Реечная передача: расчет, механизм, кпд, применение

Содержание

  • Цилиндрические шестерни → Реечная передача
    • Для преобразования вращательного движения в поступательное и наоборот применяют реечную передачу, которая является частным случаем цилиндрической зубчатой передачи. Рейку рассматривают как зубчатое колесо, диаметр которого увеличен до бесконечности.
    • Реечная передача отличается простотой конструкции, благодаря чему она надежна в эксплуатации. Кроме этого у реечной передачи достаточно высокий КПД (0,94 — 0,98). Составляющие реечной передачи изготавливаются из относительно недорогих углеродистых конструкционных или легированных сталей. К недостаткам реечной передачи можно отнести то, что ее передаточное число равно 1 и поэтому выигрыш в силе отсутствует.
    • m = D/z,
    • где m — модуль пары рейка-шестерня; z — количество зубьев шестерни; D — делительный диаметр шестерни (диаметр окружности, проходящей через полувысоту зуба шестерни; для некорригированных зацеплений начальные и делительные окружности совпадают).
    • S = π·d = π·m·z,
    • где d — диаметр начальной окружности зубчатого колеса, мм; m — модуль зубчатой рейки, мм; z — число зубьев колеса.
    • v =π·D·n/1000 = π·m·z·n/1000
    • где v — скорость перемещения зубчатой рейки, м/мин;

Метрические зубчатые передачи

Нормальные модули, мм

1. Стандарты предусматривают модули от 0.05 до 100 мм.

2. При выборе модулей первый ряд следует предпочитать второму.

Зубчатое колесо передачи с меньшим количеством зубьев называется шестерней, а с большим количеством зубьев – колесом. При одинаковом количестве зубьев ведущее зубчатое колесо называют шестерней, а ведомое – колесом. В условных обозначениях и расчетных формулах шестерни обозначаются индексом – «1», а колеса индексом – «2».

  • Метрические цилиндрические зубчатые передачи внешнего зацепления
  • Исходные данные для расчета геометрических параметров цилиндрических зубчатых передач
  • Определяются кинематическими и
  • Угол наклона линии зуба рейки
  • β = 0 0 – для прямозубых колес;
  • β = 8…20 0 – для косозубых колес
  • β = 25…35 0 – для шевронных колес
  • Стандартный исходный контур:
  • — угол главного профиля
  • — высоты головки зуба
  • — высота ножки зуба
  • — глубины захода зубьев
  • — радиуса кривизны переходной кривой
  • Входит в состав исходных данных,
  • если задано его значение

Примечание. Числовые значения параметров приведены для передачи с m > 1мм.

Исходный контур зубчатого зацепления

Реечная передача: расчет, механизм, КПД, применение

  1. Расчет основных геометрических параметров цилиндрических прямозубых передач внешнего зацепления без смещения
  2. Делительное межосевое расстояние
  3. Диаметр вершин зубьев
  4. Диаметр впадин зубьев
  5. Постоянная хорда зуба
  6. Высота до постоянной хорды

Реечная передача: расчет, механизм, КПД, применение

Прямозубые передачи внутреннего зацепления

Реечная передача: расчет, механизм, КПД, применение

  • Расчет основных геометрических параметров цилиндрических прямозубых передач внутреннего зацепления без смещения
  • где с – зазор между вершиной зуба одного колеса и сопряженной впадиной другого колеса
  • Делительное межосевое расстояние
  • Диаметр вершин зуба
  • Диаметр впадин зуба
  • Высота до постоянной хорды
  • Примечание. Индекс 1 относится к колесу с наружными зубьями, индекс 2 – к колесу с внутренними зубьями
  • Минимальное число зубьев для шестерни внешнего нулевого зацепления: прямозубые шестерни – zmin =17; косозубые шестерни – zmin =17 cos 3 β .
  • Для внутренних зацеплений разность между числами зубьев Z 2 – Z 1>9.
  • Для внутренних зацеплений желательно, чтобы Z 2>34.
  • Максимальное передаточное отношение пары шестерен внешнего зацепления i =8…9.

  Ожог глаз после сварки что делать

Контур рейки соответствует исходному контору для прямозубых реек в торцовом и для косозубых реек в нормальном сечении реек.

Реечная передача: расчет, механизм, КПД, применение

  1. Расчет геометрических параметров прямозубой реечной передачи
  2. Числовое значение и расчетная формула
  3. Количество зубьев зубчатого колеса
  4. и прочностными расчетами
  5. Угол наклона линии зуба рейки
  6. Стандартный исходный контур:
  7. — угол главного профиля
  8. — высоты головки зуба
  9. — высота ножки зуба
  10. Определяется прочностными расчетами
  11. и конструктивными особенностями передачи
  12. Длина нарезной части рейки
  13. Уточненная длина нарезной части
  14. Высота головки зуба, мм
  15. Толщина зуба, мм
  16. Измерительная высота, мм

Косозубая передача более плавная и передает большую мощность, чем прямозубая, при тех же размерах. Линии зубьев имеют правое или левое направление.

Правой называют такую линию, точ­ка на которой движется по часовой стрелке при удалении вдоль зуба, если смотреть на колесо со стороны его торца. Углы наклона двух сцепляю­щихся колес равны.

Недостатком косозубых пере­дач является возникающая в зацеплении дополни­тельная осевая сила, отсутствующая у прямозубых колес.

Реечная передача: расчет, механизм, КПД, применение

  • Расчет основных геометрических параметров цилиндрических косозубых передач внешнего зацепления без смещения
  • Угол наклона линии зуба
  • Окружной (торцовый) модуль
  • Диаметр вершин зубьев
  • Межцентровое расстояние (если
  • оно не входит в исходные данные)
  • Высота до постоянной хорды
  • Параметры конструктивных элементов цилиндрических зубчатых колес

Зубчатые колеса изготавливают как одно целое с валом (вал-шестерня) или наса­живают на валы в зависимости от соотношений размеров валов и зубчатых колес. Наименьшие размеры насадных колес определяются зазором 5 между впадиной зуба и шпоночным пазом (рис. b ), который должен быть s > 2 m . В противном случае зубчатые колеса изготавливают как одно целое с валом (рис. а ).

Торцы ступиц колес используют в качестве установочных и сборочных баз, из-за чего требуется высокая точность и чистота их обработки. У колес с диаметром окружности выступов более 150 мм, для создания установочных баз выполняется поясок шириной a =2.

5 m и глубиной 1. 2 мм (рис. с). Если ширина ступицы пре­вышает ширину венца в колесах дисковой конструкции, то ступицу рекомендуется смещать по оси колеса до совпадения ее торца с торцом венца. Такая конструкция позволяет одновременно нарезать два колеса.

Шевронные колеса (рис. d ) характеризуются увеличенной шириной по сравнению с другими цилиндрическими колесами и отличаются следующими конструктив­ными параметрами: h = 2.5 m и е = (10. 15) m .

У литых и штампованных колес для крепления заготовок при обработке выполняют 4. 6 технологических отверстий диаметром do .

Формулы (4.1)-(4.2) для расчета цилиндрических зубчатых передач не могут быть применены для реечных передач (z2 = ¥; i12 = z1/z2 = 1/u = 0). Для проектировочного расчета по контактным напряжениям в пособии [7, с.107] приводится формула, позволяющая определить начальный (делительный) диаметр шестерни реечной передачи (мм):

dw1 , (8.1)

Читайте также:  Ножи ручной работы: охотничьи, кухонные, технология изготовления

где σНР – допускаемое контактное напряжение, МПа (см. [7, с. 89-91]) или

Fx – осевая сила на рейке, Н;

КН – коэффициент нагрузки [7, с. 92-97];

  Масло для разбавления бензина для двухтактных двигателей

При подвижной рейке (рис. 8.1, а) в задании на проектирование обычно указывают осевую силу на рейке Fx и скорость поступательного движения v2, равную окружной скорости шестерни v1;

при неподвижной рейке (рис. 8.1, б) – скоростьv01 поступательного движения центра О1 шестерни и силу Fx.

При выполнении расчетов могут быть использованы зависимости: Fx = 2Т1/dw1; Р = Fx×v2 = Т1×w1 и v1 = 0,5 ×w × dw1 (рис. 8.1, а); Р = Fx×v01 = Т1×w1 и v01 = 0,5 ×w1 × dw1 (рис. 8.1, б).

В приведенных формулах: Fx в H; Т1 в Н×м; Р в Вт; v2, v01 в м/с; w в рад/с; dw1 в м (см. п. 1.5-1.8).

Рис. 8.1. Зубчато-реечная передача

Ориентировочное значение модуля m¢ находят по вычисленному dw1 и выбранному числу зубьев z1, приняв при x=0 dw1 = d1. Тогда m¢ » dw1/z1, где m¢ и dw1 в мм.

При выборе z1 необходимо обеспечить условие z1 ³ zmin, где zmin – минимальное число зубьев, при котором отсутствует подрезание зубьев. Значение zmin зависит от x, , β. Для несмещенных прямозубых передач (x1=0, =1, α = 20°) zmin ≈ 17, а для косозубых передач zmin ≈ 17·cos 3 β, где β = 8-18° – угол наклона линии зуба. Более полные сведения по выбору zmin , а также коэффициентов смещений xmin и xmax, при которых в передаче отсутствует подрезание и заострение зубьев, приводятся в п. 4.1.8 и в [12, с. 25-26].

  1. Предварительно полученные m’ и dw1 уточняют, если требуется изменить z1, ψbd или σНР. Затем определяют значение m’ из расчета зубьев на изгиб:
  2. ,
  3. где КF – коэффициент нагрузки [7, с. 93-97];

σFР – допускаемое напряжение изгиба, МПа (см. [7, с. 89-91] или п. 3.3).

Из найденных по формулам (8.1-8.2) значений m’ принимают наибольшее и округляют до стандартного (п. 4.1.7). С учетом принятых z1, m, β находят dw1 (табл. 4.5), а также другие основные геометрические параметры и допуски реечной передачи [12, с. 73-77, 189-193; 24, с. 558-568]. Элементы чертежа рейки см. на рис. 8.2.

Цилиндрические шестерни → Реечная передача

Для преобразования вращательного движения в поступательное и наоборот применяют реечную передачу, которая является частным случаем цилиндрической зубчатой передачи. Рейку рассматривают как зубчатое колесо, диаметр которого увеличен до бесконечности

  • ЗАО «НПО «Механик» изготавливает цилиндрические реечные передачи со следующими характеристиками:
  • — Класс точности — до 6 включительно;
  • — Модуль — до 30 включительно;
  • — Длина рейки — до 3 500 мм включительно.

Изготавливаем цилиндрические реечные передачи в штучном и серийном производстве. Возможно изготовление по образцам и эскизам заказчика. Индивидуальный подход.

Реечная передача отличается простотой конструкции, благодаря чему она надежна в эксплуатации. Кроме этого у реечной передачи достаточно высокий КПД (0,94 — 0,98). Составляющие реечной передачи изготавливаются из относительно недорогих углеродистых конструкционных или легированных сталей. К недостаткам реечной передачи можно отнести то, что ее передаточное число равно 1 и поэтому выигрыш в силе отсутствует

Основной размерный параметр зубчато-реечной передачи — шаг между зубьями рейки. Шаг рейки может рассчитываться по метрической или по модульной системе. В модульной системе расстояние между зубьями рейки рассчитывается по формуле:

  Радиодетали содержащие золото фото

m = D/z,

где m — модуль пары рейка-шестерня; z — количество зубьев шестерни; D — делительный диаметр шестерни (диаметр окружности, проходящей через полувысоту зуба шестерни; для некорригированных зацеплений начальные и делительные окружности совпадают)

Поскольку значение модуля дробное и представляет собой бесконечную десятичную дробь, для расчетов применяют его округленное значение. В передачах рейка-шестерня используют общепринятые значения модуля в пределах от 0,5 до 25 мм.

Классы точности зубчато-реечной передачи
Накопленная погрешностьна длине 1м, мм
0,023
0,033-0,040
0,06-0,08
0,070-0,095
0,07-0,10
0,22

В метрической системе расстояние между зубьями рейки измеряется в миллиметрах.

Метрическая система применяется в случаях, когда по технологии производства передачи зубчатое колесо подбирается под рейку, а модульная — наоборот, когда зубчатая рейка подбирается под шестерню.

Модульная система, соответственно, используется преимущественно в производстве комплектных приводов (серийный мотор-редуктор, шестерня, рейка), а метрическая — для решений в области модернизации или построения нестандартных машин и механизмов.

При вращении зубчатого колеса вокруг неподвижной оси зубчатая рейка перемещается прямолинейно-поступательно при каждом обороте колеса на величину S, равную длине начальной окружности зубчатого колеса (в мм), т. е.:

S = π·d = π·m·z,

где d — диаметр начальной окружности зубчатого колеса, мм; m — модуль зубчатой рейки, мм; z — число зубьев колеса

Вместо зубчатой рейки можно заставить перемещаться зубчатое колесо, в этом случае путь пройдет не зубчатая рейка, а ось реечного зубчатого колеса при перекатывании по неподвижной зубчатой рейке.

Зная число оборотов зубчатого колеса в минуту реечной передачи, скорость, с которой перемещается зубчатая рейка, рассчитывают по формуле:

v =π·D·n/1000 = π·m·z·n/1000

где v — скорость перемещения зубчатой рейки, м/мин;

n — число оборотов в минуту зубчатого колеса.

Формулы для расчета реек
Расчетные формулы
а=20°
не более 20°
mnпринимается конструктивно и определяется расчетом
mt= mn/cosβ
Рn = π·mn
Pt= Рn/cosβ
ha= mn
h = 2,25·mn
b = (2..10) mn
b1= b/cosβ
L= Y·Pt z/360°
у=L·360/ Pt·z
  1. Зубчато-реечные передачи выполняются с прямыми зубьями для работ на малых и средних скоростях, с косыми зубьями для использования на средних и высоких скоростях или когда требуется повышенная точность перемещения.
  2. Базовыми поверхностями рейки называют поверхности, относительно которых задается положение делительной прямой и направление зуба рейки.
  3. По вопросам изготовления реечных передач с прямым и косым зубом обращайтесь в отдел продаж по телефону:
Читайте также:  Проверка сверлильных станков на точность

Источник: https://crast.ru/instrumenty/raschet-reechnoj-peredachi-primer

Реечная передача

Опубликовано 24 Окт 2015Рубрика: Механика | 27 комментариев

Реечная передача: расчет, механизм, КПД, применение

Небольшой расчет, представленный далее, предназначен для ориентировочного быстрого определения габаритов зубчатой реечной передачи и её основных силовых и кинематических параметров.

Предложенный ниже алгоритм основан на расчете поверхностной прочности зубьев по контактным напряжениям.

Реечная передача может служить для преобразования вращательного движения шестерни в поступательное движение рейки или вала самой шестерни, а может быть использована для преобразования поступательного движения рейки во вращательное движение зубчатого колеса. Расчет реечной передачи, по сути, аналогичен расчету зубчатой цилиндрической передачи. С математической точки зрения рейка – это зубчатое колесо с радиусом равным бесконечности.

Проектировочный расчет в Excel реечной зубчатой передачи

  • Для выполнения расчетов будем использовать программу MS Excel или Calc из бесплатных офисных пакетов Apache OpenOffice или LibreOffice.
  • Заполняя исходные данные для расчета, пользователь может изменять характеристики используемого для передачи материала, относительную ширину и угол наклона зубьев, нагрузку и скорость.
  • Схема реечной передачи представлена на рисунке чуть ниже.

Реечная передача: расчет, механизм, КПД, применение

Уважающих труд автора прошу скачивать файл с расчетной таблицей после подписки на анонсы статей (подписные формы — в конце статьи и наверху страницы).

Ссылка на скачивание файла с программой: reyechnaya-peredacha (xls 59KB).

Исходные данные:

  1. 1. Значение модуля упругости материала передачи в МПа записываем
  2. в ячейку D3: 215000
  3. Для стали E=215000 МПа.
  4. 2.

    Коэффициент Пуассона материала μ вписываем

  5. в D4: 0,3
  6. Для стали μ=0,3.
  7. 3.

    Твердость поверхности зубьев по шкале C Роквелла HRC вводим

  8. в D5: 27
  9. Для различных режимов термообработки стали HRC≈17…65.
  10. К примеру, круг из Стали 45 в состоянии поставки имеет твердость около HRC 22.
  11. 4.

    Величину безразмерного коэффициента ширины зубчатого венца шестерни ψbd заносим

  12. в D6: 0,6
  13. ψbd=b2/d=0,6…0,4.
  14. 5.

    Угол наклона зубьев β вводим в градусах

  15. в D7: 15,0000
  16. Если проектируемая реечная передача прямозубая, то β=0°.
  17. Если передача косозубая, то β≈8°…22°.
  18. 6.

     Вращательный момент на валу шестерни вписываем в Н*м

  19. в D8: 500
  20. Этот момент определяет нагрузочную способность реечной передачи и задается в техническом задании.
  21. 7.

    Скорость центра вала шестерни относительно рейки в м/с заносим

  22. в D9: 0,050
  23. Скорость определяется из назначения механизма и является одним из пунктов технического задания на проектирование.

Реечная передача: расчет, механизм, КПД, применение

Результаты расчетов:

  • 8. Допускаемое контактное напряжение [σH] в МПа вычисляем
  • в ячейке D11: =ЕСЛИ(D5

Источник: http://al-vo.ru/mekhanika/reechnaya-peredacha.html

Детали машин



В зубчатой передаче движение передается с помощью зацепления пары зубчатых колес. Меньшее зубчатое колесо принято называть шестерней, большое – колесом. Термин «зубчатое колесо» относится как к шестерне, так к большому колесу.

При написании расчетных формул и указании параметров передачи шестерне присваивают индекс 1, колесу – индекс 2, например: d1, d2, n1, n2.

Зубчатые передачи являются самым распространенным видом механических передач, поскольку они могут надежно передавать мощности от долей до десятков тысяч киловатт при окружных скоростях до 275 м/с. По этой причине они широко применяются во всех отраслях машиностроения и приборостроения.

***

Достоинства зубчатых передач

К достоинствам этого вида механических передач относятся:

  • Высокая надежность работы в широком диапазоне нагрузок и скоростей;
  • Малые габариты;
  • Большой ресурс;
  • Высокий КПД;
  • Сравнительно малые нагрузки на валы и подшипники;
  • Постоянство передаточного числа;
  • Простота обслуживания;

***

Недостатки зубчатых передач

Как и любой другой вид механических передач, зубчатые передачи имеют ряд недостатков, к которым относятся:

  • Относительно высокие требования к точности изготовления и монтажа;
  • Шум при больших скоростях, обусловленный неточностями изготовления профиля и шага зубьев;
  • Высокая жесткость, не дающая возможность компенсировать динамические нагрузки, что часто приводит к разрушению передачи или элементов конструкции (для примера – ременная или фрикционная передача при внезапных динамических нагрузках могут пробуксовывать).

Реечная передача: расчет, механизм, КПД, применение

***



Зубчатые передачи классифицируются по ряду конструктивных признаков и особенностей.

В зависимости от взаимного расположения осей, на которых размещены зубчатые колеса, различают передачи цилиндрические (при параллельных осях), конические (при пересекающихся осях) и винтовые (при перекрещивающихся осях).

Винтовые зубчатые передачи применяются ограниченно, поскольку имеют низкий КПД из-за повышенного скольжения в зацеплении и низкую нагрузочную способность. Тем не менее, они имеют и некоторые достоинства – высокую плавность хода и возможность выводить концы валов за пределы передачи в обе стороны.

Реечная передача: расчет, механизм, КПД, применение

На рисунке 1 представлены наиболее широко применяемые виды зубчатых передач:

1 — цилиндрическая прямозубая передача;           2 — цилиндрическая косозубая передача;           3 — шевронная передача;           4 — реечная передача;           5 — цилиндрическая передача с внутренним зацеплением;           6 — винтовая передача;           7 — коническая прямозубая передача;           8 — коническая косозубая передача;           9 — коническая передача со спиралевидными зубьями;

         10 — гипоидная передача.

В зависимости от вида передаваемого движения различают зубчатые передачи, не преобразующие передаваемый вид движения и преобразующие передаваемый вид движения. К последним относятся реечные зубчатые передачи, в которых вращательное движение преобразуется в поступательное или наоборот.

В таких передачах рейку можно рассматривать, как зубчатое колесо с бесконечно большим диаметром. Среди перечисленных видов зубчатых передач наиболее распространены цилиндрические передачи, поскольку они наиболее просты в изготовлении и эксплуатации, надежны и имеют небольшие габариты.

В зависимости от расположения зубьев на ободе колес различают передачи прямозубые, косозубые, шевронные и с круговыми (спиральными) зубьями.

Шевронные зубчатые колеса можно условно сравнивать со спаренными косозубыми колесами, имеющими противоположный угол наклона зубьев.

Такая конструкция позволяет избежать осевых усилий на валы и подшипники опор, неизбежно появляющихся в обычных косозубых передачах.

В зависимости от формы профиля зубьев различают эвольвентные зубчатые передачи и передачи с зацеплением Новикова. Эвольвентное зацепление в зубчатых передачах, предложенное еще в 1760 году российским ученым Леонардом Эйлером, имеет наиболее широкое распространение.

В 1954 году в России М. Л. Новиков предложил принципиально новый тип зацеплений в зубчатых колесах, при котором профиль зуба очерчен дугами окружностей. Такое зацепление возможно лишь для косых зубьев и носит название по имени своего изобретателя — зацепление Новикова или профиль Новикова.

Реечная передача: расчет, механизм, КПД, применение В принципе, возможно изготовление зубчатых передач и с другими формами зубьев – даже квадратными, треугольными или трапецеидальными. Но такие передачи имеют ряд существенных недостатков (непостоянство передаточного отношения, низкий КПД и т. д.), поэтому распространения не получили. В приборах и часовых механизмах иногда встречаются зубчатые передачи с циклоидальным зацеплением.

В зависимости от взаимного положения зубчатых колес передачи бывают с внешним и внутренним зацеплением. Наиболее распространены передачи с внешним зацеплением.

В зависимости от конструктивного исполнения различают закрытые и открытые зубчатые передачи.

В закрытых передачах колеса помещены в пыле- и влагонепроницаемые корпуса (картеры) и работают в масляных ваннах (зубчатое колесо погружают в масло до 1/3 радиуса).

В открытых передачах зубья колес работают всухую или при периодическом смазывании консистентной смазкой и не защищены от вредного воздействия внешней среды.

  • В зависимости от числа ступеней зубчатые передачи бывают одно- и многоступенчатые.
  • В зависимости от относительного характера движения осей зубчатых колес различают рядовые передачи, у которых оси неподвижны, и планетарные зубчатые передачи, у которых ось сателлита вращается относительно центральных осей.
  • ***
  • Статьи по теме «Зубчатые передачи»:



Главная страница

Специальности

Учебные дисциплины

Олимпиады и тесты

Источник: http://k-a-t.ru/detali_mashin/24-dm_zubchatye/

Реечные передачи в редукторе

Среди большого разнообразия различных зубчатых передач в редукторах, выделяют реечные передачи. Такие передачи имеют ряд отличительных особенностей, которые обуславливают сферу их применения.

Основные особенности

Реечная передача представляет собой конструкцию, состоящую из шестеренки и зубчатой рейки. Именно эта рейка и дала название редукторам, основанным на ее действии.

В отличие от стандартной зубчатой передачи, реечная передача выполняет функцию преобразования вращательного движения в прямолинейное.

Ротор вращает шестеренку, которая в свою очередь заставляет двигаться рейку в нужном направлении.

Длина рейки может быть любой. В этом одно из преимуществ передачи. Можно практически до бесконечности наращивать длину, сохраняя при этом работоспособность редуктора. Самое главное, чтобы в местах соединения реек сохранялся модуль. Добиться этого можно при использовании специальных накладок с зубьями.

Как и другие, реечные передачи могут быть прямозубыми и косозубыми.

Стоит отметить, что косозубые передачи способны передавать большее усилие.

Области применения реечной передачи

Область применения реечной передачи весьма обширна. Устройство можно применять везде, где нужно преобразовать вращательное движение в прямолинейное.

Для любого устройства можно подобрать соответствующие параметры и нужный результат на выходе. Таким образом, можно даже сохранить требуемую точность в высокоточных или прецизионных аппаратах.

Реечные передачи с успехом применяются в следующих аппаратах:

  • промышленные сварочные установки;
  • производственные роботы;
  • станки с ЧПУ;
  • токарные станки;
  • подъемные устройства и краны;
  • линии перемещения кареток по производственному цеху;
  • промышленные производственные линии;
  • фуникулеры;
  • механизм рулевого управления в автомобилях и др.

В представленных выше примерах перемещаемым объектом является некая каретка, перемещающаяся под воздействием установленного на ней привода.

Но иногда, реечные передачи используются даже для перемещения тяжелых производственных столов по специальным траекториям. Зубчатая шестерня в данном случае жестко закрепляется на рабочей поверхности, а рейки находятся именно на перемещаемом столе.

Такой подход приводит к возникновению очень высоких нагрузок, которые компенсируются габаритами передачи.

Плюсы и минусы передачи

Широкое применение реечных передач в различных областях помогло выявить основные плюсы и минусы такого решения.

К плюсам можно отнести:

  • способность выдерживать большие нагрузки;
  • скромные габаритные размеры;
  • возможность создания реек неограниченной длины;
  • передаточное число остается постоянным в любом случае;
  • простота и надежность;
  • долговечность.

К сожалению, за такие преимущества приходится платить наличием некоторого количества недостатков, среди которых выделяют:

  • сложность в изготовлении (особенно характерно для устройств повышенной точности);
  • изрядные шумы при работе на высоких оборотах;
  • невозможность уменьшить или хоть как-то скомпенсировать динамические нагрузки на передачу, ввиду высокой жесткости;
  • возникновение погрешностей;
  • скапливание грязи между зубьями;
  • передаточное число всегда равно единице, что приводит к невозможности использования передачи для увеличения скоростей и оборотов.

Выбор реечной передачи

При выборе реечной передачи необходимо обращать внимание на основные эксплуатационные характеристики. В зависимости от, того, где будет применяться передача, выбирают тот или иной механизм.

Важной характеристикой передачи считается модуль. Именно он влияет на то, какое усилие будет способен передать привод.

Прежде всего, необходимо определиться с тем, косозубая или прямозубая передача необходима. Если точность смещения не принципиальна, подойдет прямозубый механизм. Он неприхотлив в использовании и весьма надежен. Грязь, пыль или производственные отходы не повлияют на работоспособность привода.

Для передачи больших усилий лучше использовать косозубую пару, которая характеризуется более плотным контактом деталей и повышенной точностью. Такие привода издают куда меньший шум при работе, но и в изготовлении они намного сложнее.

Если планируется использовать передачу в условиях очень высоких нагрузок, лучше всего подобрать косозубую передачу с широкими зубьями и крупной шестерней. Все эти факторы повлияют на прочностные характеристики привода.

Помимо стандартных передач, в которых приводным является шестерня, встречаются и обратные механизмы. В них уже сама рейка приводит в движение шестеренку. В некоторых случаях такое решение даже предпочтительнее.

Источник: https://www.ttaars.ru/about/stati/reechnye-peredachi-v-reduktore/

Ссылка на основную публикацию
Adblock
detector