Кинетическая энергия пружины: формула и определение

Кинетическая энергия пружины: формула и определениеКинетическая энергия пружины: формула и определение

Пружинный маятник — колебательная система, которая состоит из тела, подвешенного к пружине. Эта система способна к совершению свободных колебаний.

Подобные системы довольно широко распространены за счет своей функциональной гибкости. Механизмы на основе таких маятников часто используются как элементы средств автоматики. 

В том числе они нашли применение в контактных взрывателях различных боеприпасов, в качестве акселерометров в контурах управления ракет. Так же они активно используются в предохранительных клапанах, устанавливаемых в трубопроводах.

Что такое пружинный маятник

Пружинным маятником в физике называют систему, совершающую колебательные движения под действием силы упругости. 

Приняты следующие обозначения:

  • m — масса тела;
  • k — коэффициент жесткости пружины.

Общий вид маятника:

Кинетическая энергия пружины: формула и определение

Особенностями пружинных маятников являются:

  1. Сочетание тела и пружины. Массой пружины обычно в расчетах пренебрегают. Роль тела могут играть различные объекты. На них оказывают действие внешние силы. Груз может крепиться разными способами. Витки пружины, которыми она начинается и заканчивается, изготавливают с учетом повышенной нагрузки;

  2. У любой пружины есть исходное положение, предел сжатия и растяжения. При максимальном сжатии зазора между витками нет. Когда она максимально растянута, возникает необратимая деформация;

  3. Полная механическая энергия появляется с началом процесса обратимого деформирования. В этот момент на объект не оказывает действие сила упругости;

  4. Колебательные движения происходят под влиянием силы упругости. Масштаб влияния определяется несколькими причинами (тип сплава, расположение витков и т. д.). Так как может происходить и сжатие и растяжение, можно сделать вывод, что сила упругости действует в двух противоположных направлениях;

  5. От массы тела, величины и направления прикладываемой силы зависит скорость в плоскости его перемещения. Например, если подвесить груз к пружине и, растянув её, отпустить, то груз будет перемещаться в двух плоскостях: вертикально и горизонтально.

Виды пружинных маятников

Кинетическая энергия пружины: формула и определение

Существует два типа данной системы:

  1. Вертикальный маятник — на тело довольно сильно влияет сила тяжести. Это влияние обуславливает увеличение инерционных движений, которые совершает тело в исходной точке.

  2. Горизонтальный — в таком варианте при движении на груз начинает действовать сила трения, возникающая по причине того, что груз лежит на поверхности.

Кинетическая энергия пружины: формула и определение

Сила упругости в пружинном маятнике

До начала деформирования пружина находится в равновесном состоянии. Прикладываемое усилие может как растягивать, так и сжимать её. 

Применяя к пружинному маятнику закон сохранения энергии, мы можем рассчитать силу упругости в нем. Упругость прямо пропорциональна расстоянию, на которое сместился груз.

  • Расчёт силы упругости может быть проведен таким образом:
  • Fупр = — k*x
  • где k — коэффициент жесткости пружины (Нм),
  • x – смещение (м).

Уравнения колебаний пружинного маятника

  1. Свободные колебания пружинного маятника описываются с помощью гармонического закона.

     

  2. Если допустить вероятность того, что колебания идут вдоль оси Х, и при этом выполняется закон Гука, то уравнение примет вид:
  3. F(t) = ma(t) = — mw2x(t),
  4. где w — радиальная частота гармонического колебания.

  5. Для проведения расчета колебаний, учитывая все вероятности, применяют следующие формулы:

Кинетическая энергия пружины: формула и определение

Период и частота свободных колебаний пружинного маятника

При разработке проектов всегда определяется период колебаний и их частота. Для их измерения используются известные в физике формулы.

Кинетическая энергия пружины: формула и определение

  • Изменение циклической частоты покажет формула, приведенная на рисунке:

Кинетическая энергия пружины: формула и определение

Факторы, от которых зависит частота:

  1. Коэффициент упругости. На этот коэффициент влияет количество витков, их диаметр, расстояние между ними, длина пружины, жесткость используемого сплава и т. д.

  2. Масса груза. От этого фактора зависит возникающая инерция и скорость перемещения.

Амплитуда и начальная фаза пружинного маятника

  1. Учитывая начальные условия и рассчитав уравнение колебаний, можем точно описать колебания пружинного маятника. 
  2. В качестве начальных условий используются: амплитуда (А) и начальная фаза колебаний (ϕ).

Кинетическая энергия пружины: формула и определение

Энергия пружинного маятника

При рассмотрении колебания тел учитывают, что груз движется прямолинейно. Полная механическая энергия тела в каждой точке траектории является константой и равняется сумме его потенциальной энергии и кинетической энергии.

Кинетическая энергия пружины: формула и определение

  • Потенциальная энергия:
  1. Кинетическая энергия:
  • Полная энергия:

Расчет имеет особенности. При его проведении нужно учитывать несколько условий:

  1. Колебания проходят в двух плоскостях: вертикальной и горизонтальной.

  2. В качестве равновесного положения выбирается ноль потенциальной энергии. Находясь в этом положении пружина сохраняет свою форму.

  3. Влияние силы трения при расчете не учитывают.

Дифференциальное уравнение гармонических колебаний пружинного маятника 

Отметим, что пружинный маятник — это обобщенное определение. Скорость движения груза (тела) напрямую зависит от комплекса условий, в том числе приложенного к нему усилия.

Источник: https://nauka.club/fizika/pruzhinnyy-mayatnik.html

Превращение энергии при колебаниях пружинного маятника — урок. Физика, 9 класс

Рассмотрим процесс превращения энергии при колебательном движении идеального горизонтального пружинного маятника.

Кинетическая энергия пружины: формула и определение

Будем считать, что в системе сил трения и сил сопротивления нет.

Когда эта система находится в равновесии, и никакого колебания не происходит, скорость тела равна нулю, и отсутствует деформация пружины. В этом случае энергии у данного маятника нет.

Кинетическая энергия пружины: формула и определение

Выводя тело из положения равновесия, например, сжимая пружину на некоторую величину, ему сообщается некоторый запас потенциальной энергии:

Eп=kx22.

Кинетическая энергия пружины: формула и определение

Если теперь отпустить груз, не удерживать его, то он начнет свое движение к положению равновесия, пружина начнет выпрямляться и деформация пружины будет уменьшаться. Следовательно, будет уменьшатся и ее потенциальная энергия.

Скорость же тела будет увеличиваться, и по закону сохранения энергии потенциальная энергия пружины будет превращаться в кинетическую энергию движения тела:

Eк=mv22.

Кинетическая энергия пружины: формула и определение

В момент прохождения те­лом положения равновесия его по­тенциальная энергия равна нулю, а кинетическая будет максимальна.

Кинетическая энергия пружины: формула и определение

Потом вступает в действие явление инерции. Тело, которое обладает некоторой массой, по инерции проходит точку равновесия. Скорость тела начинает уменьшаться, а деформация, удлинение пружины, увеличивается. Следовательно, кине­тическая энергия тела убывает, а потенциальная наоборот, возрастает.

Кинетическая энергия пружины: формула и определение

В точке максимального отклонения тела его кинетическая энергия равна нулю, а потенциальная — максимальна.

Кинетическая энергия пружины: формула и определение

Таким образом, при колебаниях периодически проис­ходит переход потенциальной энергии в кинетическую и обрат­но.

Обрати внимание!

Полная механическая энергия пружинного маятника в каждой точке его траектории постоянна и равна сум­ме его кинетической и потенци­альной энергий:

E=mv22+kx22.

Кинетическая энергия пружины: формула и определение

Если для вертикального пружинного маятника выбрать систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю, то все описанное выше для горизонтального маятника можно применить для данного маятника.

Источники:

Источник: https://www.yaklass.ru/p/fizika/9-klass/mekhanicheskie-kolebaniia-i-volny-zvuk-18755/prevrashchenie-energii-pri-kolebatelnom-dvizhenii-155618/re-304c821d-ace3-4e14-ae41-21872caeb96b

Формулы пружинного маятника

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Кинетическая энергия пружины: формула и определение

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

[ddot{x}+{omega }^2_0x=0left(1
ight),]

  • где ${щu}^2_0=frac{k}{m}$ — циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:
  • где ${omega }_0=sqrt{frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$ — амплитуда колебаний; ${(omega }_0t+varphi )$ — фаза колебаний; $varphi $ и ${varphi }_1$ — начальные фазы колебаний.
  • В экспоненциальном виде колебания пружинного маятника можно записать как:

[x=A{cos left({omega }_0t+varphi
ight)=A{sin left({omega }_0t+{varphi }_1
ight) } }left(2
ight),] [Re ilde{x}=Releft(Acdot exp left(ileft({omega }_0t+varphi
ight)
ight)
ight)left(3
ight).]

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

[T=2pi sqrt{frac{m}{k}}left(4
ight).]

Так как частота колебаний ($
u $) — величина обратная к периоду, то:

[
u =frac{1}{T}=frac{1}{2pi }sqrt{frac{k}{m}}left(5
ight).]

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($varphi $).

  1. Амплитуду можно найти как:
  2. начальная фаза при этом:
  3. где $v_0$ — скорость груза при $t=0 c$, когда координата груза равна $x_0$.

[A=sqrt{x^2_0+frac{v^2_0}{{omega }^2_0}}left(6
ight),] [tg varphi =-frac{v_0}{x_0{omega }_0}left(7
ight),]

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

[E_p=-frac{dF}{dx}(8)]

учитывая, что для пружинного маятника $F=-kx$,

Кинетическая энергия пружины: формула и определение

  • тогда потенциальная энергия ($E_p$) пружинного маятника равна:
  • Закон сохранения энергии для пружинного маятника запишем как:
  • где $dot{x}=v$ — скорость движения груза; $E_k=frac{m{dot{x}}^2}{2}$ — кинетическая энергия маятника.
  • Из формулы (10) можно сделать следующие выводы:

[E_p=frac{kx^2}{2}=frac{m{{omega }_0}^2x^2}{2}left(9
ight).] [frac{m{dot{x}}^2}{2}+frac{m{{omega }_0}^2x^2}{2}=const left(10
ight),]

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Примеры задач с решением

Пример 1

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600 frac{Н}{м}$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1 frac{м}{с}$?

Решение. Сделаем рисунок.

Кинетическая энергия пружины: формула и определение

  1. По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:
  2. где $E_{pmax}$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_{kmax }$ — кинетическая энергия шарика, в момент прохождения положения равновесия.
  3. Потенциальная энергия равна:

[E_{pmax}=E_{kmax }left(1.1
ight),] [E_{kmax }=frac{mv^2}{2}left(1.2
ight).] [E_{pmax}=frac{k{x_0}^2}{2}left(1.3
ight).]

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

[frac{mv^2}{2}=frac{k{x_0}^2}{2}left(1.4
ight).]

  • Из (1.4) выразим искомую величину:
  • Вычислим начальное (максимальное) смещение груза от положения равновесия:
  • Ответ. $x_0=1,5$ мм

[x_0=vsqrt{frac{m}{k}}.] [x_0=1cdot sqrt{frac{0,36}{1600}}=1,5 cdot {10}^{-3}(м).]

Пример 2

Задание. Пружинный маятник совершает колебания по закону: $x=A{cos left(omega t
ight), } $где $A$ и $omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_{p0}$.
В какой момент времени это произойдет?

  1. Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:
  2. Потенциальную энергию колебаний груза найдем как:
  3. В момент времени, который следует найти $F=F_0$; $E_p=E_{p0}$, значит:
  4. Ответ. $t=frac{1}{omega } arc{cos left(-frac{2E_{p0}}{AF_0}
    ight) }$

[F=-kx=-kA{cos left(omega t
ight)left(2.1
ight). }] [E_p=frac{kx^2}{2}=frac{kA^2{{cos }^2 left(omega t
ight) }}{2}left(2.2
ight).] [frac{E_{p0}}{F_0}=-frac{A}{2}{cos left(omega t
ight) } o t=frac{1}{omega } arc{cos left(-frac{2E_{p0}}{AF_0}
ight) }.]

Читать дальше: формулы равноускоренного прямолинейного движения.

Источник: https://www.webmath.ru/poleznoe/fizika/fizika_150_formuly_pruzhinnogo_majatnika.php

Какие величины определяют потенциальную энергию растянутой пружины

  • Кинематика (19)
  • Динамика и статика (32)
  • Гидростатика (5)
  • Молекулярная физика (25)
  • Уравнение состояния (3)
  • Термодинамика (15)
  • Броуновское движение (6)
  • Прочие формулы по молекулярной физике (1)
  • Колебания и волны (22)
  • Оптика (9)
  • Геометрическая оптика (3)
  • Физическая оптика (5)
  • Волновая оптика (1)
  • Электричество (39)
  • Атомная физика (15)
  • Ядерная физика (3)
    • Квадратный корень, рациональные переходы (1)
    • Квадратный трехчлен (1)
    • Координатный метод в стереометрии (1)
    • Логарифмы (1)
    • Логарифмы, рациональные переходы (1)
    • Модуль (1)
    • Модуль, рациональные переходы (1)
    • Планиметрия (1)
    • Прогрессии (1)
    • Производная функции (1)
    • Степени и корни (1)
    • Стереометрия (1)
    • Тригонометрия (1)
    • Формулы сокращенного умножения (1)

    Потенциальная энергия упруго деформированного тела — физическая величина, равная половине произведения жесткости тела на квадрат его деформации.

    Энергию деформированного упругого тела также называют энергией положения или потенциальной энергией (ее называют чаще упругой энергией), так как она зависит от взаимного положения частей тела, например витков пружины.

    Работа, которую может совершить растянутая пружина при перемещении ее конца, зависит только от начального и конечного растяжений пружины.

    Найдем работу, которую может совершить растянутая пружина, возвращаясь к не растянутому состоянию, то есть найдем упругую энергию растянутой пружины.

    Кинетическая энергия пружины: формула и определениеКинетическая энергия пружины: формула и определение

    Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

    Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, то есть чем больше коэффициент упругости, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной силе, растянувшей ее. Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на путь точки приложения силы.

    Тут мы использовали :

    Читать также:  Подключение шуруповерта к зарядному устройству напрямую

    • Груз мас­сой m, под­ве­шен­ный к пру­жи­не, со­вер­ша­ет ко­ле­ба­ния с пе­ри­о­дом T и ам­пли­ту­дой Что про­изой­дет с пе­ри­о­дом ко­ле­ба­ний, мак­си­маль­ной по­тен­ци­аль­ной энер­ги­ей пру­жи­ны и ча­сто­той ко­ле­ба­ний, если при не­из­мен­ной ам­пли­ту­де умень­шить массу груза?
    • Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:
    • 3) не из­ме­ни­лась.

    За­пи­ши­те в таб­ли­цу вы­бран­ные цифры для каж­дой фи­зи­че­ской ве­ли­чи­ны. Цифры в от­ве­те могут по­вто­рять­ся.

    Пе­ри­од ко­ле­ба­ний Мак­си­маль­ная по­тен­ци­аль­ная

    энер­гия пру­жи­ны

    Ча­сто­та ко­ле­ба­ний

    Пе­ри­од ко­ле­ба­ний свя­зан с мас­сой груза и жест­ко­стью пру­жи­ны k со­от­но­ше­ни­ем При умень­ше­нии массы пе­ри­од ко­ле­ба­ний умень­шит­ся. Ча­сто­та об­рат­но про­пор­ци­о­наль­на пе­ри­о­ду, зна­чит, ча­сто­та уве­ли­чит­ся.

    С мак­си­маль­ной по­тен­ци­аль­ной энер­ги­ей пру­жи­ны все не­мно­го слож­нее. Для от­ве­та на во­прос, что с ней про­изой­дет су­ще­ствен­но, что пру­жи­на ори­ен­ти­ро­ва­на вер­ти­каль­но (для го­ри­зон­таль­но­го пру­жин­но­го ма­ят­ни­ка при не­из­мен­ной ам­пли­ту­де дан­ная ве­ли­чи­на, есте­ствен­но, оста­нет­ся не­из­мен­ной).

    Дей­стви­тель­но, когда к вер­ти­каль­ной пру­жи­не под­ве­ши­ва­ют груз, она сразу не­мно­го рас­тя­ги­ва­ет­ся, чтобы урав­но­ве­сить силу тя­же­сти, дей­ству­ю­щую на груз.

    Опре­де­лим это на­чаль­ное рас­тя­же­ние: Имен­но это со­сто­я­ние яв­ля­ет­ся по­ло­же­ни­ем рав­но­ве­сия для вер­ти­каль­но­го пру­жин­но­го ма­ят­ни­ка, ко­ле­ба­ния про­ис­хо­дят во­круг него, груз под­ни­ма­ет­ся и опус­ка­ет­ся из этого по­ло­же­ния на ве­ли­чи­ну ам­пли­ту­ды.

    При дви­же­нии вниз из по­ло­же­ния рав­но­ве­сия пру­жи­на про­дол­жа­ет рас­тя­ги­вать­ся, а зна­чит, по­тен­ци­аль­ная энер­гия пру­жи­ны про­дол­жа­ет уве­ли­чи­вать­ся. При дви­же­нии вверх из по­ло­же­ния рав­но­ве­сия, спер­ва де­фор­ма­ция пру­жи­ны умень­ша­ет­ся, а если то пру­жи­ны нач­нет сжи­мать­ся.

    Мак­си­маль­ной по­тен­ци­аль­ной энер­гии пру­жи­ны со­от­вет­ству­ет со­сто­я­ние, когда она мак­си­маль­но рас­тя­ну­та, а зна­чит, в нашем слу­чае, это по­ло­же­ние, когда груз опу­стил­ся мак­си­маль­но вниз. Таким об­ра­зом, мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны равна

    Из этой фор­му­лы видно, что для вер­ти­каль­но­го пру­жин­но­го ма­ят­ни­ка при не­из­мен­ной ам­пли­ту­де и умень­ше­нии массы груза мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны умень­шит­ся.

    Встречается довольно большое количество различных механизмов, частью которых является пружина. Этот конструктивный элемент характеризуется довольно большим количество различных особенностей, которые должны учитываться. Примером можно назвать понятие потенциальной энергии пружины. Рассмотрим все особенности данного вопроса подробнее.

    Понятие потенциальной энергии пружины

    При рассмотрении того, что такое потенциальная энергия пружины следует уделить внимание самому понятию – свойство, которым могут обладать тела при нахождении на земле. Этот момент определяет то, что ей могут обладать самые разнообразные изделия, в том числе рассматриваемое. К особенностям рассматриваемого понятия можно отнести следующее:

    1. Потенциальная энергия в рассматриваемом случае формируется по причине изменения состояния. Даже при несущественном смещении витков относительно друг друга считается изменением состояния подобного изделия.
    2. Для того чтобы изменить состояние изделия совершается определенное действие. Зачастую для этого проводится прикладывание усилия. При этом важно провести расчет требуемого усилия для сжатия витков.
    3. После выполнения определенной работы большая часть усилия, которое было потрачено на выполнение действия высвобождается при определенных обстоятельствах. Как правило, этот процесс предусматривает возврат витков в свое первоначальное положение. Это достигается за счет особой формы изделия, а также применения соответствующего материала, который обладает повышенной упругостью. Именно за счет этого свойства зачастую проводится установка рассматриваемого изделия. Показатель может достигать весьма высоких показателей, которой достаточно для реализации различных задач. Распространенным примером можно назвать установку пружины в запорных и предохранительных элементах, которые отвечают за непосредственное возращение запорного элемента в требуемое положение.

    Читать также:  Проверка работоспособности диода шотки sr56ked

    Она также широко применяется при создании самых различных механизмов, к примеру, заводных часов. При проектировании различных механизмов учитывается закон сохранения механической силы, которая характеризуется довольно большим количеством особенностей.

    Закон сохранения механической энергии

    Согласно установленным законам механическое воздействие консервативной механической системы сохраняется во времени. Этот момент определяет то, что потенциальная энергия деформированной пружины не может возникнуть сама или исчезнуть куда-нибудь. Именно поэтому для ее создания нужно приложить соответствующее усилие.

    Рассматриваемый закон относится к категории интегральных равенств. Эта закономерность определяет то, что он складывается их действия дифференциальных законов, является свойством или признаком совокупного воздействия.

    Для проведения соответствующих расчетов должна применяться определенная формула. Сила, с которой оказывается воздействие, не является постоянной. Именно поэтому для ее вычисления применяется графический метод.

    Самая простая зависимость может быть описана следующим образом: F=kx.

    При применении подобной зависимости построенная координатная линия будет представлена прямой линией, которая расположена под углом относительно системы координат.

    Приписать подобному устройству потенциальную энергию можно только в том случае, если она равна максимальной работе и не зависит от условной траектории движения. Проведенные исследования указывают на то, что подобная работа подчиняется закону Гука. Для определения основного показателя применяется следующая формула: U=kk2/2.

    Для деформирования витков к ним должно быть приложено определенное усилие, так как в противном случае кинетическая сила не возникнет.

    Динамика твердого тела

    Некоторые определить выражения (определяется при применении наиболее подходящих формул) можно только с учетом правил, касающихся динамики твердых объектов. Этому вопросу посвящен целый раздел. При расчете потенциальной энергии сжатой пружины также применяются некоторые законы этого раздела

    Динамика твердого тела рассматривается по причине того, что в большинстве случаев механизм совершает действие, связанное с непосредственным перемещением какого-либо объекта.

    Рассматриваемое свойство изделия может изменяться в зависимости от динамики твердого тела. Это связано с тем, что на изделие оказывается и воздействие со стороны окружающей среды. Примером можно назвать трение или нагрев.

    Читать также:  Сверло для колки дров

    Момент силы и момент импульса относительно оси

    Рассмотрение деформации пружины проводится также с учетом момента силы и импульса относительно оси. Эти два параметра позволяют рассчитать все требуемые показатели с более высокой точностью. Довольно распространенным вопросом можно назвать чему равен момент силы – векторная величина, которая определяется векторному произведению радиуса на вектор приложенной силы.

    Момент импульса – величина, которая применяется для определения количества вращательного движения.

    Среди особенностей подобного показателя можно отметить следующее:

    1. Масса вращения. Объект может характеризоваться различной массой.
    2. Распределение относительно оси. Ось может быть расположена на различном расстоянии от самого объекта.
    3. Скорость вращения. Это свойство считается наиболее важным, в зависимости от конструкции он может быть постоянным или изменяться.

    Расчет каждого показателя проводится при применении соответствующей формулы. В некоторых случаях проводится измерение требуемых вводных данных, без которых провести вычисления не получится.

    Уравнение движения вращающегося тела

    Рассматривая подобное свойство также следует уделить внимание уравнению движения вращающегося тела. Не стоит забывать о том, что вращательное движение твердого тела характеризуется наличием как минимум двух точек. При этом отметим нижеприведенные особенности:

    1. Прямая, которая соединяет две точки, выступает в качестве оси вращения.
    2. Есть возможность провести определение места положения объекта в случае вычисления заднего угла между двумя плоскостями.
    3. Наиболее важным показателем можно назвать угловую скорость. Она связана с инерцией, которая возникает при вращении объекта.

    Для вычисления угловой скорости применяется специальная формула, которая выглядит следующим образом: w=df/dt. В некоторых случаях проводится вычисление углового ускорения, которое также является важной величиной.

    Источник: https://morflot.su/kakie-velichiny-opredeljajut-potencialnuju/

    Кинетическая и потенциальная энергия

    Энергия — это фундаментальная физическая величина означающая возможности тела производить работу; чем больший запас энергии имеет тело, тем большую работу оно сможет совершить. Различают разные виды энергии: потенциальную, кинетическую, внутреннею, электромагнитную, ядерную.

    Рассмотрим здесь определения и примеры кинетической и потенциальной энергий; часто эти два вида энергий объединяют общим понятием механической энергии.
    Кинетическая энергия пружины: формула и определение

    Под действием силы F тело массы m начинает движение, и его скорость v будет претерпевать изменения. Попробуем найти связь между работой A, совершенной силой F, и изменением скорости. По определению работа А будет равна произведению силы F на величину смещения s:

    • $A = F*s$ (1),
    • Сила, по второму закону Ньютона, равна:
    • $F = m*a$ (2),
    • где a — ускорение.
    • Из законов механики известно, что модуль смещения s при равноускоренном прямолинейном движении связан с модулями начальной v1 и конечной v2 скоростей и ускорения a следующей формулой;
    • $s = {{v_2^2-v_1^2}over {2*a}}$ (3).
    • Отсюда следует выражение для работы:
    • $A=F*s=m*a*{{v_2^2 – v_1^2}over 2*a}={m*v_2^2over 2}-{m*v_1^2over 2}$ (4).

    Физическая величина, равная половине произведения массы тела m на квадрат его скорости, называется кинетической энергией тела Ek. Слово “кинетическая” имеет латинское происхождение (“кинема” — движение).

    1. $E_k = {m*v^2over 2}$ (5).
    2. Тогда для работы A получим следующую формулу:
    3. $A = E_{k2} – E_{k1}$ (6).

    Таким образом, работа силы, приложенной к телу, равна изменению кинетической энергии тела. Поэтому любое движущееся тело обладает кинетической энергией.

    Рис. 1. Примеры кинетической энергии:.

    Потенциальная энергия — это энергия, которая основывается на взаимном расположении взаимодействующих тел (или частей одного тела). Слово “потенциальная” имеет латинское происхождение (“potentialis” — мощный, могущий).

    Одно тело, не взаимодействующее с другими телами, не может обладать потенциальной энергией. Потенциальная энергия — это энергия взаимодействия тел.

    Разберем два основных примера по теме потенциальной энергии: энергия тела, на которое воздействует сила земного притяжения и энергия упруго деформированного тела.

    По аналогии с кинетической энергией определим работу A, совершенную силой тяжести FТ по перемещению тела массой m с высоты h1 от поверхности Земли до высоты h2. При этом h1 > h2, то есть тело переместилось сверху вниз. Считаем силу тяжести постоянной, независящей от высоты и равной m*g, где g = 9,8 м/с2 — ускорение свободного падения. Тогда, воспользовавшись формулой (1), получим:

    • $A = m*g*(h_1 – h_2)$ (7)
    • Таким образом, работа силы тяжести по переходу тела с высоты h1 на высоту h2 от поверхности Земли равна изменению величины m*g*h, которая и называется потенциальной энергией тела Ep:
    • $Ep = {m*g*h}$ (8)
    • Величина работы есть ничто иное, как изменение энергии тела, в данном случае потенциальной:
    • $A = E_{p1} – E_{p2}$ (9).

    Рис. 2. Потенциальная энергия тела в поле силы тяжести:.

    Если за нулевой уровень (точку отсчета) взята поверхность Земли, то на глубине h тело будет обладать отрицательной потенциальной энергией:

    $Ep = – {m*g*h}$

    Если к пружине с жесткостью k на горизонтальной поверхности присоединить грузик, вытянуть пружину, а затем отпустить грузик, то под действием силы упругости пружины грузик придет в движение и сдвинется на определенное расстояние. Попробуем снова вычислить работу, которую совершит сила упругости при удлинении пружины от начального положения x1 до конечного х2.

    Рис. 3. Потенциальная энергия пружины:.

    1. Сила упругости будет изменяться в зависимости от размера деформации. Работа, произведенная силой упругости Fу при смещении пружины из точки x1 в точку x2, будет равна:
    2. $A = F_у (x_1 – x_2)$ (10).
    3. Сила упругости по закону Гука прямо пропорциональна деформации пружины, и среднее ее значение равно:
    4. $F_{уср} = k*{ (x_1 + x_2)over 2}$ (11).
    5. Подставив в (10) вместо Fу значение из уравнения (11), получаем:
    6. $A = k*{ (x_1 + x_2)over 2} *(x_1 – x_2)= {k *( x_1^2 – x_2^2)over 2}$ (12).
    7. Уравнение (12) можно представить в несколько другом виде:
    8. $A = {k*x_1^2over 2} – { k*x_2^2over 2}$ (13).
    9. Из уравнения (13) видно, что работа равна разности величины потенциальной энергии Ep в точках х1 и х2:
    10. $Ep = {k*x^2over 2}$ (14),

    Из уравнений (13) и (14) следует, что работа силы упругости равна изменению потенциальной энергии пружины. Если в конечной точке х2=0, т.е. пружина не деформирована, то:

    $Ep = A$ (15).

    Значит потенциальная энергия деформированного тела равна работе, совершенной силой упругости при переходе тела в состояние с нулевой деформацией.

    Причина возникновения сил упругости кроется во взаимодействии атомов и молекул тела. При сжимании возникают силы отталкивания между атомами, а при растяжении — силы притяжения, которые стремятся восстановить начальные размеры.

    Атомы и молекулы в своем составе имеют электроны и протоны — частицы с электрическими зарядами. В результате деформаций изменяются взаимные положения атомов и молекул. Электрические силы стремятся вернуть атомы в начальное положение.

    Так возникает сила упругости.

    Модули упругости различных тел рассчитываются с помощью специальных математических моделей на основании экспериментальных данных. Значения модулей упругости для различных материалов приведены в справочных таблицах.

    Итак, мы узнали, что такое кинетическая и потенциальная энергии. С помощью базовых определений выведены формулы кинетической и потенциальной энергии (5), (8) и (14). Потенциальной энергией не может обладать одно тело — это энергия взаимодействия тел. Кинетической энергией обладает любое движущееся тело.

    Средняя оценка: 4.6. Всего получено оценок: 263.

    Источник: https://obrazovaka.ru/fizika/kineticheskaya-i-potencialnaya-energiya-primery.html

    Максимальная кинетическая энергия груза: формула

    Определение 1

    Кинетическая энергия — внутренняя энергия движущегося тела, обусловленная его инертностью (массой) и скоростью. Она равна энергии, которую нужно затратить, чтобы снизить скорость этого тела до нуля.

    Например, движущийся автомобиль невозможно остановить мгновенно. Для остановки необходимо затратить энергию трения тормозных колодок о тормозные диски колес и шин об асфальт.

    Замечание 1

    Кинетическая и потенциальная энергия измеряются в джоулях ($1 Дж = Н cdot м$).

    В некоторых физических системах происходят циклические преобразования потенциальной (запасенной) энергии в кинетическую и обратно. Такие системы называются маятниками.

    Например, для груза, подвешенного на нити, потенциальная энергия максимальна, когда он отклонен на максимальный угол от вертикали. Мгновенная скорость груза в этот момент равна нулю и, следовательно, нулю равна и кинетическая энергия.

    По мере движения вниз под действием силы тяжести, скорость груза нарастает и достигает максимума в нижней точке, после чего снова начинает запасаться по мере движения вверх.

    Кинетическая энергия пружины: формула и определение

    Ничего непонятно?

    Попробуй обратиться за помощью к преподавателям

    Проще всего изучать переход кинетической и потенциальной энергий друг в друга на примере пружинного маятника, где действует, если пренебречь силой трения, лишь сила упругости. Когда пружину сжимают, энергия запасается. Когда отпускают — потенциальная энергия, сохраненная в кристаллической решетке материала, высвобождается и превращается в кинетическую, разгоняя груз.

    Когда скорость груза достигает максимума, он продолжает движение по инерции, растягивая пружину в противоположном направлении, вновь запасая энергию и снижая скорость. Характеристики такого колебательного движения зависят только от материала пружины, толщины проволоки, из которой она намотана, диаметра и количества витков.

    Все эти факторы описываются единым параметром — коэффициентом упругости.

    Максимальная кинетическая энергия груза

    Для простого пружинного маятника полную энергию груза в любой момент времени можно выразить как

    $E = E_p + E_k = frac{m cdot v^2}{2} + frac{k cdot x^2}{2}$, где:

    • $E_p$ — потенциальная энергия,
    • $E_k$ — кинетическая энергия,
    • $m$ — масса,
    • $v$ — моментальная скорость,
    • $k$ — коэффициент упругости,
    • $x$ — приращение длины пружины в данный момент.

    Максимальную кинетическую энергию можно вычислить как

    $(E_k)_{max} = frac{m cdot v_{max}^2}{2}$,

    где $v_{max}$ — максимальная скорость груза. Однако измерить ее на практике сложно. Проще, опираясь на постоянство суммы кинетической и потенциальной энергий, определить максимальную потенциальную (когда кинетическая равна нулю). Поскольку справедливо и обратное, можно записать:

    $(E_k)_{max} = (E_p)_{max} = frac{k cdot x_{max}^2}{2}$,

    где $x_{max}$ — максимальное приращение растяжения пружины. Его легко измерить, а коэффициент упругости посмотреть в справочнике.

    Пример 1

    Компактный груз, массой 0,5 кг прикреплен к движущейся горизонтально пружине. Ее коэффициент упругости равен 2000 $frac{Н}{м}$. Каково было начальное приращение длины пружины, если его максимальная скорость во время колебаний составляет 1 $frac{м}{с}$?

    • Из условий задачи можно найти максимальную кинетическую энергию груза:
    • $(E_k)_{max} = frac{0,5 cdot 1^2}{2} = 0,25 Дж$
    • Выразив максимальную потенциальную энергию через приращение длины пружины, составим равенство:
    • $0,25 = frac{2000 cdot x_{max}^2}{2} implies x_{max} = sqrt{frac{2 cdot 0,25}{2000}} approx 0,016 м$.
    • Ответ: $approx 1,6 мм$.

    Источник: https://spravochnick.ru/fizika/maksimalnaya_kineticheskaya_energiya_gruza_formula/

    Какие величины определяют потенциальную энергию растянутой пружины. Потенциальная энергия деформации

    Деформированное упругое тело (например, растянутая или сжатая пружина) способно, возвращаясь в недеформированное состояние, совершить работу над соприкасающимися с ним телами. Следовательно, упруго деформированное тело обладает потенциальной энергией.

    Она зависит от взаимного положения частей тела, например витков пружины. Работа, которую может совершить растянутая пружина, зависит от начального и конечного растяжений пружины. Найдем работу, которую может совершить растянутая пружина, возвращаясь к нерастянутому состоянию, т. е.

    найдем потенциальную энергию растянутой пружины.

    Пусть растянутая пружина закреплена одним концом, а второй конец, перемещаясь, совершает работу. Нужно учитывать, что сила, с которой действует пружина, не остается постоянной, а изменяется пропорционально растяжению.

    Если первоначальное растяжение пружины, считая от нерастянутого состояния, равнялось /> , то первоначальное значение силы упругости составляло , где — коэффициент пропорциональности, который называют жесткостью пружины. По мере сокращения пружины эта сила линейно убывает от значения до нуля.

    Значит, среднее значение силы равно . Можно показать, что работа равна этому среднему, умноженному на перемещение точки приложения силы:

    Таким образом, потенциальная энергия растянутой пружины

    Такое же выражение получается для сжатой пружины.

    В формуле (98.1) потенциальная энергия выражена через жесткость пружины и через ее растяжение . Заменив на , где — упругая сила, соответствующая растяжению (или сжатию) пружины , получим выражение

    которое определяет потенциальную энергию пружины, растянутой (или сжатой) силой . Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, т.е.

    чем больше ее упругость, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной растягивающей, силе.

    Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на перемещение точки приложения силы, т. е. работа.

    Эта закономерность имеет большое значение, например, при устройстве различных рессор и амортизаторов: при посадке на землю самолета амортизатор шасси, сжимаясь, должен произвести большую работу, гася вертикальную скорость самолета.

    В амортизаторе с малой жесткостью сжатие будет больше, зато возникающие силы упругости будут меньше и самолет будет лучше предохранен от повреждений.

    По той же причине при тугой накачке шин велосипеда дорожные толчки ощущаются резче, чем при слабой накачке.

    Согласно выражению (3.12), потенциальная энергия системы есть максимальная положительная работа, которую могут совершить действующие в системе внутренние силы.

    Рассчитаем потенциальную энергию сжатой или растянутой упругой пружины; внутренние силы действующие на концах пружины, направлены против внешних деформирующих сил и по величине пропорциональны деформации (рис. 1.27, а):

    где коэффициент упругости пружины. Вычислим работу, которую могут совершать внутренние силы при переходе пружины из деформированного состояния в нормальное (недеформированное); эта работа всегда положительная.

    При изменении длины пружины на очень малую величину силы можно считать почти постоянными, а их работа будет равна Графически эта работа изображается площадкой, заштрихованной на рис. 1.27, б.

    Полная работа внутренних сил при переходе в нормальное состояние представлена, очевидно, площадью треугольника Эта работа и есть потенциальная энергия деформированной пружины

    Источник: https://crazylike.ru/what-quantities-determine-the-potential-energy-of-the-stretched-spring-potential-strain-energy.html

    Работа силы упругости равна изменению потенциальной энергии пружины

    Изучение закона сохранения механической энергии при действии на тело сил тяжести и упругости

    I. Подготовительная часть.

    • 1)Внимательно просмотрите видеоролики и в процессе просмотра запишите основные сведения по теме «Закон сохранения энергии» в тетрадь для практических работ.
    • 2)Для выполнения практической работы №2 необходимо повторить конспект занятия №3 «Законы сохранения энергии» и прочитать и проанализировать следующий текст.
    • Потенциальная энергия

    Камень, упав с некоторой высоты на Землю, оставляет на поверхности Земли вмятину. Во время падения он совершает работу по преодолению сопротивления воздуха, а после касания земли – работу по преодолению силы сопротивления почвы, поскольку обладает энергией.

    Если накачивать в закрытую пробкой банку воздух, то при некотором давлении воздуха пробка вылетит из банки, при том воздух совершит работу по преодолению трения пробки о горло банки, благодаря тому, что воздух обладает энергией.

    Таким образом, тело может совершить работу, если оно обладает энергией.

    При совершении работы изменяется состояние тела и изменяется его энергия. Изменение энергии равно совершенной работе (поэтому и единица измерения энергии, и единица работы – Дж).

    1. Потенциальной энергиейназывают энергию взаимодействия тел или частей тела, зависящую от их взаимного расположения.
    2. Поскольку тела взаимодействуют с Землей, то они обладают потенциальной энергией взаимодействия с Землей.
    3. Если тело массой m падает с высоты до высоты , то работа силы тяжести на участке равна: или (рис 1).
    4. т
    5. h=s
    6. рис. 1

    В полученной формуле характеризует начальное положение (состояние) тела, характеризует конечное положение (состояние) тела. Величина — потенциальная энергия тела в начальном состоянии; величина потенциальная энергия тела в конечном состоянии.

    Можно записать , или , или . Таким образом, работа силы тяжести равна изменению потенциальной энергии тела.

    Знак «-» означает, что при движении тела вниз и соответственно при совершении силой тяжести положительной работы потенциальная энергия тела уменьшится.

    Если тело поднимается вверх, то работа силы тяжести отрицательна, а потенциальная энергия тела увеличивается.

    Если тело находится на некоторой высоте h относительно поверхности Земли, то его потенциальная энергия, в данном состоянии равна . Значение потенциальной энергии зависит от того, относительно какого уровня она отсчитывается. Уровень, на котором потенциальная энергия равна нулю, называют нулевым уровнем.

    В отличие от кинетической энергии потенциальной энергией обладают покоящиеся тела. Поскольку потенциальная энергия – это энергия взаимодействия, то она относится не к одному телу, а к системе взаимодействующих тел. В данном случае эту систему составляют Земля и поднятое над ней тело.

    Потенциальной энергией обладают упруго деформированные тела. Предположим, что левый конец пружины закреплен, а к правому ее концу прикреплен груз. Если пружину сжать, сместив правый ее конец на , то в пружине возникает сила упругости , направленная вправо (рис 2).

    • рис. 2
    • Если теперь предоставить пружину самой себе, то ее правый конец переместится, удлинение пружины будет равно , а сила упругости .
    • Работа силы упругости равна изменению потенциальной энергии пружины.
    • потенциальная энергия пружины в начальном состоянии
    • потенциальная энергия пружины в конечном состоянии
    1. При растяжении и сжатии пружины сила упругости совершает отрицательную работу, потенциальная энергия пружины увеличивается, а при движении пружины к положению равновесия сила упругости совершает положительную работу, а потенциальная энергия уменьшается.
    2. Если пружина деформирована и ее витки смещены относительно положения равновесия на расстояние x, то потенциальная энергия пружины в данном состоянии равна .
    3. Теорема о потенциальной энергии:Физическое тело (или система тел) всегда будет стремится занять такое положение, в котором потенциальная энергия равна 0 или минимальна относительно других положений этого тела.
    4. Кинетическая энергия

    Движущиеся тела так же могут совершать работу. Например, движущийся поршень сжимает находящийся в цилиндре газ, движущийся снаряд пробивает мишень и т.п. следовательно, движущиеся тела обладают энергией. Энергия, которой обладает движущееся тело, называется кинетической энергией.Кинетическая энергия зависит от массы тела и его скорости:

    Это следует из преобразования формулы работы.

    Работа . Сила . Подставив это выражение в формулу работы, получим .

    • Так как , то или , где
    • кинетическая энергия тела в первом состоянии
    • кинетическая энергия тела во втором состоянии

    Таким образом, работа силы равна изменению кинетической энергии тела , или . Это утверждение – теорема о кинетической энергии. если сила совершает положительную работу, то кинетическая энергия увеличивается, если работа силы отрицательная, то кинетическая энергия тела уменьшается.

    1. Механическая энергия
    2. Полная механическая энергия Е тела – физическая величина, равная сумме его потенциальной и кинетической энергии: .
    3. Закон сохранения механической энергии:Полная механическая энергия замкнутой системы тел, между которыми действуют консервативные силы (силы тяготения или силы упругости) сохраняется.
    4. где и — потенциальная энергия и кинетическая энергия тела в состоянии 1 или в момент времени 1,
    5. где и — потенциальная энергия и кинетическая энергия тела в состоянии 2 или в момент времени 2.
    6. Консервативная сила –сила, работа которой при перемещении материальной точки зависит только от начального и конечного положения точки в пространстве.
    7. В реальных системах действуют силы трения, которые не являются консервативными, поэтому в таких системах полная механическая энергия не сохраняется, она превращается во внутреннюю энергию.
    8. 3)Для удачного выполнения заданий теста изучите приведенные ниже примеры пошагового решения задач на использование закона сохранения энергии

    Пример 1:Тело массой 10 кг свободно падает с высоты 20 м из состояния покоя. Чему равна кинетическая энергия в момент удара о Землю? В какой точке траектории кинетическая энергия втрое больше потенциальной? Сопротивлением воздуха пренебречь.

    № шага Алгоритм Выполнение
    1. Внимательно прочитайте текст задачи Тело массой 10 кг свободно падает с высоты 20 м из состояния покоя. Чему равна кинетическая энергия в момент удара о Землю? В какой точке траектории кинетическая энергия втрое больше потенциальной? Сопротивлением воздуха пренебречь.
    2. Запишите в «Дано» буквенное обозначение и числовое значение известных по тексту физических величин. Необходимо знать ускорение свободного падения (в некоторых задачах разрешается округлять до значения ) Дано: т=10 кг 20 м
    3. Под горизонтальной чертой запишите буквенное обозначение неизвестной (искомой) величины, знак «=» и «?»
    4. Проверьте, все ли величины выражены в системе СИ. Если нет, то переводим и записываем результат в столбик «в СИ» В данной задаче все величины изначально по условию в системе СИ, и соответственно столбик «в СИ» пропускаем.
    5. Под словом «Решение» 1) изображаем схематический чертеж, поясняющий ситуацию в задаче, Состояние 0 т Состояние 2 Состояние 1
    2) затем записываем закон сохранения энергии в общем виде Согласно закону сохранения энергии, так как система замкнутая
    3) дальнейшие рассуждения Примем за тело отсчета Землю, тогда: Учитывая, что , , получим: или (1) Запишем закон сохранения энергии для точки траектории, где : Учитывая, что и , получим: , откуда (2)
    6. Подставьте числовые значения, вместе с единицами измерения, проведите расчет и работу с единицами измерения (1) (2)
    7. Запишите ответ Ответ: , .

    Пример 2:Камень брошен вертикально вверх со скоростью . На какой высоте кинетическая энергия камня будет равна его потенциальной энергии? Сопротивлением воздуха пренебречь.

    № шага Алгоритм Выполнение
    1. Внимательно прочитайте текст задачи Камень брошен вертикально вверх со скоростью . На какой высоте кинетическая энергия камня будет равна его потенциальной энергии? Сопротивлением воздуха пренебречь.
    2. Запишите в «Дано» буквенное обозначение и числовое значение известных по тексту физических величин. Необходимо знать ускорение свободного падения (в некоторых задачах разрешается округлять до значения )   Дано: 0
    3. Под горизонтальной чертой запишите буквенное обозначение неизвестной (искомой) величины, знак «=» и «?»  
    4. Проверьте, все ли величины выражены в системе СИ. Если нет, то переводим и записываем результат в столбик «в СИ» В данной задаче все величины изначально по условию в системе СИ, и соответственно столбик «в СИ» пропускаем.
    5. Под словом «Решение» 4) изображаем схематический чертеж, поясняющий ситуацию в задаче, Состояние 0 т Состояние 2 , Состояние 1
    5) затем записываем закон сохранения энергии в общем виде Согласно закону сохранения энергии, так как система замкнутая . Также можно записать .
    6) дальнейшие рассуждения Так как камень брошен с Земли, то и , то . Учитывая, что , тогда получим . Следовательно,
    6. Подставьте числовые значения, вместе с единицами измерения, проведите расчет и работу с единицами измерения
    7. Запишите ответ Ответ:

    Источник: https://megaobuchalka.ru/5/37239.html

    Ссылка на основную публикацию
    Adblock
    detector