конструкции соединяют на стальных подкладках толщиной 3. 6 и шириной 30. 50 мм, если они не запрещены по условиям работы конструкции.

Соединение «в замок» применяют в ответственных изделиях, при сборке толстостенных крупногабаритных изделий.

Одностороннюю сварку на флюсовой подушке применяют для сварки листовых конструкций и выполнения кольцевых швов как с разделкой , так и без разделки кромок с обязательным технологическим зазором (табл. 2).

Таблица 2. Типовые режимы сварки сталей на флюсовой подушке .

80

3 0. 1,5 2 275 . 300 28. 30 44,0
3 400 .. .425 25 . 28 70,0
5 0. 2,5 2 425 .. .500 32.. .34 35,0 100. 150
4 575.. .625 28.. .30 46,0 108
8 0. 3,5 725 .. .775

Источник: https://vi-pole.ru/rezhimy-svarki-pod-fljusom-stykovyh-soedinenij.html

Ссылка на основную публикацию
Adblock
detector