Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

Металлы — один из самых распространенных веществ в материальной культуре человека.

Тысячелетиями медь, железо, серебро и золото были основным материалом для производства оружия, инструментов, ответственных частей транспорта и механизмов, деталей домашней утвари и украшений.

В XIX веке, с освоением технологии получения чугуна, металлы пришли в строительство и станкостроение. XX век был веком металлов.

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

Металлы

В нашу жизнь вошли алюминий, титан, бор и многие более редкие металлы. Используя их, человечество шагнуло в небо, космос и глубины океана. Металлы сделали возможным массовое производство домашней бытовой техники.

В конце XX века пластмассы и композитные вещества ощутимо потеснили металлы с лидирующих позиций.

Основные характеристики металлов — прочность, упругость и пластичность определяются их физико-химическими свойствами и атомным строением.

Основные группы металлов в промышленности

Индустрия делит металлы на большие группы:

  • Черные.
  • Цветные легкие.
  • Цветные тяжелые.
  • Благородные.
  • Редкоземельные и щелочные.

Черные металлы

В эту группу входят железо, марганец, хром и их сплавы. Группа также включает в себя стали, чугуны и ферросплавы. Эти вещества обладают хорошей электропроводностью и уникальными магнитными характеристиками.

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

Черные металлы

Черные металлы покрывают до 90% мировой потребности в металлоизделиях.

Легкие цветные металлы

Отличаются низкой плотностью. Группа включает в себя алюминий, титан, магний. Эти реже встречаются, чем железо, и обходятся дороже в добыче руды и в производстве. Они используются там, где малый вес изделия или детали окупает ее большую стоимость – в самолетостроении, производстве электроники, в коммуникационной индустрии.

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

Легкие цветные металлы

Титан не вызывает отторжения со стороны иммунной системы и применяется в протезировании костной ткани.

Тяжелые цветные металлы

Это элементы с большим удельным весом, такие, как медь, олово, свинец, цинк и никель. Обладают хорошей электропроводностью.

Кристаллическое строение металлов и дефекты атомно-кристаллической решеткиМедьКристаллическое строение металлов и дефекты атомно-кристаллической решеткиОловоКристаллическое строение металлов и дефекты атомно-кристаллической решеткиЦинкКристаллическое строение металлов и дефекты атомно-кристаллической решеткиСвинецКристаллическое строение металлов и дефекты атомно-кристаллической решеткиЧистый никель

Они широко используются как катализаторы реакций, в изготовлении электроматериалов, в электронике, на транспорте – везде, где требуются достаточно прочные, упругие и коррозионностойкие материалы.

Благородные металлы

В эту группу входят золото, серебро, платина, а также редко встречающееся рутений, родий, палладий, осмий, иридий. Они обладают наибольшим удельным весом, высокой коррозионной устойчивостью и высокой электрической и тепловой проводимостью.

Кристаллическое строение металлов и дефекты атомно-кристаллической решеткиЗолото и платинаКристаллическое строение металлов и дефекты атомно-кристаллической решеткиСеребро

На заре человечества золото, серебро и платина применялись как универсальный платежный инструмент и как средство накопления богатств. С развитием цифровой экономики и переходом платежей в виртуальность важнее стаи их уникальные физические свойства

Редкоземельные и щелочные

К редкоземельным относятся скандий, иттрий, лантан и еще 15 редких элементов. Эти элементы отличаются значительным удельным весом, высокой химической активностью и применяются в высокотехнологичных отраслях.

ИттрийСканидийЛантан

К щелочным относятся литий, калий, натрий и другие. Все они отличаются малым удельным весом и исключительной химической активностью и при реакции с водой образуют щелочи, широко применяемы в быту и промышленности в составе мыла и других моющих средств.

Щелочные металлы

Классификация металлов по химическому составу

Химические свойства чистых элементов определяются строением атомов реальных металлов и прежде всего их атомным числом, характеризующим их способность реагировать с водородом, кислородом и другими элементами. Химические характеристики реально применяемых металлов могут сильно отличаться от параметров чистого вещества как в лучшую, так и в худшую сторону.

Нежелательные добавки называют примесями, а те, что вносятся преднамеренно для изменения параметров в нужную сторону — легирующими присадками.

Общепризнанной является классификация, основанная на указании главного компонента сплава.

Атомно — кристаллическое строение металлов

Внутреннее строение металлов и их характеристики определяют их физико-химические свойства. Электроны на внешних орбитах атомов слабо связаны с ядром и имеют отрицательный заряд. При наличии разницы потенциалов электроны мигрируют к положительному полюсу, создавая электрический ток. Это физическое явление обуславливает электропроводность.

Кристаллическое строение свойственно металлам и их сплавам в твердом фазовом состоянии. Атомы выстраиваются в определенную объемную структуру, называемую кристаллической решеткой.Число атомов в вершинах и на гранях этой структуры, а также дистанция между ними определяют такие физические свойства металла, как электро- и теплопроводность, вязкость, текучесть и т.д.

Кристаллическое строение металлов и сплавов может быть двух типов:

  • Межатомная дистанция одинакова по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
  • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, и его физические параметры меняются в зависимости от направления.

Атомно-кристаллическое строение металлов

В реальном куске металлов, составленному из множества изолированных кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. В среднем свойства такого куска близки к изотропным.

При выстраивании кристаллической решетки некоторые атомы не попадают на свое место, смещаются или теряются. В этом случае говорят о дефектах кристаллического строения металлов.

Дефекты структуры отрицательно влияют на свойства изделия, особенно если оно должно быть монокристаллом, как, например, в электронике, лазерной технике и других отраслях высоких технологий.

Физические свойства металлов

Физические свойства определяются внутренним строением металлов.

Главное отличие металлов от других элементов — это их электропроводность и магнитные свойства.

И хотя ученые создали неметаллические материалы, обладающие другим строением, но такими же свойствами, как у металлов и сплавов, они еще слишком дороги для массового применения. Многие химически чистые металлы обладают недостаточной прочностью для практических применений, чтобы исправить ситуацию, в технике и строительстве используют их сплавы.

Физические свойства металлов

Добавление тех или иных присадок приводит к росту прочность получаемого вещества в десятки раз по отношению к исходному элементу.

Электронное строение металлов и их особенности

Внутреннее строение реальных металлов определяет их физико-химические параметры.

Кристаллическая решетка металлов

Все металлы в твердом фазовом состоянии имеют кристаллическое строение. Это пространственное образование из многократно повторяющихся первичных структур называют кристаллической решеткой.схема кристаллической решетки.

Кристаллическое строение металлов

Кристаллическое строение металлов и сплавов может быть двух типов:

  • Межатомная дистанция равна по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
  • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, его параметры зависят от направления.

В реальном куске металлов, который состоит из множества кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. Усредненные параметры такого куска близки к изотропным.

Типы кристаллических решеток

Дистанцию соседними атомами называют параметром решетки, у разных металлов он составляет 2 — 6 ангстрем. Существуют три основных типа кристаллических решеток:

  • Кубическая: объемно-центрированная — включает в себя девять атомов. Свойственна железу, хрому, молибдену, и ванадию.
  • Кубическая гранецентрированная: включает в себя уже 14 атомов. Присуща меди, золоту, свинцу, алюминию.
  • Гексагональная: атомов уже 17 и размещены они наиболее плотно. Так кристаллизуются магний, цинк кадмий и другие.

Уникальная возможность железа заключается в том, что до 910°С оно имеет кубическую объемно-центрированную структуру, а при нагреве свыше этой температуры переходит к гранецентрированной.

Кристаллическое строение сплавов

Сплав это материал, состоящий из двух и более химических элементов. В его состав могут входить как металлы, так и неметаллы. Например, бронза — это сплав меди и олова, а чугун — сплав железа и углерода.

Кроме основных, в состав могут входить и другие вещества, содержащиеся в небольших количествах. Если их добавляют специально и улучшают свойства материала, их называют легирующими присадками, если ухудшают — вредными примесями.

Кристаллическое строение сплавов сложнее, чем металлов.

Строение сплавов

Оно определяется взаимовлиянием компонентов при образовании кристалла, и принадлежит к трем подвидам:

  • Твердые растворы. Один элемент растворяется в другом. Ведущий элемент строит кристаллическую структуру, а атомы второстепенного элемента размещаются в объеме этой решетки.
  • Химическое соединение. Элементы химически реагируют друг с другом, образуя новое соединение. Из его молекул и составляется кристаллическая решетка.
  • Механическая смесь. Элементы сплава не реагируют друг с другом. Каждый строит свои кристаллические структуры, срастающиеся в независимые кристаллы. Сплав будет представлять собой затвердевшую смесь из множества кристалликов двух разных типов. Такое вещество будет иметь собственную температуру перехода в жидкую фазу.

Физические свойства сплавов могут заметно меняться при изменении процентного соотношения составляющих.

Кристаллизация сплавов

Первичная кристаллизация — это затвердевание расплава с образованием кристаллических решеток. Пространственные атомные и молекулярные структуры, возникающие в ходе такого процесса, оказывают решающее влияние на свойства получаемого сплава.

Сначала в остывающем расплаве возникают центры кристаллизации, вокруг них в ходе процесса и нарастают кристаллы, многократно повторяя структуру центра. В качестве центров кристаллизации могут выступать:

  • Первые образовавшиеся кристаллы в зонах локального охлаждения, чаще всего у стенок литейной формы.
  • Частички неметаллических примесей.
  • Тугоплавкие примеси, уже находящиеся в твердой форме.

Процесс кристаллизации металлов и сплавов

Кристаллы обычно растут в направлении роста градиента температуры. Если рост решеток не встречает физических препятствий, образуются ветвящиеся кристаллические структуры, напоминающие кораллы — дендриты. Если они растут из разных центров и встречаются в расплаве, то препятствуют росту друг друга и искажают свою форму.

Такие искаженные кристаллы – это кристаллиты, или зерна. Совокупность отдельных зерен срастается в поликристаллическое тело.Отдельные кристаллиты достигают размеров от одного до 10 000 микрон и по-разному развернуты в пространстве. На стыках отдельных кристаллитов образуется граничный слой, в котором кристаллические решетки разорваны.

Такие слои обладают измененными химическими и физическими свойствами.

Решетки кристаллитов могут обладать разными дефектами структуры:

  • точечные;
  • линейные;
  • поверхностные;

Дефекты кристаллического строения металлов

Дефекты определяются отсутствием атома или группы атомов в вершинах или гранях кристаллической решетки, смещением этих атомов со своих мест или замещением атома или их группы атомами или молекулами примесей.

Источник: https://stankiexpert.ru/spravochnik/materialovedenie/kristallicheskoe-stroenie-metallov.html

Атомно-кристаллическое строение металлов (стр. 1 из 2)

  • Министерство образования и науки Украины
  • Донбасский государственный технический университет
  • Кафедра ОМД
  • ЛЕКЦИЯ
  • по дисциплине Металловедение
  • на тему
  • «Атомно-кристаллическое строение металлов»
Читайте также:  Зубофрезерные станки: технические характеристики, схемы, модели

Ст.преп. Горецкий Ю.В.

  1. Алчевск 2009
  2. «Атомно-кристаллическое строение металлов»
  3. 1. Строение металлов в твердом состоянии
  4. Все металлы и металлические сплавы – тела кристаллические, атомы (ионы) расположены в металле закономерно в отличие от аморфных тел, в которых атомы расположены хаотично.

Металлическое состояние возникает в комплексе атомов, когда при их сближении внешние электроны теряют связь с отдельными атомами, становятся общими, т.е. коллективизируются и свободно перемещаются между положительно заряженными и периодически расположенными ионами.

Устойчивость металла определяется электрическим притяжением между положительно заряженными ионами и обобщенными электронами (такое взаимодействие получило название металлической связи).

Сила связи в металлах определяется силами отталкивания и силами притяжения между ионами и электронами. Атомы (ионы) располагаются на таком расстоянии друг от друга, чтобы энергия взаимодействия была минимальной (рис. 1)

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

Рисунок 1. Энергетические условия взаимодействия атомов в кристаллической решетке вещества

Величина а соответствует расстояние между атомами в кристаллической решетке, а а0 соответствует равновесному расстоянию между атомами. В связи с этим в металле атомы располагаются закономерно, образуя правильную кристаллическую решетку, что соответствует минимальной энергии взаимодействия атомов.

Металлические состояния характеризуются высокой энергией связи между атомами. Мерой ее служит теплота сублимации (сумма энергии необходимой для перехода твердого металла к парообразному состоянию, для металла – от 20 до 200 ккал/(г·атом)).

2. Атомно-кристаллическое строение металлов

Под атомно-кристаллической структурой понимают взаимное расположение атомов, существующее в кристалле. Атомы в кристалле расположены в определенном порядке, который периодически повторяется в трех измерениях.

  • Для описания атомно-кристаллической структуры пользуются понятием пространственной или кристаллической решетки.
  • Кристаллическая решетка представляет собой воображаемую пространственную сетку, в узле которой располагаются атомы (ионы), образующие металл.
  • Наименьший объем кристалла, дающий представление об атомной структуре металла во всем объеме, получил название элементарной кристаллической ячейки (решетки).

Для характеристики элементарной ячейки задают шесть величин: три ребра ячейки a, b, c и три угла между ними α, β, γ. Эти величины называют параметрами кристаллической решетки.

Кристаллические решетки бывают простыми (атомы только в вершинах решетки) и сложными.

Металлы образуют одну из следующих высокосимметричных сложных решеток с плотной упаковкой атомов: кубическую объемноцентрированную (ОЦК), кубическую гранецентрированную (ГЦК) и гексагональную (ГПУ) (рис. 2).

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

  1. ОЦК: Rb, K, Na, Li, Tiβ
    , Tlβ
    , Zrβ
    , Ta, W, V, Feα
    , Cr, Nb, Ba, и др.
  2. ГЦК: Cu, Al, Pt, Pb, Ni, Ag, Au, Pd, Rh, Ir, Feγ
    , Coα
    , Caα
    , Ce, Srα
    , Th, Sc и др.
  3. ГПУ: Mg, Cd, Re, Os, Ru, Zn, Be, Coβ
    , Caα
    , Zrα
    , Laα
    , Tiα и др.
  4. Рисунок 2. Кристаллические решетки металлов и схемы упаковки атомов
  5. Расстояние между ближайшими параллельными атомными плоскостями, образующими элементарную ячейку, называют периодом решетки, измеряется в нанометрах (1нм = 10-9
    см = Å= 10-8
    см).
  6. Периоды решетки металлов находятся в пределах 0,2 – 0,7 нм.
  7. ДляОЦК: a, b, c; a = b = c.
  8. ДляГЦК: a, b, c; a = b = c.
  9. Для ГПУ: а, с; с/а = 1,633 (к Zn не относится)
  10. Число атомов в каждой элементарной ячейке (плотность упаковки – равняется числу атомов, приходящихся на одну элементарную ячейку):
  11. ОЦК: ПУ (плотноупакованная) = ;
  12. ГЦК: ПУ = ;

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

  • Координационное число – под ним понимают число атомов, находящихся на равном и наименьшем расстоянии от данного атома. Чем выше координационное число, тем больше плотность упаковки атомов:
  • ОЦК: расстояние (min) между атомами , на этом расстоянии от рассматриваемого атома находится 8 соседей – К8 .
  • ГЦК: , К12.
  • ГПУ: Г12 (с/а = 1,633).
  • Коэффициент заполнения ячейки (плотность укладки) – определяется как отношение объема, занятого атомами к объему ячейки:
  • ОЦК: 68%
  • ГЦК: 74%
  • ГПУ: 74%

Для характеристики величины атома служит атомный радиус, под которым понимается половина расстояния между ближайшими соседними атомами. Атомный радиус возрастает при уменьшении координационного числа.

  1. 3. Полиморфные (аллотропические) превращения
  2. Атомы металла – исходя из геометрических соображений, могут образовать любую кристаллическую решетку.
  3. Однако устойчивым, а, следовательно, реально существующим типом является решетка, обладающая наиболее низким запасом свободной энергии.

Многие металлы в зависимости от температуры могут существовать в разных кристаллических формах (т.н. полиморфных (аллотропических) модификациях). В результате полиморфного превращения атомы кристаллического тела, имеющего решетку одного типа, перестраиваются таким образом, что образуется кристаллическая решетка другого типа.

Полиморфную модификацию, устойчивую при более низкой температуре, для большинства металлов принято обозначать буквой α, при более высокой температуре β, затем γ и т.д.

  • Полиморфное превращение протекает при постоянной температуре (например, при нагреве идет поглощение теплоты).
  • Известные полиморфные превращения: Feα ↔ Feβ
    ; Coα ↔ Coβ
    ; Tiα ↔ Tiβ
    ; Mnα ↔ Mnβ ↔ Mnγ ↔ Mnδ
    ; Snα ↔ Snβ
    , а также для Ca, Li, N, Cs, Sr, Te, Zr, V и др.
  • Металл с данной кристаллической решеткой должен обладать меньшим запасом свободной энергии.

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

Рисунок 3. Полиморфизм железа и его связь со свободной энергией системы

Полиморфизм железа. Из рис. 3, видно, что в интервале температур 911 – 1392°С устойчивым является γ-железо (К 12) (имеет min свободную энергию), а при температурах ниже 911°С и выше 1392°С устойчиво α-железо (К 8).

В твердом металле полиморфные превращения происходят в результате зарождения и роста кристаллов аналогично кристаллизации из жидкого состояния. Зародыши новой модификации наиболее часто возникают на границах зерна исходных кристаллов.

В результате полиморфного превращения образуется новые кристаллические зерна, имеющие другой размер и форму, поэтому превращение также называют перекристаллизацией.

Полиморфное превращение сопровождается скачкообразным изменением всех свойств металлов и сплавов: удельного объема, теплоемкости, теплопроводности, электропроводности, магнитных свойств, механических и химических свойств и т.д.

Высокотемпературная модификация имеет высокую пластичность.

В таблице № 1 показан интервал температур существования различных аллотропических форм некоторых, имеющих практическое значение металлов, у которых обнаружена температурная аллотропия.

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

4. Анизотропия свойств металлов

Из атомно-кристаллического строения металлов видно, что плотность расположения атомов по различным плоскостям в кристаллических решетках неодинакова (рис. 4).

Вследствие неодинаковой плотности атомов в различных плоскостях и направлениях решетки многие свойства (химические, физические, механические) каждого кристалла зависят от направления решетки. Подобная неодинаковость свойств монокристалла в разных кристаллографических направлениях называется анизотропией.

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

Рисунок 4. Расположение атомов в различных плоскостях и направлениях в кубической решетке (ОЦК)

Кристалл – тело анизотропное в отличие от аморфных тел (стекло, пластмассы и т.д.), свойства которых не зависят от направления.

Технические металлы являются поликристаллами, т.е. состоят из большого числа анизотропных кристаллов. В большинстве случаев, как уже указывалось выше, кристаллы статистически неупорядоченно ориентированы один по отношению к другому, поэтому во всех направлениях свойства более или менее одинаковы, т.е.

поликристаллическое тело является изотропным (вернее – квазиизотропным (ложная изотропия)). Такая мнимая изотропность не будет наблюдаться, если кристаллы имеют одинаковую преимущественную ориентировку в каких-то направлениях.

Эта ориентированность, или текстура, создается в известной степени, но не полностью в результате значительной холодной деформации; в этом случае поликристаллический металл приобретает анизотропию свойств.

Литература

1. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М., 1972, 1980.

2. Гуляев А.П. Металловедение. М., 1986.

3. Новиков И.И. Дефекты кристаллического строения металлов. М., 1983.

Источник: https://mirznanii.com/a/324635/atomno-kristallicheskoe-stroenie-metallov

Дефекты кристаллической решетки

Кристаллическое состояние вещества характеризуется жестко закономерным порядком размещением частиц в кристаллической решетке, который периодически повторяется и соответствует минимальному значению энергии системы, что согласуется с наличием ближнего и дальнего порядков. Кристаллическая структура с таким размещением частиц называется идеальным кристаллом. Однако реальные кристаллы обычно имеют несовершенное строение, что объясняется наличием дефектов кристаллической решетки.

Дефекты кристаллической решетки — это нарушение симметрии и идеальной периодичности в строении кристалла, а также отклонения строения от совершенной структуры.

  • Дефекты кристаллической решетки возникают в процессе роста кристалла вследствие неравновесности условий роста и наличия примесей, а также под влиянием механических и тепловых воздействий, электрических и магнитных полей или под действием ионизирующего излучения.
  • Дефекты в кристаллах классифицируются по различным признакам.
  • По происхождению дефекты кристаллической решетки делятся на микродефекты (нарушения в периодичности размещения частиц в кристаллической структуре) и макродефекты (трещины, укоренение молекул газа или маточного раствора).
  • По природе дефекты кристаллической структуры делятся на электронные и атомные.
  1. Электронные дефекты. К ним относятся избыточные электроны проводимости в кристалле и незаполненные валентные связи или вакантные орбитали — так называемые положительные дырки. Для кристалла, который находится в состоянии равновесия, количества электронов проводимости и положительных дырок одинаковы. Именно электроны и дырки обусловливают электропроводность твердых веществ. При определенных условиях (например, при наличии в кристалле химических примесей, входящих в его структуру) количество электронов и дырок может не совпадать — такое состояние наблюдается в полупроводниках.
  2. Атомные дефекты. В зависимости от размеров различают несколько разновидностей атомных дефектов: точечные, линейные (или дислокации), поверхностные и объемные.

Точечные дефекты связаны с отсутствием атома в узле кристаллической решетки или, наоборот, с появлением лишнего атома в узле или в междоузлие.

 Итак, точечные дефекты существуют в виде вакантных узлов (вакансий), в виде смещения частицы из узла кристаллической решетки в пространство между узлами (дефект укоренение) или в виде проникновения чужеродных атомов или ионов в кристаллическую решетку (дефект замещения — твердые растворы).

Кристаллическое строение металлов и дефекты атомно-кристаллической решеткиВиды точечных дефектов

В ионных кристаллах вакансии должны быть скомпенсированы таким образом, чтобы кристалл в целом был электронейтральным, поэтому точечные дефекты в кристалле возникают парами и бывают разноименно заряжены.

Кристаллическое строение металлов и дефекты атомно-кристаллической решеткиВакансии в кристаллической решетке: а) в атомном кристалле; б) в ионном кристалле вакансия катиона; в) в ионном кристалле вакансия аниона

В реальных условиях формирования кристаллов происходит в разных условиях, в разных окружающих средах, что сказывается на характере и особенностях дефектов кристаллической решетки, которые возникают при росте кристалла. Рассматривают два основных механизма образования точечных дефектов:

  • механизм по Шоттки — возникновение системы вакансий, которая сохраняет стехиометрический состав ионного кристалла благодаря комбинации одинаковых количеств катионных и анионных вакансий.
  • механизм по Френкелю — одновременное возникновение вакансии и укоренение постороннего катиона.
Читайте также:  Класс прочности болтов: маркировка, классификация, гост

Кристаллическое строение металлов и дефекты атомно-кристаллической решеткиМеханизмы образования точечных дефектов: а) по Шоттки; б) по Френкелю

Относительное содержание вакансий в кристаллах сравнительно небольше (~10-12 % при н.у.), но оно может быстро увеличиваться при повышении температуры (до 10-5 % при 600 К).

 Несмотря на это, дефекты по Шоттки и Френкелю существенно влияют на стехиометрию твердых веществ, вызывая существование соединений переменного состава и изменяя электропроводность, механическую прочность, оптические и другие физические свойства кристаллических веществ.

Точечные дефекты являются очень малыми во всех трех измерениях, их размеры по всем направлениям не превышают нескольких атомных диаметров — именно по этой причине их называют нульмерными.

Точечные дефекты повышают энергию кристалла, поскольку на образование дефекта была потрачена определенная энергия. Вокруг вакансии или лишнего атома в междоузлии решетка искажена, поэтому такой дефект в первом приближении можно рассматривать как центр сжатия или расширения кристалла.

Кристаллическое строение металлов и дефекты атомно-кристаллической решеткиДефекты кристаллической решетки: а) вакансия, который является центром сжатия; б) укоренение — центр расширения

Важной особенностью точечных дефектов является их подвижность. Перемещение дефектов связано с преодолением потенциальных барьеров, высота которых определяется природой дефекта, структурой решетки и направлением движения дефекта. Перескоки вакансий приводят к перемещению атомов, то есть к самодиффузии примесных атомов замещения.

Линейные (одномерные) дефекты, или дислокации (смещения) возникают в местах обрыва плоскостей кристаллической решетки (краевые дислокации), при закручивании этих плоскостей (винтовые дислокации), а также при последовательном соединении точечных дефектов (цепочке дислокаций). Дислокации могут перемещаться в теле кристалла, скапливаться на участках крупнейших напряжений, а также выходить на поверхность и нарушать поверхностный слой. Линейные дефекты имеют атомные размеры в двух измерениях и только в третьем их размер сопоставим с длиной кристалла.

Наличие дислокаций и их подвижность вызывают изменение пластичности кристаллов, обусловливают напряжения и могут приводить к полному разрушению структуры.

При краевой дислокации образуется одна «лишняя» атомная полуплоскость, которая называется экстраплоскостью, а ее нижний край — линией дислокации .

Винтовые дислокации возникают при частичном смещении атомных слоев по некоторой плоскости Q, в результате чего нарушается их параллельность.

 Кристалл как бы закручивается винтом в виде полого геликоида вокруг линии ЕF, которая является линией дислокации, своеобразной границы, которая отделяет ту часть скольжения, где сдвиг уже завершился, от части, где он не происходил.

 На поверхности кристалла образуется ступенька, которая проходит через точку Е к краю кристалла. Такое смещение нарушает параллельность атомных слоев и кристалл превращается в одну атомную плоскость, закрученную спиралью вокруг линии дислокации.

 Вблизи нее атомы смещаются из своих узлов и кристаллическая решетка нарушается, что вызывает образование поля напряжения: выше линии дислокации решетка сжата, а ниже — растянута.

Кристаллическое строение металлов и дефекты атомно-кристаллической решеткиВинтовые дислокации

Поверхностные, или плоские (двумерные) дефекты имеют малые размеры только в одном измерении.

 Они образуются между двумя кристаллическими поверхностями, повернуты и смещены друг относительно друга, или при неправильной упаковке частиц в слое, или на грани укоренившихся другой фазы в виде сети дислокаций. Кроме того, поверхностные дефекты возникают по границам зерен кристалла.

Кристаллическое строение металлов и дефекты атомно-кристаллической решеткиДвумерные поверхностные дефекты

Объемные (трехмерные) дефекты — это нагромождение вакансий, пустот, пор, каналов внутри кристалла; частицы, которые укоренились в кристалл во время его роста (растворитель, пузырьки газа), зародыши новой кристаллической фазы, возникающие при равновесных условий существования кристалла. Трехмерные дефекты имеют относительно большие размеры во всех трех измерениях. Они представляют собой конгломераты из многих точечных и линейных дефектов, образуется при нарушении режима кристаллизации.

Дефекты любого типа влияют на свойства кристаллов, в частности на механическую прочность.

 Вместе с тем для проведения многих гетерогенных процессов бывает нужно иметь твердое тело с очень развитой внутренней поверхностью вследствие существования сети каналов, пор, трещин, поэтому для получения таких кристаллических веществ используются специальные методы созидания объемных дефектов.

 Регулировка количества дефектов кристаллической решетки позволяет модифицировать химические и физические свойства веществ в желаемом направлении, что, в свою очередь, дает возможность получать новые типы материалов с заранее заданными признаками.

Источник: https://www.polnaja-jenciklopedija.ru/nauka-i-tehnika/defekty-kristallicheskoj-reshetki.html

Дефекты кристаллического строения

В реальных кристаллах нет идеально правильного расположения атомов во всём объёме кристалла. Всегда имеются нарушения правильности расположения атомов. Эти нарушения называются дефектами кристаллического строения (ДКС). Они делятся на: 1) точечные; 2) линейные; 3) поверхностные.

Точечные дефекты

Размеры точечного дефекта близки к межатомному расстоянию. К точечным дефектам относятся вакансии и межузельные атомы. Вакансиями называют узлы кристаллической решётки, в которых отсутствуют атомы. Межузельным называется атом, расположенный между узлами кристаллической решётки (рис. 1.4).

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

а) б) в)

Рис. 1.4. Точечные дефекты:

а – вакансия; б – схема перемещения вакансии по кристаллу;

в – межузельный атом

Вакансии чаще всего образуются при переходе атомов из узла решётки на поверхность и реже в результате их перехода в междоузлие. Точечные дефекты возникают в результате теплового движения атомов.

При любой температуре всегда имеются атомы, у которых кинетическая энергия больше среднего для данной температуры значения. Эти атомы могут преодолеть потенциальный барьер, создаваемый соседними атомами, и выйти из своего узла на поверхность или в междоузлие.

В плотноупакованных решётках вакансий гораздо больше, чем межузельных атомов. Вакансии легко перемещаются по кристаллу. Чем выше температура, тем больше количество вакансий и меньше время нахождения их в одном узле решётки.

При температуре, близкой к температуре плавления (tпл), количество вакансий может достигнуть ~1 % по отношению к числу атомов в кристалле. Точечные дефекты вызывают местное искажение кристаллической решётки [2].

Линейные дефекты

Основным видом линейных ДКС являются дислокации. Они бывают краевые и винтовые.

Мысленно надрежем идеальный кристалл и в образовавшуюся щель вставим дополнительную атомную полуплоскость (экстраплоскость). Такой «клин» искажает кристаллическую решетку. Это искажение особенно значительно у края экстраплоскости. Область несовершенства кристалла вокруг края экстраплоскости называют краевой дислокацией (рис. 1.5).

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

а) б)

Рис. 1.5. Краевая дислокация (а) и расположение атомов

в области дислокации (б)

Вокруг дислокации решётка упруго искажена. Если экстраплоскость находится в верхней части кристалла, то дислокацию называют положительной и обозначают , если в нижней – то отрицательной и обозначают . В поперечном сечении кристалла нарушение в правильности расположения атомов, вызванные дислокацией, распространяются на несколько периодов решётки, а в направлении, перпендикулярном сечению, на многие тысячи межатомных расстояний.

Дислокации при приложении небольшого касательного усилия легко перемещаются.

Экстраплоскость в результате незначительного смещения перейдёт в полную плоскость кристалла, а её функции будет выполнять соседняя плоскость. Дислокации одинакового знака отталкиваются, а разного знака притягиваются.

Дислокации возникают в процессе кристаллизации, пластической деформации и т.п. Они оказывают большое влияние на свойства металлов [2].

Плотностью дислокаций называют суммарную длину дислокаций Sl в единице объёма V:

, см–2.

У отожженных металлов r =106…108 см–2. После большой холодной пластической деформации r=1011…1012 см–2. Попытка увеличить плотность дислокаций свыше 1011…1012 см–2 приводит к появлению трещин и разрушению металла.

Особенно велико влияние дислокаций на прочность металлов. При значительном увеличении плотности дислокаций и уменьшении их подвижности прочность увеличивается в несколько раз по сравнению с отожженными металлами [3].

Поверхностные дефекты

К поверхностным ДКС относятся: 1) границы зёрен; 2) границы субзёрен.

Поликристалл содержит огромное число мелких зёрен. Границы зёрен представляют собой переходную область, в которой кристаллическая решётка одного зерна с определённой ориентировкой в пространстве плавно переходит в решётку другого зерна с иной ориентировкой (рис. 1.6, а).

а) б)

Рис. 1.6. Поверхностные дефекты:

а – большеугловая граница (q – угол разориентировки);

б – малоугловая граница

Граница между зёрнами имеет ширину 1…5 нм. На границе нарушена правильность расположения атомов. Границы зёрен называют большеугловыми, так как кристаллографические направления в соседних зёрнах образуют углы (q), достигающие десятков градусов.

Каждое зерно металла состоит из отдельных блоков или субзёрен. Субзерно представляет собой часть кристалла относительно правильного строения, в которой отсутствуют дислокации. Малоугловая граница между субзёрнами представляет собой стенку дислокаций (рис. 1.6, б).

Поверхностные дефекты влияют на механические и физические свойства металлов. Чем мельче зерно, тем выше предел текучести, вязкость и меньше опасность хрупкого разрушения.

Строение сплавов

Сплавы – материалы, содержащие не менее двух элементов. Сплавы получают в результате сплавления, спекания, плазменного напыления, электролиза и т.п. Они имеют более сложное строение. В славах элементы могут по-разному взаимодействовать между собой, образуя различные фазы. Фазой называется однородная обособленная часть сплава, имеющая одинаковый состав, строение и свойства.

В сплавах в зависимости от физико-химического взаимодействия могут образовываться следующие фазы: 1) жидкие растворы; 2) твёрдые растворы; 3) химические соединения; 4) промежуточные фазы, которые имеют признаки как твердых растворов, так и химических соединений.

Твёрдыми растворами называют фазы, в которых атомы одного элемента располагаются внутри кристаллической решётки другого элемента, не изменяя типа кристаллической решётки. Элемент, решётка которого сохраняется в твёрдом растворе, называется растворителем, а другой – растворимым.

Различают твёрдые растворы замещения (рис. 1.7, а) и внедрения (1.7, б). При образовании твёрдых растворов замещения атомы растворённого элемента замещают часть атомов растворителя в узлах его кристаллической решётки.

Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

а) б)

Рис. 1.7. Схема твёрдого раствора замещения (а) и внедрения (б)

Атомы растворённого элемента могут замещать любые узлы решётки растворителя. Твёрдые растворы замещения образуют элементы, атомные радиусы которых отличаются не более чем на 15 %.

Растворимость элементов в твёрдом растворе уменьшается при увеличении различия в атомных радиусах сплавляемых элементов и их валентности.

При образовании твёрдых растворов замещения возможна и неограниченная растворимость.

Это происходит, когда при любом соотношении сплавляемых элементов все разнородные атомы размещаются в узлах общей пространственной решётки (например: медь с золотом, медь с никелем, германий с кремнием.)

Многие твёрдые растворы замещения могут находиться в упорядоченном состоянии, то есть атомы растворителя и растворённого элемента занимают определённые узлы кристаллической решётки. Такие растворы называют упорядоченными или «сверхструктурами».

В твёрдых растворах внедрения атомы растворенного элемента располагаются в междуузлиях, то есть в порах. Такие растворы образуют переходные металлы с неметаллами, имеющими небольшой атомный радиус (Н, N, C, B).

Читайте также:  Алитирование стали: технология и методы поверхностного насыщения стали алюминием

Твёрдые растворы внедрения всегда имеют ограниченную растворимость. Если растворитель имеет ГЦК или ГПУ решётку, то растворимость больше, так как в этих решётках радиус поры =0,41R, где R – радиус атома растворителя. В ОЦК решётке растворимость путём внедрения мала, так как размер пор не превосходит 0,29R.

Образование твёрдых растворов приводит к искажению кристаллической решётки, причем для твёрдых растворов внедрения это искажение больше. Искажение кристаллической решётки делает сплавы более прочными по сравнению с чистыми металлами, но при этом сплавы сохраняют достаточно высокую пластичность. Твёрдые растворы являются основой большинства промышленных сплавов [3].

Химические соединения

Химические соединения, встречающиеся в металлических сплавах, очень разнообразны.

Они отличаются от твёрдых растворов следующими признаками: 1) имеют строго определённый состав и химическую формулу AmBn , где А и В – соответствующие элементы, n и m – простые числа; 2) кристаллическая решётка химического соединения отличается от решёток компонентов, образующих соединения; 3) свойства химических соединений сильно отличаются от свойств образующих элементов; 4) они имеют постоянную температуру плавления; 5) образование химического соединения сопровождается значительным тепловым эффектом.

В отличие от твёрдых растворов химические соединения обычно образуются между элементами, которые имеют большое различие в строении атомов и кристаллических решёток.

Наилучшие механические свойства имеют те сплавы, основой которых являются твёрдые растворы с залегающими в них мелкодисперсными твердыми частицами химических соединений или промежуточных фаз. Чем больше в сплаве таких частиц, тем выше его твёрдость и прочность, но ниже пластичность и вязкость.

КРИСТАЛЛИЗАЦИЯ МЕТАЛЛОВ

Переход металла из жидкого состояния в твердое называется кристаллизацией. При кристаллизации система переходит к термодинамически более устойчивому состоянию с меньшей свободной энергией. Изменение свободных энергий жидкого и твердого Fтв металла зависит от температуры (рис. 2.1).

Выше температуры Т0 более устойчив жидкий металл. Он имеет меньший запас свободной энергии, а ниже этой температуры более устойчив твердый металл. Температуру Т0 называют равновесной температурой кристаллизации. При этой температуре одновременно могут сосуществовать жидкая и твердая фаза.

Рис. 2.1. Изменение свободных энергий F жидкого и твёрдого

металла с температурой

Процесс кристаллизации при этой температуре еще не начинается. Он может протекать только при переохлаждении металла ниже Т0. Разность между температурами Т0 и Тк называется степенью переохлаждения

DТ= Т0 –Тк.

Кривые охлаждения, характеризующие процесс кристаллизации чистых металлов при охлаждении с разной скоростью, показаны на рис. 2.2.

Рис. 2.2. Кривые охлаждения металла

при кристаллизации.

Скорости охлаждения n1

Источник: https://infopedia.su/2xae81.html

Кристаллическое строение металлов

Металлы – особая группа элементов в периодической таблице Менделеева.

В отличие от неметаллов элементы этой группы являются исключительно восстановителями с положительной степенью окисления, а также обладают пластичностью, твёрдостью, упругостью, что обусловлено кристаллическим строением металлов.
Кристаллическое строение металлов и дефекты атомно-кристаллической решетки

Металлы – твёрдые вещества, имеющие кристаллическое строение. Исключение составляет ртуть – жидкий металл. Кристаллические решётки представляют собой упорядоченные определённым образом атомы металла. Каждый атом состоит из положительно заряженного ядра и нескольких отрицательно заряженных электронов. В атомах металлов недостаточно электронов, поэтому они являются ионами.

Единица кристаллической решётки – элементарная кристаллическая ячейка, в условных узлах и на гранях которой находятся положительно заряженные ионы.

Их удерживают вместе металлические связи, возникающие за счёт беспорядочного движения отделившихся от атомов электронов (благодаря чему атомы превратились в ионы).

Отрицательно заряженные электроны держат на равном расстоянии положительно заряженные электроны, предавая кристаллической решётке правильную геометрическую форму.

Рис. 1. Схема металлической связи.

Свободное движение электронов обусловливает электро- и теплопроводность металлов.

Элементарные кристаллические ячейки могут иметь различную конфигурацию. В связи с этим выделяют три типа кристаллических решёток:

  • объемно-центрированная (ОЦК) кубическая – состоит из 9 ионов;
  • гранецентрированная (ГЦК) кубическая – включает 14 ионов;
  • гексагональная плотноупакованная (ГПУ) – состоит из 17 ионов.

ОЦК представляет собой куб, в узлах которого находится по атому. В центре куба, на пересечении диагоналей располагается девятый ион. Этот тип характерен для железа, молибдена, хрома, вольфрама, ванадия.

Элементарной кристаллической ячейкой типа ГЦК является куб с ионами в узлах и в середине каждой грани – на пересечении диагоналей. Такое строение имеют медь, серебро, алюминий, свинец, никель.

Третий тип имеет вид гексагональной призмы, в узлах которой находится по шесть ионов с каждой стороны. Посередине между шестью узлами располагается по одному иону. В середине призмы между шестиугольными гранями находится равносторонний треугольник, который составляют три иона.

Рис. 2. Типы решёток.

Металл может содержать большое количество дефектов атомного строения. Дефекты влияют на свойства металла.

Кристаллические решётки характеризуются компактностью или степенью наполненности. Компактность определяют показатели:

  • параметр решётки – расстояние между атомами;
  • число атомов;
  • координационное число – количество соседних ячеек;
  • плотность упаковки – отношение объёма, занимаемого атомами, к полному объёму решётки.

При подсчёте количества атомов следует помнить, что атомы в узлах и на гранях входят в состав соседних ячеек.

Рис. 3. Кристаллические ячейки составляют решётку.

Узнали кратко об атомно-кристаллическом строении металлов. Металлы – твёрдые кристаллические вещества. Единицей решётки является элементарная кристаллическая ячейка. Благодаря металлическим связям ионы в узлах ячеек удерживаются на одинаковом расстоянии. Различают три типа кристаллических решёток – ОЦК, ГЦК и ГПУ, отличающихся количеством атомов и геометрической формой.

Средняя оценка: 4.5. Всего получено оценок: 287.

Источник: https://obrazovaka.ru/himiya/kristallicheskoe-stroenie-metallov-kratko.html

1 . Кристаллическое строение металлов. Дефекты кристаллического строения

Билет №1

В твердых телах атомы могут размещаться в пространстве двумя способами:

Беспорядочное расположение атомов, когда они не занимают определенного места друг относительно друга. Такие тела называются аморфными. Аморфные вещества обладают формальными признаками твердых тел, т.е. они способны сохранять постоянный объем и форму. Однако они не имеют определенной температуры плавления или кристаллизации.

Упорядоченное расположение атомов, когда атомы занимают в пространстве вполне определенные места, Такие вещества называются кристаллическими.

    Благодаря упорядоченному расположению атомов в про­странстве, их центры можно соединить воображаемыми прямыми ли­ниями. Совокупность таких пересекающихся линий представ­ляет пространственную решетку, которую называют кристаллической решеткой.

Металлы имеют относительно сложные типы кубических ре­шеток — объемно центрированная (ОЦК) и гранецентриро­ванная (ГЦК) кубические решетки.

Основу ОЦК-решетки составляет элементарная кубиче­ская ячейка, в которой положительно заряжен­ные ионы металла находятся в вершинах куба, и еще один атом в центре его объема, т. е. на пересечении его диагоналей.

Такой тип решетки в определенных диапазонах температур имеют железо, хром, ванадий, вольфрам, молибден и др. металлы. У ГЦК-решетки элементарной ячейкой слу­жит куб с центрированными гранями. Подобную решетку имеют железо, алюминий, медь, никель, свинец и др. металлы.

Третьей распространенной разновидностью плотноупако­ванных решеток является гексагональная плотноупакованная. ГПУ-ячейка состоит из отстоя­щих друг от друга на параметр с параллельных центриро­ванных гексагональных оснований.

Три иона (атома) нахо­дятся на средней плоскости между основаниями. Такую решетку имеют маг­ний, цинк, кадмий, берилий, титан и др.

Под анизотропией понимается неодинаковость механиче­ских и других свойств в кристаллических телах вдоль раз­личных кристаллографических направлений. Она является естественным следствием кристаллического строения, так как на различных кристаллографических плоскостях и вдоль различных направлений плотность атомов различна.

Некоторые металлы, например, железо, титан, олово и др. способны по достижении определенных темпера­тур изменять кристаллическое строение, т. е. изменять тип элементарной ячейки своей кристаллической решетки.

Это явление получило название аллотропии или полиморфизма, а сами переходы от одного кристаллического строения к дру­гому называются аллотропическими или полиморфными.

Точечные дефекты соизмеримы с размерами атомов. К ним относятся вакансии, т. е. незаполненные узлы решет­ки, межузельные атомы данного металла, примесные атомы замещения, т. е. атомы, по диаметру соизмеримые с атомами данного металла и примесные атомы внедрения, имеющие очень малые размеры и поэтому находящиеся в междоузлиях.

Влияние этих дефектов на прочность металла может быть различным в зависимости от их ко­личества в единице объема и характера. Линейные дефекты имеют длину, значительно превышаю­щую их поперечные размеры. К ним относятся дислокации, т. е. дефекты, образующиеся в решетке в результате смещений кристаллографических плоскостей.

Наиболее характерной является краевая дислокация. Она образуется в результате возникновения в решетке так называемой полуплоскости или экстраплоскости. Другим типом дислокации является винтовая дислокация, которая представляет собой некоторую условную ось внутри кристалла, вокруг которой закручены атомные плоскости.

Дислокационный механизм сдвиговой пластическойдеформации внутри кристаллов может привести к разрушению изделия. Таким образом, дислокации непосредственно влияют на прочностные характеристики металла. Поверхностные дефекты включают в себя главным образом границы зерен. На границах кристаллическая решетка сильно искажена.

В них скапливаются перемещающиеся изнутри зерен дислокации. Объемные дефекты кристаллической решетки включают трещины и поры. Наличие данных дефектов, уменьшая плотность металла, снижает его прочность.

Кроме того, трещины являются сильными концентратора­ми напряжений, в десятки и более раз повышающими напря­жения создаваемые в металле рабочими нагрузками. По­следнее обстоятельство наиболее существенно влияет на прочность металла.

2.Низкотемпературная термомеханическая обработка (НТМО). Сталь нагревают до аустенитного состояния. Затем выдерживают при высокой температуре, производят охлаждение до температуры, выше температуры начала мартенситного превращения (400…600oС), но ниже температуры рекристаллизации, и при этой температуре осуществляют обработку давлением и закалку.

Низкотемпературная термомеханическая обработка, хотя и дает более высокое упрочнение, но не снижает склонности стали к отпускной хрупкости. Кроме того, она требует высоких степеней деформации (75…95 %), поэтому требуется мощное оборудование.

Низкотемпературную термомеханическую обработку применяют к среднеуглеродистым легированным сталям, закаливаемым на мартенсит, которые имеют вторичную стабильность аустенита.

Повышение прочности при термомеханической обработке объясняют тем, что в результате деформации аустенита происходит дробление его зерен (блоков). Размеры блоков уменьшаются в два – четыре раза по сравнению с обычной закалкой. Также увеличивается плотность дислокаций. При последующей закалке такого аустенита образуются более мелкие пластинки мартенсита, снижаются напряжения.

Билет №2

Источник: https://studfile.net/preview/3993379/

Ссылка на основную публикацию
Adblock
detector