Как сделать разрядник своими руками

Для любого лазера, работающего в импульсном режиме, требуется устройство, которое коммутирует энергию источника питания лазера на активное вещество или же лампу-вспышку. В коммерческих лазерах функцию коммутатора выполняют разнообразные полупроводниковые или газоразрядные устройства.

В частности, одним из лучших коммутаторов для импульсных газоразрядных лазеров является водородный тиратрон, позволяющий формировать короткие импульсы высокого напряжения. Существует множество разновидностей водородных тиратронов, рассчитанных на разные токи и напряжения.

На фото внизу показана отечественная конструкция водородного тиратрона типа ТГИ1- 1000/25.

Как сделать разрядник своими руками

Этот прибор способен коммутировать импульсный ток 1000 А при напряжении на аноде 25 кВ.
Конечно, такая штука пригодится в мастерской любителя лазеростроения. Однако это дорогое удовольствие.

Купить водородный тиратрон можно, но не у всех есть возможность выкладывать  ~ 10 000 руб за штуку. Кроме того, высоковольтные водородные тиратроны слишком громоздки. К примеру, габариты показанного на фото выше тиратрона ~ 110 х 160 мм.

Поэтому для домашнего самоделкина будет проще и гораздо дешевле изготовить самодельный коммутатор, представляющий собой искровой разрядник.

Самый простой вариант искрового разрядника – это двухэлектродный не управляемый разрядник, работающий на воздухе. В Интернете можно найти множество описаний того, как изготовить такой разрядник. Тем не менее, на рисунке ниже приведу вариант схемки двухэлектродного разрядника.

Как сделать разрядник своими руками 1 — контакт разрядника (обрезок дюралевого профиля типа «уголок»)
2 — электрод разрядника (стальная гайка-колпак)
3 — прижимная гайка

4 — винт

На фото ниже показана гайка-колпак (колпачковая гайка), которую можно использовать в качестве электрода разрядника.

Как сделать разрядник своими руками Конкретные размеры разрядника не имеют принципиального значения. Для получения коротких высоковольтных импульсов нужно стремиться к уменьшению длины токоведущих элементов разрядника, а также уменьшать искровой промежуток между электродами разрядника. Чем больше диаметр электродов разрядника (2), тем выше коммутируемое напряжение при неизменной длине межэлектродного промежутка.
Подключение разрядника осуществляется через контакты (1), которые закрепляются на токоведущие линии внешней электрической цепи.

Во время работы разрядника возникает очень громкий звуковой шум, который желательно подавлять, дабы не раздражать окружающих (домочадцы, соседи и т.д.). Для подавления треска разрядника его можно поместить в какой-нибудь закрытый диэлектрический корпус.

Хорошим звукоподавителем будет резина, но и пластиковая коробка то же подойдет. Можно склеить корпус из пластин оргстекла. На фото ниже показан вид самодельного двухэлектродного искрового разрядника.

Для ослабления светового эффекта от искры внутрь корпуса дополнительно введен обрезок полипропиленовой трубки.

Как сделать разрядник своими руками

Левый по фото электрод разрядника прикручивается к дюралевой пластине, а правый электрод накручен на латунный винт (можно и стальной), который на резьбе держится в корпусе.

Правый электрод фиксируется на дюралевой пластине с помощью прижимной гайки. Такая конструкция позволяет оперативно изменять межэлектродное расстояние при неизменном положении контактных пластин разрядника.

На фото ниже показан разрядник в разобранном виде.

Как сделать разрядник своими руками

В процессе работы разрядника внутренняя поверхность его корпуса засирается (загрязняется) продуктами микроразрушения электродов (частицы металла, оксиды и т.п.), что является причиной возникновения поверхностных разрядов, которые ухудшают параметры разрядника.

В конце концов, разрядник полностью теряет свою эффективность, что проявляется в потере лазерной генерации. В таком случае требуется прочистка внутренней поверхности корпуса разрядника.

При использовании упомянутой выше полипропиленовой трубки очистку поверхности легко провести с помощью круглого напильника.

В книге Т. Рапа «Эксперименты с самодельными лазерами» приводятся более эффективные схемы самодельных разрядников, которые имеют улучшенные характеристики. Это и управляемые разрядники, и разрядники повышенного давления, и разрядники с прокачкой воздуха.

Кроме обычного двухэлектродного искрового разрядника существует и так называемый рельсовый разрядник, который состоит из нескольких промежуточных электродов. Схема такого разрядника показана на рисунке ниже.

Как сделать разрядник своими руками 1 — контакт разрядника (обрезок дюралевого профиля типа «уголок»)
2 — электрод разрядника (стальная гайка-колпак)

5 — промежуточные контакты разрядника (обрезок дюралевой пластины)

Использование нескольких промежуточных разрядников, расположенных последовательно друг за другом, позволяет повышать напряжение на электродах разрядника (1) при этом уменьшая межэлектродное расстояние. На рисунке только три промежуточных контактов.

Однако их число можно увеличить. Чем больше промежуточных электродов, тем меньше межэлектродное расстояние при неизменном напряжении на разряднике и выше крутизна получаемых импульсов.

Рельсовый разрядник дает более короткие импульсы, чем двухэлектродный разрядник.

Показанная на схеме конструкция рельсового разрядника несколько громоздка и может быть упрощена. Более практичной является схема приведенная ниже.

Как сделать разрядник своими руками 1 — диэлектрический стержень
2 — диэлектрическая прокладка

3 — металлическая шайба

На диэлектрический стержень друг за другом (через диэлектрическую прокладку) надеваются металлические шайбы. Число шайб определяется напряжением блока питания лазера и расстоянием между шайбами. Опытным путем нужно подобрать число шайб так, чтобы при подключении разрядника к высоковольтному блоку питания лазера происходил пробой разрядника. Толщину диэлектрических прокладок следует выбирать в пределах 0,5 – 1 мм. При использовании более тонких прокладок возникают поверхностные разряды, ухудшающие эффективность разрядника. Диаметр шайб особого значения не имеет и выбирается из конструктивных соображений.
В качестве диэлектрического стержня желательно использовать керамический стержень, поскольку он «держит» температуру и его поверхность можно очищать. Но можно использовать и пластмассовый стержень. В этом случае ресурс работы разрядника будет ограничен обгоранием пластика.
В качестве диэлектрической прокладки желательно использовать фторопласт, но можно обойтись и обычной полиэтиленовой пленкой. Опять же в этом случае ресурс работы разрядника будет ограничен обгоранием полиэтилена.

На фото ниже показаны этапы изготовления самодельного рельсового разрядника с использованием стальных монтажных шайб диаметром 18 мм и полиэтиленовой пленки.

  • 1. Изготовляем диэлектрический стержень
  • Вырезаем из полиэтиленовой пленки (любой толщины) полоску шириной 4 -5 см и длиной 15 — 20 см, которую сворачиваем в рулончик на какой-нибудь оправе диаметром 2 -3 мм до тех пор, пока диаметр рулончика не станет равным 5 — 6 мм.

Как сделать разрядник своими руками

С помощью ленты типа «скотч» фиксируем край свернутого рулончика и убираем оправу.

Как сделать разрядник своими руками

2. Изготовляем диэлектрические прокладки

Вырезаем из полиэтиленовой пленки кружки с отверстием в центре.
Внешний диаметр кружков ~ 12 мм, внутренний ~ 6 мм. На одну межэлектродную прокладку нужно нарезать несколько кружков, чтобы при наложении друг на друга они образовали прокладку толщиной ~ 0,5 мм.

Как сделать разрядник своими руками

3. Изготовляем промежуточные электроды

Стальные монтажные шайбы можно купить в магазинах типа «Хозтовары», «Стройматериалы» или же на рынке стройматериалов. Прежде чем использовать шайбы в разряднике, их необходимо обработать.

Все шайбы с одной стороны имеют острые кромки (дефект штамповки), которые следует округлить напильником во избежание образования коронных разрядов в процессе работы разрядника.

Во избежание образования поверхностных разрядов отверстие в шайбах с двух сторон следует несколько расширить сверлом диаметром 8 мм.

  1. 4. Собираем разрядник
  2. Насаживаем металлические шайбы на полиэтиленовый рулончик, чередуя их с прокладками.
  3. Полученную стопку промежуточных электродов помещаем внутрь обрезка полипропиленовой трубы Ø 32 мм, которая ослабляет световой и звуковой шум в процессе работы разрядника.

Теперь остается лишь зажать стопку промежуточных электродов между контактами внешней цепи и рельсовый разрядник готов.

Для облегчения крепления контактов внешней цепи к разряднику можно изменить конструкцию диэлектрического стержня.

На рисунке ниже показан вариант с использованием шпилек с резьбой М5, которые вкручены в полипропиленовую трубку. Полипропиленовая трубка взята от сифона чистящего средства («Шуманит», «Утенок» и т.д.)

1 — стальная шпилька с резьбой М5
2 — полипропиленовая трубка

3 — эпоксидная смола

  • На фото ниже показан готовый рельсовый разрядник.

Изготовленный разрядник имеет не очень большой срок службы, ибо пластик очень быстро обугливается, что приводит к перекрытию промежуточных электродов ( уголь, как известно, проводит ток) и потере лазерной генерации.
На фото ниже виды следы обгорания полиэтилена в разряднике после нескольких минут работы лазера.

Можно вместо полиэтилена использовать силиконовую трубку, из которой изготовляется диэлектрический стержень разрядника, а также межэлектродные прокладки. Однако силикон тоже не держит температуру и начинает обгорать.
На фото ниже виды следы обгорания силиконовой трубки (обрезок трубки омывателя переднего стекла автомобиля) в разряднике после нескольких минут работы лазера.

Межэлектродные прокладки изготовлены из листа фторопласта толщиной 1 мм.

Рельсовый разрядник можно изготовить не только из металлических шайб, но и из дюралюминиевых пластин. Причем можно применять даже анодированные пластины. Схема рельсового разрядника из пластин показана на рисунке ниже.

    1 – дюралевая пластина
    2 – липкая пленка типа «скотч»

    3 – полиэтиленовая пленка

    Разрядник набирается из отдельных пластин в виде стопки, которая сжимается между контактными электродами внешней цепи разрядника. Ширина и длина дюралевых пластин особого значения не имеет. Число пластин определяется напряжением блока питания лазера. Чем больше будет пластин, тем при большем напряжении произойдет пробой разрядника.

    Для предотвращения возникновения коронных разрядов кромки пластин желательно округлить напильником. Для предотвращения возникновения поверхностных разрядов концы каждой пластины обматываются двумя-тремя слоями ленты типа «скотч». Поверх ленты несколько отступив от края (5 – 7 мм) наматывается полиэтиленовая пленка.

    Число слоев выбирается так, чтобы межэлектродное расстояние в разряднике составляло 0,5 – 1 мм. В ходе экспериментов можно менять число слоев пленки. Чем больше будет межэлектродное расстояние, тем выше напряжение пробоя разрядника.
    На фото ниже показан собранный в пакет рельсовый разрядник из дюралевых пластин толщиной 2 мм и шириной 15 мм.

    Пакет сжимается по краям электродов скотч-лентой.

    • На фото ниже показан пакет пластин разрядника, размещенный в корпусе из оргстекла.

    Высоковольтный трансформатор розжига, запальный блок, источник искр своими руками

    Схема самодельного трансформатора розжига, источника искр для горелки и не только. (10+)

    Читайте также:  Как самому сделать мотоблок своими руками

    Высоковольтный трансформатор розжига, запальный блок, источник искр своими руками

    Оглавление :: ПоискТехника безопасности :: Помощь

    Самое важное:Схема дает отличную искру, пригодную для запала горелок. Она может использоваться для поджига бытового газа на плите, розжига газовых и дизельных горелок, поджигания паяльной лампы. Будьте внимательны и осторожны. Устройство питается от сетевого напряжения. Для его сборки и наладки нужно иметь квалификацию, позволяющую работать с сетевым напряжением. Изделие должно быть собрано так, чтобы пользователи, не имеющие специальной квалификации и знаний, не подверглись ударам электрического тока. Для этого все электропроводящие элементы, находящиеся под сетевым напряжением или имеющие гальваническую связь с сетью, должны быть надежно заизолированы. Разделительный трансформатор должен обеспечивать надежную изоляцию одной обмотки от другой. Используя трансформатор поджга вместо штатного с промышленной горелкой, Вы лишаетесь гарантии производителя. Кроме этого убедитесь в том, что автоматика горелки выдает на запальный трансформатор напряжение от сети, а не какой-либо другой сигнал.

    Первый раз собрать эту схему меня толкнула неисправность высоковольтного трансформатора поджига в дизельной горелке. Можно было приобрести покупной, но хотелось провести эксперимент.

    Впоследствии я стал использовать эту схему повсеместно для: поджига ручной газовой горелки, розжига пламени старой газовой плиты (тоже сгорел поджиг), запала самодельной горелки на отработанном масле, получения высокого напряжения для экспериментов и т. д. Устройство оказалось очень удачным, простым и надежным.

    Принципиальная схема, конструкция трансформатора розжига

    Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

    Как сделать разрядник своими руками

    Конденсатор C1 — 1 мкФ 600 В, не полярный. Для повышения мощности искры можно увеличить его емкость, но мне для всех моих затей оказалось достаточно этого номинала. Резистор R1 — 5 кОм 2 Вт. Его иногда приходится подбирать под конкретный тиристор.

    Тиристор может вообще не открываться, тогда надо уменьшить его номинал, либо открываться при слишком маленьком напряжении (короткая искра), тогда номинал надо увеличить. Но обычно указанный номинал прекрасно подходит. Резистор R2 — 50 Ом 1 Вт. Диод VD1 — любой, на ток 1А, напряжение от 700В (обратное постоянное напряжение). Я использую 1N5407.

    Тиристор VS1 — напряжение от 600В ток от 1А. Выбор огромен. Я использую КУ202Н или КУ202М.

    Разделительный трансформатор (Tr1) применен с единственной целью гальванической развязки схемы от сети 220В для обеспечения безопасности и исключения подачи сетевого напряжения на различные металлические детали горелки, котла и других устройств, с которыми будет работать блок.

    Этот трансформатор дополнительно позволяет использовать самые разные катушки зажигания, от мотоциклетных (6 вольт) до 24-вольтовых, от классических (с накоплением энергии) до коммутируемых транзисторными блоками зажигания. Для использования нужной катушки следует просто подобрать число витков вторичной обмотки.

    Для катушки от классики используется трансформатор, намотанный на сердечнике из трансформаторного железа 20 х 20 мм проводом 0.5 мм, каждая обмотка составляет 250 витков.

    Между обмотками нужно проложить три слоя трансформаторной бумаги, и вообще при изготовлении трансформатора обеспечить надежную изоляцию одной обмотки и ее выводов от другой обмотки и ее выводов.

    В схеме используется катушка зажигания (Tr2) от Жигулей — классики. Выбор обусловлен ее относительной дешевизной и наличием в избытке б/у совершенно бесплатно. Можно использовать и любые другие катушки, только изменить передаточное число разделительного трансформатора.

    Если Вы хотите использовать катушку от транзисторного блока зажигания, то вторичную обмотку надо сделать из 10 витков провода 1 мм, сложенного вдвое. На выходе устройства получается напряжение около 20 кВ.

    Если Вам нужно другое напряжение, то число витков вторичной обмотки разделительного трансформатора также следует изменить пропорционально нужному напряжению. Например, чтобы получить 10 кВ, нужно 125 витков.

    Принцип работы генератора искр, искрового блока

    Принцип работы запального трансформатора прост. На диоде VD1 и конденсаторе C собран удвоитель напряжения. При одном полупериоде сетевого напряжения диод открыт, конденсатор заряжается до амплитудного значения напряжения сети (310 В).

    При другом полупериоде диод закрыт. Напряжение на нем, а значит, на тиристоре, постепенно повышается до того момента, когда ток через резистор R1 станет достаточным для открывания тиристора. Тиристор открывается.

    Происходит импульс тока, который через разделительный трансформатор передается на катушку зажигания. На высоковольтном проводе образуется высокое напряжение и искра. Конденсатор перезаряжается на напряжение обратной полярности.

    Как только это произойдет, ток падает ниже тока закрытия тиристора, и он закрывается. Схема готова к следующему циклу напряжения питания.

    Сборка и наладка трансформатора (блока) поджига

    Правильно собранный блок начинает работать сразу. Для проверки подключаем между выводами (В) и (Г) автомобильную свечу, на выводы (А) и (Б) подаем сетевое напряжение, и наблюдаем искру. Детали блока не нагреваются и не требуют установки на радиаторы.

    Я собираю схему навесным монтажом, потом клею из картона подходящую коробочку, помещаю туда схему и заливаю ее клеем 'жидкие гвозди' на основе органического растворителя (не воды). Получается монолитный блок.

    Жидкие гвозди на водной основе тоже можно использовать, но тогда нужно неделю сушить, иначе вода может что-то замкнуть.

    Как сделать разрядник своими рукамиКак сделать разрядник своими руками

    У данного устройства обнаружился существенный недостаток. Оно создает довольно сильные помехи в сети. Это связано с асимметрией его работы. Появляются четные гармоники. Предлагаю Вашему вниманию усовершенствованный блок запала, совмещенный с индикатором горения. Хотя его можно собрать и без индикатора горения.

    Подключение высоковольтного трансформатора к горелке

    Если дизельную или газовую горелку открыть, то в ней легко можно увидеть трансформатор поджига. Это такой прямоугольный блок, к которому подводится два обычных провода, а из него выходят два высоковольтных (с толстой изоляцией), идущих далее к искровому разряднику рядом с соплом.

    Важно!!! Убедитесь, что схема автоматики горелки подает на этот трансформатор именно переменное напряжение 220В 50 Гц от сети, а не какое-нибудь специально подготовленное, выпрямленное, пульсирующее и т. д.

    Штатный трансформатор (источник высокого напряжения) снимаем. Наш блок на его место не влезет. Так что выводим четыре провода из корпуса горелки, два — высоковольтных (проводами от свечей зажигания автомобиля), два — обычных изолированных. Полярность не имеет значения. Наше устройство будет стоять отдельно, рядом с горелкой.

    Подключаем к изделию. Низковольтные провода подключаем к выводам (А) и (Б), высоковольтные — к выводам (В) и (Г). Включаем горелку. О наличии искры будет свидетельствовать характерный звук искрового разряда при включении горелки.

    Для надежной работы горелки, возможно, придется подобрать конденсатор, увеличить его емкость до достижения надежного воспламенения.

    (читать дальше…) :: (в начало статьи)

    Оглавление :: ПоискТехника безопасности :: Помощь

    К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

    Как сделать разрядник

    Инструкция

    Самый простой искровый разрядник — шаровой. Как и следует из его названия, состоит он из двух металлических шаров. Диаметры шаров мало влияют на его напряжение пробоя, значительно сильнее оно зависит от расстояния между ними, состава газовой смеси, в которой они находятся, а также давления этой газовой смеси. Приближенно можно считать, что в воздухе при атмосферном давлении напряжение пробоя шарового разрядника в киловольтах равно расстоянию между шарами в миллиметрах. Включив последовательно с искровым промежутком токоограничительный резистор для предотвращения короткого замыкания и изготовив из хорошего изоляционного материала механизм для изменения расстояния между шарами, таким примитивным прибором можно весьма точно измерять высокие напряжения. Если напряжение переменное, измеряться будет его амплитудное значение. Значительно эффективнее работает разрядник, электроды которого имеют форму, отличную от шаровой. Чем они острее, тем меньше будет пробивное напряжение при тех же условиях (расстояние между электродами, вид газовой смеси, давление). У прибора, электроды которого имеют форму игл, напряжение пробоя значительно меньше при одинаковых условиях, чем у разрядника, в котором используются шары. Интересными свойствами обладает разрядник, электроды которого неодинаковы. Если один из них представляет собой иглу, а другой — перпендикулярную ей пластину, напряжение его пробоя сильно зависит от полярности. В определенном диапазоне напряжений такой прибор способен даже выпрямлять, чем иногда пользуются в некоторых лабораторных установках до сих пор.

    Благодаря наличию нелинейных свойств, может выступать в качестве активного элемента релаксационного генератора. Как известно, такой генератор состоит из источника питания с большим внутренним сопротивлением, конденсатора и любого элемента, обладающего отрицательным динамическим сопротивлением: динистора, неоновой лампы или разрядника.

    В обычной школьной электростатической машине есть все элементы, которые должны входить в состав релаксационного генератора. Именно поэтому при вращении ее ручки разряды между электродами возникают с определенной периодичностью, которая зависит от скорости вращения рукояти (она определяет скорость заряда лейденских банок) и расстояния между электродами (которое определяет напряжение пробоя разрядника).

    Видео по теме

    Обратите внимание

    Будьте крайне осторожны при работе с любыми источниками высокого напряжения. Даже маломощный источник представляет опасность, если зарядить от него конденсатор емкостью свыше 10 пикофарад.Меняя расстояние между электродами школьной электростатической машины, никогда не держитесь за обе ручки одновременно, даже если они изолированы. Перемещайте их по очереди.Избегайте работы с разрядниками в атмосфере горючих газов.

    Читайте также:  Токарно-винторезный станок 1а616: характеристики, схемы, паспорт

    Не пытайтесь применять в самодельных разрядниках радиоактивные вещества.

    Безопасный разрядник конденсаторов своими руками

    Специально для mozgochiny.ru

    При поиске неисправностей и ремонте электронного оборудования всегда первым делом нужно разряжать имеющиеся в схема конденсаторы. В противном случае нерадивый ремонтник рискует получить заряд бодрости…

    В прошлом ламповые приёмники и усилители можно было найти в каждом доме. В своей конструкции они использовали конденсаторы большой ёмкости, что продолжали удерживать опасный уровень заряда длительное время даже после того, как они отключались от сети.

    После этого наступила эра телевизоров с электронно-лучевыми трубками.

    Благодаря техническому прогрессу сейчас телевизоры оснащаются плоскими LED экранами и может сложиться впечатление, что все современные приборы переходят на низковольтные цифровые схемы, но в чем же тогда проблема?

    На самом деле ответ лежит на поверхности. Низковольтные приборы питаются от относительно безопасных линейных источников питания (далее – ЛИП). Они эффективные, легкие, но именно в них кроется главная опасность. Иными словами «волк в овечьей шкуре».

    ЛИП выпрямляет сетевое напряжение, обеспечивая постоянное напряжение около 330 В (для сетевого напряжения 230 В и 170 В для сетевого напряжения 120 В), после чего его можно использовать для питание того либо иного участка/компонента схемы. Получается картина маслом. Маленькие, аккуратненькие черные ящички, через которые подключаются ноутбуки, мониторы и другие приборы, в действительности имеют нехилые величины напряжений, что могут оказаться смертельно опасными.

    Фильтрующие конденсаторы в источнике питания заряжаются высоким постоянным напряжением и сохраняют заряд в течение длительного периода времени после того, как штекер извлекается из розетки. Именно по этой причине на корпусах клеят наклейки с предупреждениями о мерах безопасности: «Не открывать коробку».

    Приведенная в статье схема работает с потенциально опасным напряжением. Не пытайтесь собрать её в железе если до конца не понимаете принцип её работы и/или у вас нет опыта работы с высоким напряжением. В любом случае, все действия вы выполняете на свой страх и риск.

    Шаг 1: Принцип работы разгрузочной цепи

    На просторах интернета можно встретить довольно много статей/видеороликов, в которых люди разряжают конденсаторы, просто на просто закорачивая их клеммы, используя для этой цели отвертку.

    В простонародье есть поговорка «Важен ни метод, ни способ, важен результат», так в нашем случае важен не только результат, но и то, каким образом он получен. Я это собственно к чему, – этот способ работает. Он полностью разряжает конденсатор. А вот правильно это или нет…? Конечно же НЕТ.

    Такой способ разрядки может повредить конденсатор, повредить отвертку и нанести непоправимый вред вашему здоровью.

    Для того, чтобы разрядка выполнялась в правильном русле, необходимо отводить накопленный заряд постепенно. В принципе нам не нужно ждать, пока разрядка будет полной, достаточно подождать определенный отрезок времени, чтобы величина напряжения стала достаточно низкой. А как долго ждать, мы сейчас разберемся.

    Относительно безопасным остаточным уровнем заряда считается 5% от исходного.

    Для того, чтобы уровень заряда опустился до желаемой отметки, необходимо, чтобы прошло время равное 3RC (С – ёмкость кондера; R – величина сопротивления резистора).

    Обратите внимание на «относительно безопасный» остаточный заряд в 5%, он может быть разным. Например для 10 кВ, 5% — 500 В. Для напряжения 500В, 5% — 25В.

    К большому сожалению, мы не можем просто подключить резистор (именно через резистор будет происходить разрядка) к конденсатору и подождать. Почему? Сидеть с секундомером и контролировать время не очень удобно, не так ли?

    Было бы намного удобнее иметь визуальную подсказку, которая известит нас о том, что процесс разряда «окончен» и напряжение упало до безопасного уровня.

    В интернете можно найти небольшую, простую схему для разряда конденсаторов с внешней индикацией. Постараемся разобраться с принципом её работы, внесём изменения, увеличив количество диодов и соберём готовую поделку.

    Воспользоваться цепочкой из трех стандартных диодов 1N4007 включенных последовательно (D1, D2, D3) для установки корректной точки фиксации, где мы сможем подключить светодиод с его токоограничивающим резистором.

    3 последовательно включенных диода обеспечат напряжение около 1,6В, что хватить для включения светодиода.

    Светодиод будет светится, пока напряжение на аноде D3 не упадет ниже комбинированного прямого напряжения цепочки.

    Будем использовать красный светодиод с низким током (Kingbright WP710A10LID), который имеет обычное 1,7В прямое напряжение и включается уже при прямом токе 0,5 мА, что позволяет нам использовать всего 3 диода. В соответствии с малым током, протекающим через светодиод, значение токоограничивающего резистора будет относительно высоким 2700 Ом 1/4 Вт.

    Конденсаторный разрядный резистор представляет собой резистор мощностью 3 Вт и сопротивлением 2200 Ом, который рассчитан на максимальное входное напряжение 400 В. Этого достаточно для работы со стандартными блоками питания.

    Обратите внимание, что если вы посмотрите на даташит для диода 1N4007, вы увидите номинальное прямое напряжение 1 В, поэтому можно подумать, что двух диодов будет достаточно, чтобы включить светодиод.

    Не совсем так, поскольку прямое напряжение 1 В для 1N4007 рассчитано на прямой ток 1 A, значение, которого мы никогда не достигнем (надеюсь), поскольку это означало бы, что мы подали напряжение 2200 V на вход схемы. Прямой ток в нашем рабочем диапазоне составляет порядка 500-600 мВ, поэтому нам нужны три диода.

    Всегда учитывайте условия, для которых указаны параметры в даташите. Используются ли они в вашей схеме? Может быть не стоит останавливаться на первой странице и следует продолжить просмотр характерных кривых!

    Шаг 2: Правильная схема разгрузки

    Приведенная выше схема полезна для иллюстрации принципа работы, но её не следует повторять и использовать на практике, потому что она довольна опасна.

    Опасность кроется в способе подключения конденсатора (вернее в правильной полярности) (клемма Vcc должна быть положительной относительно клеммы GND), иначе ток не будет протекать через диодную цепочку D1-D2-D3! Поэтому, если вы случайно подключите конденсатор неправильно, ток не будет протекать и полное входное напряжение поступит на выводы LED1, как обратное напряжение. Если приложенное обратное напряжение выше нескольких вольт, LED1 сгорит и останется выключенным. Это может заставить вас поверить, что конденсатор не заряжен, хотя он по-прежнему …

    Чтобы сделать схему безопасной, нужно обеспечить симметричный путь для тока при разряде конденсатора, когда Vcc-GND отрицательное. Это можно легко сделать, добавив D4-D5-D6 и LED2, как показано на схеме.

    Когда Vcc — GND положительное, ток будет протекать только через D1-D2-D3 и LED1. Когда Vcc-GND отрицательное, ток будет протекать только через D4-D5-D6 и LED2.

    Таким образом, независимо от применяемой полярности, мы всегда будем знать, заряжен ли конденсатор и когда напряжение упадёт до безопасного уровня.

    Шаг 3: Корпус

    Теперь, когда мы разобрались, как работает схема, пришло время подумать об корпусе. Все это можно было бы скомпоновать либо в виде пробника, либо в виде небольшой коробки, которую удобно держать на рабочем месте и подключаться к конденсатору с помощью щупов.

    Изготовим маленькую круглую коробку из двух половинок с пластикой болванки. Посадка получилась очень плотная, поэтому винты не понадобились.

    Отверстие в верхней части корпуса должно соответствовать размеру алюминиевой «кнопке», которая будет помогать в охлаждении разрядного резистора.

    «Кнопка» была выточена из алюминиевого стержня, а затем с одного торца профрезерована, чтобы удерживать резистор на месте и обеспечить хорошую передачу тепла.

    Также есть небольшое отверстие, которое можно использовать для крепления дополнительного внешнего радиатора.

    Важно выполнить хорошую подгонку между «кнопкой» и корпусом. Как вы увидите в следующем шаге, кнопка также помогает удерживать все компоненты на месте. Размеры корпуса 19 мм на 50 мм.

    Шаг 4: Собираем всё вместе

    Осталось произвести сборку, особое внимание следует обратить на изоляцию. С таким напряжением не шутят! Несколько моментов:

    • Обратите внимание на алюминиевую «кнопку», которая является проводником к внешней стороне коробки. «Кнопка» должна быть изолирована от цепи. Рекомендуется использовать герметик на основе кремния или эпоксидную смолу, чтобы закрепить компоненты в корпусе после того, как вы протестировали сборку.
    • Медная сетка вокруг резистора помогает надежно удерживать его на месте в пазу и увеличить теплопередачу на «кнопку».
    • Используйте специальные провода, что рассчитаны на напряжение в 600В. Не вздумайте схватить первый попавшийся провод, который рассчитан на неизвестное напряжение.

    На этом всё. Успешной и главное безопасной разрядки!

    ( Специально для МозгоЧинов #Safe-Capacitor-Discharge-Tool/» target=»_blank» rel=»noopener noreferrer»>

    Как сделать разрядник для проверки искры

    Пластиковый корпус крепится к алюминиевой плоскости приклеиванием. Поначалу это делалось с помощью эпоксидки и результат был нестабилен. Позже выяснилось, что удобнее и надежнее клеить на термоклей («глюган»).

    Для приклеивания насверлите по периметру будущего клеевого шва много отверстий диаметром по 2 мм.

    В процессе приклеивания термоклей затечет в них и образует столбики, на которых, как на заклепках, будет надежно держаться вся конструкция.

    Отрежьте горлышко от пластиковой бутылки, вырованяйте срез, и приклейте к алюминиевому уголку. Перед приклейкой уголок (плоский электрод) желательно подогреть градусов до шестидесяти (горячий на ощупь). Наклейка без дополнительного прогрева дает меньшую прочность, что снизит предельные давления (пропускаемые энергии) выдерживаемые разрядником.

    Читайте также:  Тележка для перевозки грузов двухколесная своими руками

    По центру пластиковой крышки аккуратно просверлите отверстие диаметром на 0.5-1.0 мм меньшим, чем диаметр болта, используемого в качестве электрода. На торце болта нарежьте шлиц под отвертку с крупным жалом. Шлиц пригодится в дальнейшем для регулировки разрядника. Вкрутите болт резьбой в крышку.

    Дальше остается только собрать разрядник.

    И поставить в схему, где он будет использоваться.

      Хотите купить вакуумно-формовочный станок в Москве?

    Вот и все. Собрав разрядник, подключите его к мультиметру, включенному на измерение сопротивления (омов).

    Вкручивайте болт разрядника до тех пор, пока мультиметр не зарегистрирует короткое замыкание. Отметьте нулевое положение разрядника.

    В дальнейшем Вы от него будете отсчитывать количество оборотов болта разрядника, когда будете выставлять требуемое напряжение пробоя.

    Что еще неплохо бы знать о разрядниках?

    Выглядит непредставительно, да и работает не очень (быстро загрязняется продуктами эрозии электродов) но применение даже такого макета значительно повышает выход излучения из воздушного азотного лазера атмосферного давления.

    Разрядник из мебельного болта и горлышка от бутылки хорошо работает до 10..12 кВ. При больших напряжениях можно было бы применить мебельный болт с большей высотой шляпки, но это до тех пор пока он пролазит через бутылочное горлышко.

    Да и пробой по краям оставляет напыление, приводящее к снижению рабочего напряжения.

    Если у вас есть доступ к так называемым колпачковым гайкам (иногда еще называются орешковыми гайками) для напряжений 20-30 кВ используйте следующую конструкцию:

    Генератор высокого напряжения из строчника на транзисторе

    Здравствуйте, уважаемые друзья! Сегодня я предлагаю вам собрать генератор высокого напряжения всего на одном транзисторе из строчного трансформатора ТВС-110ПЦ15 с умножителем напряжения УН9/57-13 от старого цветного телевизора. Схема довольно простая, построена по принципу блокинг генератора и содержит небольшое количество деталей.

    Схема генератора высокого напряжения из строчника на одном транзисторе

    Для сборки генератора вам понадобится один транзистор КТ819Г, или импортный аналог TIP41C, но лучше всего использовать MJE13009, поскольку этот транзистор выдерживает ток до 12 А и соответственно будет меньше греться. Лично я в своем генераторе использовал MJE13009. Транзистор обязательно намажьте термопастой и установите на радиатор, желательно с вентилятором.

    Еще вам понадобится два резистора мощностью по 5 ватт. На 100 ом и 240 ом, в моем генераторе резисторы очень сильно грелись и я решил приклеить «поксиполом» небольшой радиатор. Самой важной деталью генератора является строчный трансформатор ТВС-110ПЦ15, возможно использовать ТВС-90ЛЦ5 и другие аналогичные от старых цветных, черно белых и даже ламповых телевизоров.

    Строчный трансформатор ТВС-110ПЦ15

    На магнитопроводе трансформатора надо намотать пару дополнительных обмоток. Катушка L1 содержит 10 витков, намотанных проводом диаметром 1 миллиметр. Катушку L2 мотаем проводом 1,5 миллиметра, всего 4 витка. Обе катушки должны быть намотаны в одну сторону. Вторичная высоковольтная обмотка остается без изменения.

    Строчный трансформатор ТВС-110ПЦ15 с двумя дополнительными обмотками

    Умножитель напряжения УН9/27-13 или аналогичный тоже нуждается в незначительной доработке. На нем надо удалить два неиспользуемых вывода, отмеченных на картинке красными стрелками, потом изолировать эти места «поксиполом».

    Делать это необязательно, но если вы случайно во время эксперимента коснетесь этих выводов… Волосы встанут дыбом и мало не покажется, конечно током не убьет, там очень мало ампер, но обжечь может.

    Между строчным трансформатором и умножителем устанавливается резистор на 470 ом.

      Сборочные чертежи редукторов. Спецификации, страница 13

    Умножитель напряжения УН9/27-13

    Разрядник сделан из двух проволок диаметром 1 миллиметр. Расстояние между электродами подбирается индивидуально. Для питания генератора лучше всего использовать источник питания от 12 до 30 вольт с силой тока не менее 2А.

    Генератор высокого напряжения. Разрядник

    После подачи питания на разряднике появляется мощная дуга. Как измерить напряжение на выходе из умножителя без киловольт метра? Принято считать, 1 миллиметр дуги за 1 киловольт, длина дуги 15 миллиметров, значит напряжение на разряднике примерно 15 киловольт.

    Хочу сказать пару слов о технике безопасности.

    На разрядник из умножителя подается высокое напряжение несколько десятков киловольт, поэтому не прикасайтесь руками к разряднику во избежание поражения электрическим током, даже после отключения питания в конденсаторах умножителя остается высокое напряжение. Конечно током не убьет, потому что мало ампер, но ударит больно и возможно оставит ожоги на коже.

    Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

    Рекомендую посмотреть видеоролик о том, как работает генератор высокого напряжения.

    Разрядник на 20..30 кВ

    Ниже показана последовательность сборки. Она практически не отличается от того, что делали для разрядника из бутылочного горлышка. Только размеры всех деталей больше.

    • Дальше остается только собрать разрядник.
    • Разрядник неплохо работает при длине искры до 10 мм (в корпусе из 40 мм трубы) и до 15 мм (в корпусе из 50 мм трубы), что соответствует напряжениям свыше 30 кВ.
    • При энергиях разряда до 10 Дж разрядника хватает на несколько тысяч импульсов, после чего его необходимо вскрывать и чистить корпус изнутри.
    • При энергиях разряда в 120 Дж разрядника хватает на несколько десятков импульсов (ближе к сотне) после чего необходимо чичтить.

    Сообщества › Сделай Сам › Блог › Самопальный тестер для проверки катушек зажигания

    Приветствую всех. Появилась острая нужда в проверке катушек зажигания на авто. Знаю что есть такие уже готовые устройства, но искать их времени нет и желания тоже. Сделано все за пол часа жизни и из подручных материалов, затрат соответственно = 0. Подключаем ее к катушке, соединяем с массой и заводим авто.

    Понемногу начинаем выкручивать ручку. Искра должна быть стабильно сильной даже на выкрученном зазоре в 1-2 см. Желательно увеличить обороты. Если искра сильная и не пропадает- катушка исправна. Если искра жиденькая или вообще пропала на зазоре в 1 см- то катушка мертвая и скоро вообще выйдет из строя.

    Всем здравствовать! Можете посмотреть как работает

    Рельсовый разрядник

    Как и обещалось, вот гайд по сборке самодельного регулируемого двухзазорного рельсового разрядника.

    Для его сборки потреьуются: пара хромированных цилиндрических дверных ручек, подходящий кусок (куски) алюминиевого уголка, алюминиевый стержень (или медный или бронзовый) диаметром около 10 мм (подойдет и трубка, кстати, но придется чуть изменить способ крепления). Также потребуется немного пластика для корпуса, пара болтиков с гаечками и разного рода слесарный инструмент.

      Смазка для электроинструмента

    Все проводники (дверные ручки, стержень и уголки) в разряднике должны быть как можно прямее. С гнутыми деталями разрядник не будет работать правильно. Вместо алюминиевого уголка здесь использованы уголковые плинтуса. Кризис ресурсов, что возьмешь. Будем надеяться, что Вам повезет больше.

    Отрежьте алюминиевый уголок в размер используемых дверных ручек с небольшим запасом (на стенки корпуса). Скруглите углы уголка и ручек.

    Установите дверные ручки-электроды на уголки.

    Сделайте днище. Отрежте прямоугольный кусок пластика, длиной в размер уголка и шириной, вычисляемой по формуле:

    Использованные мной дверные ручкм имеют высоту 16.3 мм (при диаметре цилиндрической части 11 мм), диаметр использующегося медного стержня 10 мм. И поскольку хочется, чтобы этот разрядник имел полный зазор, варьируемый в пределах 3..

    6 мм (каждый из зазоров по полтора миллиметра) нужно взять ширину днища равной w = 16.3*2+2*1.5+10 = 45.6 мм.

    Потребуется затратить определенные усилия, чтобы вырезать днище более менее точно в размер и чтобы оно при этом имело ровные стороны и прямоугольную форму. Но оно того стОит.

    1. Приклейте днище к электроду как показано на фото и приклейте боковые стенки.
    2. Затем приклейте противоположный электрод.
    3. На этом фото показан медный стержень, который вскоре станет центральным электродом.
    4. С торцов стержня просверлите отверстия под крепежные болты и нарежьте в них резьбу.
    5. В этом варианте резьба и винты используются на М3, но и М4 сойдет.
    6. Не забудьте зашлифовать стержень и скруглить концы.

    Следущая важная часть разрядника это его крышка. Она может быть и непрозрачной, но с прозрачной все куда проще и интереснее.

    Прорежьте в верхней крышке четыре паза, как на левом фото. Ширина каждого из пазов должна быть чуточку больше чем половина от максимального полного зазора разрядника. Фото ниже показывает зачем это надо. Поскольку разрядник в этом примере предназначен для зазоров от 3 до 6 мм (7.8..15.6 кВ) то пазы должны быть шириной 3+ мм.

    На этом фото показано, как использовать сверла для выставления зазора разрядника. Каждое сверло здесь имеет диаметр 3 мм. Отсюда полный выставленный зазор равен 6 мм.

    Когда закончите с выставлением зазора залепите пазы звукоизолирующим материалом. Неплохие результаты дает толстый двусторонний скотч на основе пенорезины, используемый в качестве утеплителя окон.

    На правом фото показан небольшой воздушный лазер с этим разрядником. Тут не особо хватило место и Вам придется поверить на слово, что этот лазер способен возбуждать раствор родамина 6Ж до генерации на расстояниях до полуметра безо всяких линз. Для кумарина это соответствует растоянию более одного метра. С точечным разрядником результаты куда хуже.

    Источник

    Ссылка на основную публикацию
    Adblock
    detector