Датчик движения можно приобрести в магазине. Но если есть немного свободного времени, небольшие навыки и знания, такой сенсор можно изготовить самостоятельно. Это сбережет немного финансов и обеспечит приятное времяпровождение за техническим творчеством.
Какой датчик можно изготовить самостоятельно
Существует несколько видов датчиков движения, и каждый тип, в принципе, можно изготовить самостоятельно. Но ультразвуковые и радиочастотные сенсоры сложны в изготовлении, требуют специальных навыков и приборов для наладки. Поэтому проще изготовить сенсоры емкостного и инфракрасного типа.
Приборы и материалы
Для изготовления детектора движения потребуются:
- паяльник и расходники;
- соединительные провода;
- мелкий слесарный инструмент;
- мультиметр.
Также для изготовления сенсора понадобится макетная плата. И еще неплохо иметь осциллограф для контроля работоспособности устройства на базе ВЧ-генератора.
Датчик емкостного типа
Эти сенсоры реагируют на изменение электрической емкости. В интернете, в быту и даже в технической документации часто применяется ошибочный термин «объемный датчик».
Это понятие возникло из-за неверной ассоциации между геометрической емкостью и объемом. На самом деле сенсор реагирует на электрическую емкость пространства.
Объем, как геометрический параметр, здесь не играет никакой роли.
Схема сенсора на одной микросхеме.
Датчик движения реально сделать своими руками. Простое емкостное реле можно собрать всего на одной микросхеме. Для построения датчика применен триггер Шмитта К561ТЛ1.
Антенной служит провод или штырь длиной несколько десятков сантиметров, или другая проводящая конструкция схожих размеров (металлическая сетка и т.п.). При приближении человека увеличивается емкость между штырем и полом, напряжение на выводах 1,2 микросхемы увеличивается.
При достижении порога триггер «опрокидывается», транзистор через буферный элемент D1/2 открывается и запитывает нагрузку. Ей может быть низковольтное реле.
Недостатком таких простейших датчиков является недостаточная чувствительность. Для его срабатывания требуется, чтобы человек находился на расстоянии нескольких десятков, а то и единиц сантиметров от антенны. Более чувствительны схемы с ВЧ-генератором, но они сложнее. Также проблемой могут стать намоточные детали. В большинстве случаев их придется изготовить самостоятельно.
Схема детектора на основе ВЧ-генератора.
Достоинство этой схемы – возможность применения готового трансформатора от транзисторного приемника СТ1-А. Он входит в схему генератора (индуктивной «трехточки») на транзисторе VT1. Резистором R1 регулируют глубину обратной связи, добиваясь появления колебаний.
Колебания в генераторе трансформируются в обмотку III, выпрямляются диодом VD1. Выпрямленное напряжение открывает транзистор VT2, он подает положительный потенциал на управляющий электрод тиристора.
Тиристор, открываясь, запитывает реле K1, контакты которого можно использовать для подключения сигнализации.
Антенной служит кусок провода длиной около 0,5 метра. При приближении человека (на расстояние 1,5-2 метра) емкость, вносимая его телом в контур генератора, срывает колебания. Напряжение на обмотке III исчезает, транзистор закрывается, выключается тиристор, реле обесточивается.
Устройство и принцип работы датчиков движения
Сборка детектора
Для сборки самодельного датчика можно сделать печатную плату. Например, методом ЛУТ. Технология несложна, освоить ее легко. Но если изготовление сенсора носит разовый характер, не имеет смысла тратить время на эксперименты. Лучшим выходом станет применение макетной монтажной платы.
Макетная монтажная плата.
Она представляет собой плату с металлизированными отверстиями со стандартным шагом, в которые можно впаивать электронные компоненты. Соединение в схему производится подпайкой проводников к соответствующим точкам.
Соединения на макетной плате.
Можно применить и беспаечную макетную плату (breadboard), но надежность соединений на ней гораздо ниже. Этот вариант лучше оставить для экспериментов и оттачивания искусства схемотехники.
Проверка исправности электронных компонентов
В первую очередь надо выполнить осмотр подобранных деталей. Если они не были в употреблении, следы пайки отсутствуют, и нет механических повреждений, то дальнейшая проверка особого смысла не имеет. Вероятность того, что компоненты исправны – 99 процентов. В противном случае детали неплохо проверить:
- резисторы прозванивают мультиметром — он должен показать номинальное сопротивление (с учетом класс точности резистора);
- намоточные детали прозванивают на отсутствие обрыва;
- конденсаторы малой емкости тестером можно проверить только на отсутствие короткого замыкания;
- конденсаторы большой емкости можно проверить стрелочным мультиметром в режиме проверки сопротивления – стрелка должна дернуться вправо, а потом медленно вернуться к нулю (влево);
- диоды проверяют тестером в режиме проверки диодов – в одном положении сопротивление должно быть бесконечным, в другом мультиметр покажет какое-то значение (зависит от типа диода);
- биполярные транзисторы проверяют в том же режиме как два диода – между базой и коллектором и между базой и эмиттером.
Эквивалентная схема проверки биполярного транзистора.
Важно! Полевые транзисторы с p-n переходом (КП305 и т.п.) проверяют таким же образом (затвор-исток, затвор-сток), но между стоком и истоком мультиметр покажет какое-то сопротивление (у биполярного – бесконечность).
Микросхемы с помощью мультиметра проверить не удастся.
Разметка и обрезка платы
Дальше все компоненты надо разместить на плате так, чтобы оптимизировать будущие соединения. Для этого их надо расположить в одном углу или около одной стороны. Потом нанести линии, удалить элементы и отрезать лишнее. Этого можно не делать, но тогда плата займет больше места и потребует большего по размерам корпуса (а он понадобится, если детектор будет установлен на улице).
Размещение элементов и нанесение разметки.
Края платы надо обработать напильником. На работоспособность не влияет, но смотрится лучше.
Необработанный край – работает, но плохо выглядит.
Потом детали вставляются обратно, впаиваются в отверстия и соединяются проводниками согласно схеме.
В видео показано, как сделать датчик движения для включения света из модуля для ардуино.
Инфракрасный сенсор и Ардуино
Сделать неплохой датчик движения можно на платформе Arduino. В состав электронного «конструктора» входит модуль PIR-датчика HC-SR501. В него входит инфракрасный детектор, дистанционно реагирующий на изменение температуры, с контроллером.
Контроллер инфракрасного датчика Ардуино.
Модуль полностью совместим с основной платой и подключается к ней тремя проводниками.
Подключение детектора к плате.
Вывод ИК-модуля | GND | VCC | OUT |
Вывод платы Arduino Uno | GND | +5 V | 2 |
Чтобы система заработала, надо загрузить в Ардуино следующий скетч:
Скетч для управления ИК-сенсором.
- Сначала устанавливаются константы, определяющие назначение выводов основной платы:
- const int IRPin=2
- Константа IRPin означает номер пина для входа от датчика, ему назначается значение 2.
- const int OUTpin=3
- Константа OUTpin означает номер пина для выхода на исполнительное реле, ей присваивается значение 3.
- В разделе void setup() устанавливаются:
- Serial.begin(9600) — скорость обмена с компьютером;
- pinMode(IRPin, INPUT) – вывод 2 назначается входом;
- pinMode(OUTpin, OUTPUT) – вывод 3 назначается выходом.
В разделе void loop константе val присваивается значение входа от датчика (ноль или единица). Дальше, в зависимости от значения константы, на выходе 3 появляется высокий или низкий уровень.
Проверка работоспособности и настройка датчиков
Перед первым включением собранного сенсора надо тщательно проверить монтаж. Если ошибок не найдено, можно подавать напряжение. В течение нескольких секунд после включения питания надо проконтролировать отсутствие локальных перегревов и дыма. Если «смок-тест» пройден, можно проверить работоспособность датчиков.
Сенсоры на триггере Шмитта и на Ардуино наладки не требуют. Надо лишь имитировать нахождение объекта рядом с датчиком (поднесение руки) и проконтролировать изменение сигнала на выходе. Детектор на основе ВЧ-генератора требует установки момента начала генерации с помощью потенциометра Р1.
Проконтролировать начало возникновения колебаний можно осциллографом или по щелчку реле.
Схема подключения датчика движения к светодиодному прожектору
Подключение нагрузки
Если сенсор работоспособен, к нему можно подключить нагрузку. Ей может служить вход другого электронного устройства (звуковой сигнализатор), Но часто от детектора требуется управлять освещением.
Проблема в том, что нагрузочная способность выхода самодельного датчика не позволяет подключать даже маломощные светильники напрямую.
Поэтому обязательно потребуется промежуточный ключ в виде реле.
Подключение датчика через реле-повторитель.
Перед подключением пускателя надо убедиться, что контакты выходного реле сенсора позволяют коммутировать напряжение 220 вольт. В противном случае придется ставить дополнительное реле.
Подключение Ардуино через транзисторный ключ, промежуточное реле и реле-повторитель.
Выход Ардуино настолько маломощен, что не сможет управлять реле или пускателем напрямую. Потребуется дополнительное реле с транзисторным ключом.
Если все этапы сборки и настройки прошли удачно, можно устанавливать сенсор стационарно, выполнять окончательное подключение и наслаждаться четко работающей автоматикой.
Датчики электрического тока
Глобальные тренды — спрос на снижение выбросов CO2, повышение интенсивности энергосбережения — приводят к необходимости сбалансированного потребления энергии, для чего большую помощь могут оказать электронные схемы управления процессами.
Наиболее распространённые случаи — это оптимизация эксплуатационных характеристик аккумуляторов, контроль скорости вращения двигателей и переходных процессов в серверах, управление солнечными батареями. Для операторов таких систем важно, в частности, знать, какой ток протекает в цепи.
Неоценимую помощь в этом могут оказать датчики тока.
Почему необходимы датчики тока
Датчиками называют блоки, задача которых измерить некоторый параметр, а потом, сравнив его с эталонным для данной технической системы значением, подать соответствующий сигнал на исполнительный элемент схемы. Поскольку большинство систем используют электродвигатели, то наиболее распространёнными типами являются датчики тока и напряжения (общий вид последнего представлен на следующем рисунке).
Широкое внедрение таких устройств обусловлено развитием сенсорных методов управления, когда исходный сигнал — электрический или оптический — преобразуется в необходимые параметры управления.
По сравнению в другими управляющими технологиями (например, контакторного контроля) датчики обеспечивают следующие преимущества:
- Компактность.
- Безопасность в применении.
- Высокую точность.
- Экологичность.
Малые размеры и вес часто позволяют изготавливать многофункциональные датчики, например, такие, которые могут контролировать несколько параметров цепи. Таковыми являются современные датчики тока и напряжения.
В состав таких детекторов входят:
- Контактные группы входа;
- Контактные группы выхода;
- Шунтирующий резистор;
- Усилитель сигнала;
- Несущая плата;
- Блок питания.
Идея того, что устройства можно подключать к уже имеющейся сети, не выдерживает проверку временем, ибо часто в экстремальных ситуациях (пожар, взрыв, землетрясение) именно системы встроенного электроснабжения первыми выходят из строя.
Детекторы подразделяют на активные и пассивные. Первые не только передают конечный сигнал на управляющий элемент, но и управляют его действием.
Классификация и схемы подключения
Датчики тока предназначаются для оценки параметров постоянного и/или переменного тока. Сравнение выполняется двумя методами. В первом случае используется закон Ома.
При установке шунтирующего резистора в соответствии с нагрузкой системы на нём создаётся напряжение, пропорциональное нагрузке системы.
Напряжение на шунте может быть измерено дифференциальными усилителями, например, токовыми шунтирующими, операционными или разностными. Такие устройства используются для нагрузок, которые не превышают 100 А.
Измерение переменного тока выполняется в соответствии с законами Ампера и Фарадея. При установке петли вокруг проводника с током там индуцируется напряжение. Этот метод измерения используется для нагрузок от 100 А до 1000 А.
Схема описанных измерений представлена на рисунке:
Слева — измерение малых токов; справа — измерение больших токов
Измерение обычно производится при низком входном значении синфазного напряжения. При помощи чувствительного резистора датчик тока соединяется между нагрузкой и землей.
Это необходимо, поскольку синфазное напряжение всегда учитывает наличие операционных усилителей. Нагрузка обеспечивает питание прибора, а выходное сопротивление заземляется.
Недостатками данного способа считаются наличие помех, связанных с потенциалом нагрузки системы на землю, а также невозможность обнаружения коротких замыканий.
Для слежения работой мощных систем детектор присоединяют к усилителю между источником питания и нагрузкой. В результате непосредственно контролируются значения параметров, подаваемых источником питания.
Это позволяет идентифицировать возможные короткие замыкания. Особенность подключения заключается в том, что диапазон синфазного напряжения на входе усилителя должен соответствовать напряжению питания нагрузки.
Перед измерением выходного сигнала контролируемого устройства нагрузка заземляется.
Как функционирует датчик тока
Работа данного элемента включает следующие этапы:
- Измерение нагрузки в контролируемой схеме.
- Сравнение полученного значения с эталонным, которое программируется в процессе настройки.
- Фиксация полученного результата (может быть выполнена в цифровом или аналогом виде).
- Передача данных на панель управления.
Для выполнения указанных функций (в частности, реализации высокой точности измерений) к элементам детектора предъявляются следующие требования:
- Допустимое падение напряжения на шунтирующем резисторе должно быть не более 120…130 мВ;
- Температурная погрешность не может быть выше 0.05 %/°С и не изменяться во времени работы;
- В функциональном диапазоне значений характеристики сопротивления резисторов должны быть линейными;
- Способ пайки токочувствительных резисторов на плату не может увеличивать общее сопротивление схемы подключения.
- Монтажные схемы устройств, которые предназначены для контроля цепей постоянного и переменного тока представлены соответственно на рисунках.
Практика применения
Чаще всего данные изделия используются как измерители в схемах токовых реле, которые управляют режимами работы различного электроприводного оборудования и предохраняют его от экстремальных ситуаций.
Токовые реле способны защитить любое механическое устройство от заклинивания или других условий перегрузки, которые приводят к ощутимому увеличению нагрузки на двигатель. Функционально они определяют уровни тока и выдают выходной сигнал при достижении указанного значения. Такие реле используются для:
- Сигнала сильноточных условий, например, забитая зёрнами доверху кофемолка;
- Некоторых слаботочных условий, например, работающий насос при низком уровне воды.
Чтобы удовлетворить требования разнообразного набора приложений, в настоящее время используется блочный принцип компоновки датчиков, включая применение USB-разъёмов, монтаж на DIN-рейку и кольцевые исполнения устройств. Это обеспечивает выполнение следующих функций:
- Надёжную работу на любых режимах эксплуатации;
- Возможность применения трансформаторов;
- Регулировка текущих параметров, которые могут быть фиксированными или регулируемыми;
- Аналоговый или цифровой выход, включая и вариант с коротким замыканием;
- Различные исполнения блоков питания.
В качестве примера рассмотрим схему датчика тока для управления работой водяного насоса, обеспечивающего подачу воды в дом.
Кавитация — это разрушительное состояние, вызванное присутствием пузырьков, которые образуются, когда центробежный насос или вертикальный турбинный насос работает с низким уровнем жидкости. Образующиеся пузырьки затем лопаются, что приводит к точечной коррозии и разрушению исполнительного узла насоса. Подобную ситуацию предотвращает токовое реле.
Когда насос работает в нормальном режиме, и жидкость полностью перекрывает его впускное отверстие, двигатель насоса потребляет номинальный рабочий ток. В случае снижения уровня воды потребляемый ток уменьшается. Если кнопка запуска нажата, одновременно включаются стартёр M и таймер TD.
Реле CD настроено на максимальный ток, поэтому его контакт при первоначальном запуске двигателя не будет замкнут. При падении силы тока ниже установленного минимума реле включается, а, после истечения времени ожидания TD, включается в его нормально замкнутый контакт.
Соответственно контакты CR размыкаются и обесточивают двигатель насоса.
Применение такого детектора исключает автоматический перезапуск насоса, поскольку оператору необходимо убедиться в том, что уровень жидкости перед впускным отверстием достаточен.
Датчик тока своими руками
Если приобрести стандартный датчик (наиболее известны конструкции от торговой марки Arduino) по каким-то соображениям невозможно, устройство можно изготовить и самостоятельно.
Датчик тока фирмы Arduino. Стрелкой указан USB-разъём.
Необходимые компоненты:
- Операционный усилитель LM741, или любой другой, который мог бы действовать как компаратор напряжения.
- Резистор 1 кОм.
- Резистор 470 Ом.
- Светодиод.
Общий вид устройства в сборе, сделанного своими руками, представлен на следующем рисунке. В данной схеме используется эффект Холла, когда разность управляющих потенциалов может изменяться при изменении месторасположения проводника в электромагнитном поле.
Видео по теме
Детектор сети переменного тока
Как известно, изолированное обнаружение сетевого напряжения важно во многих промышленных устройствах. Изоляция тут нужна для предотвращения прохождения постоянного или переменного тока между двумя частями устройства, позволяя при этом передавать сигнал и мощность между ними.
Изоляция также развязывает разность потенциалов земли, обеспечивает помехоустойчивость и защиту от всплесков высоких напряжений. Традиционно для обнаружения напряжения используют оптопары постоянного или переменного тока (оптроны), которые устанавливают по пути прохождения сигнала.
Вот простой модуль под названием «Датчик сети переменного тока 220 В».
Помните, никогда не прикасайтесь к плате после включения – вы можете получить удар током! Его принципиальную схему смотрите ниже:
Простая схема датчика сети 220 В
Оптрон PC817B содержит инфракрасный светодиод оптически связанный с фототранзистором, заключенный в 4-контактный DIP корпус. Типичное напряжение изоляции входа-выхода (среднеквадратичное значение) у PC817 составляет 5,0 кВ, напряжение коллектор-эмиттер от 35 до 80 В, а CTR (коэффициент передачи тока) от 50% до 600% при входном токе 5 мА.
Второй вариант схемы датчика сети 220 В
Схема не требует трансформатора переменного тока. Вместо этого напряжение снижается последовательным конденсатором (C1), подключенным непосредственно к сети 220 В. Напряжение переменного тока выпрямляется диодом D1, а результирующее напряжение постоянного тока сглаживается конденсатором C2. Стабилитрон ZD1 добавлен в качестве предварительного стабилизатора для полной защиты цепи. В случае обрыва на конденсаторе C2 (может из-за случайного перегорания R3 или PC1) напряжение на конденсаторе C2 фильтра ограничивается ZD1 примерно до 5 В. Это предотвратит взрыв конденсатора фильтра C2.
Когда будет на входе сеть, результирующий вход на базе T1 через PC1 приводит к тому, что T1 приводится в проводимое состояние током через PC1 и R4, тем самым давая сигнал низкого уровня на выходе с открытым T1, при подходящем сопряжении с внешней схемой с подтягивающим резистором. В случае отключения питания, возникнет сигнал высокого уровня на выходе.
Но можно сделать улучшенную версию такого датчика сети, адаптированную к цифровой технике.
Очевидно, что самый простой и безопасный способ обнаружить сетевое электричество с помощью микроконтроллера – это использовать оптрон.
Чтобы безопасно подключить такое опасное высокое напряжение как 220 В к оптрону, необходимо ограничить ток. Поскольку входное напряжение высокое, необходимо также учитывать номинальную мощность резистора.
Если нужен плавный / стабильный выход постоянного тока, для GPIO микроконтроллера например, немного доработаем схему. Емкость конденсатора (C) в этой новой версии не важна – от 2 до 10 мкФ будет нормально в большинстве ситуаций.
Еще одна хорошая идея – это использовать двунаправленную оптопару (также известную как оптопара переменного тока), которая имеет два внутренних светодиода, проводящих в противоположных направлениях. К примеру модель H11AA1.
Конструкция предлагаемого универсального детектора сети упрощает мониторинг сигнала высокого напряжения, поскольку обеспечивает сформированный цифровой выходной сигнал (H / L) с гальванической развязкой. Схема не требует каких-либо дорогих компонентов и может быть собрана за час.
Проект состоит из двух важных сегментов. Первый – обрабатывает вход высокого напряжения, а второй обеспечивает изоляцию между высоковольтной и низковольтной секциями. Предохранитель и металлооксидный варистор являются компонентами дополнительной защиты цепи.
Варистор на основе оксида металла (MOV), также известный как резистор зависимый от напряжения (VDR), представляет собой своеобразный резистор, который используется для защиты схем от высокого напряжения. Он способен уменьшать скачки напряжения.
В нормальных условиях сопротивление варистора очень велико, но когда подключенное напряжение становится выше, чем напряжение ограничения варистора, его сопротивление сразу становится очень низким.
Варистор можно просто подключить между линией и нейтралью (фаза и ноль), но только после предохранителя. Тогда при коротком замыкании варистора сработает предохранитель и отключит сеть от устройства.
Подтягивающий резистор можно использовать с микроконтроллерами, у которых нет внутреннего такого резистора. Кроме того, 2-контактная перемычка поможет включить / выключить сглаживающий конденсатор при необходимости.
Окончательный несглаженный выходной сигнал (JP1 = Open) выглядит как левый сигнал на снимке осциллографа, а сглаженный выходной сигнал (JP1 = Close) как правый. Конечно сглаженный выходной сигнал не выглядит идеально ровным, но колебания не превышают 500 мВ.
Вход (где светодиод) в этом оптроне подключен к сетевому напряжению, обрабатываемому схемой емкостного делителя потенциала. Максимально допустимое коммутируемое напряжение оптопары составляет 30 В, а транзистор (T1), подключенный к выходу оптопары (фототранзистор), может выдерживать токи до 10 мА.
Возможным примером применения датчика будет его использование в качестве цепи сброса при включении питания. Другое применение – это система аварийного питания, сигнализации на основе микроконтроллера или в качестве схемы детектора сбоя / возобновления электроэнергии.
Самодельные датчики
Электронный датчик — это прибор, изменяющий свое состояние в зависимости от внешних воздействий и преобразующее их кинетическую, механическую, акустическую (и др.) энергию в электрический ток. В статье описываются варианты изготовления и применения датчиков различного назначения.
Почти любой датчик может быть изготовлен несколькими разными способами. Даже в обычных бытовых и «полевых» условиях можно изготовить простые датчики самостоятельно, без потери их качества.
Сами по себе датчики являются только частью электрического устройства (как элемент — частью схемы).
Радиолюбительские датчики применяются повсеместно в непрофессиональной аппаратуре, изготовленной самими радиолюбителями.
Механические датчики
На рис.1 показан вариант плоского механического датчика. Монтируя один или несколько таких датчиков под любым современным (мягким) «половым» покрытием, к примеру, ковролином, линолеумом, или, как иной вариант, даже под обоями на стене, удается необычным образом управлять нагрузкой в электрической цепи 220 В, например освещением.
Такой вариант уместен в прихожей, там, где «половые» механические датчики, представляющие собой две проводящие электрический ток пластины — плоские кнопки на замыкание, являются элементами электронного устройства, управляющего слаботочным электромагнитным реле, включающим освещение.
В качестве примера простейших механических датчиков промышленного изготовления с контактами на замыкание приведу пример участка плоской клавиатуры (калькулятора или иного устройства).
При нажатии ногой или рукой на плоскость такого датчика (или нажатии рукой на определенное место на стене квартиры, офиса, если датчики-кнопки установлены под обоями) фольгированные контакты датчика замыкаются, и импульс слабого тока по соединительным проводам поступает на электрическую схему управления. Чувствительность такого плоского датчика высокая — он реагирует даже на небольшую нагрузку (собака или кот весом более 2 кг, пройдясь по датчику, способен включить свет). Важно для широкого круга читателей, что его вполне можно изготовить самостоятельно, применив смекалку, относительно тонкий диэлектрик и небольшое количество фольги (пищевой, оберточной или иной).
Как видно из рис.1, на плотную фольгу (толщина листа 1 мм) накладывают картон (толщина 1…2 мм) с прорезанным внутри отверстием, а уже сверху на него накладывают еще один слой фольги. К токопроводящей фольге (вполне подходит плотная фольга на бумажной основе) аккуратно припаивают тонкие гибкие проводники, к примеру, провод МГТФ-0,07.
Весь получившийся «бутерброд» затем ламинируют для механической надежности датчика и изоляции его от внешней среды, включая возможную влажную среду. Ламинировать можно с помощью специальной пленки (продается в магазинах канцтоваров) для ламинаторов.
Вариант ламинирования двух электрических пластин с диэлектриком между ними
В качестве материала для альтернативного ламинирования используют полиэтиленовую папку-карман для бумаг или школьных принадлежностей — ее нужно разрезать по размеру датчика, вложить фольгу и картон внутрь и через тряпочку прогладить утюгом. Можно просто обклеить датчик скотчем. Если в схеме управления используются помехоустойчивые элементы, то длина соединительных проводов от датчиков до элементов электрической схемы может составлять несколько метров.
Если изготовить такой датчик в несколько слоев, чередуя проводник и диэлектрик, то получившийся «толстый бутерброд» можно использовать как датчик силы воздействия (нажима), или даже как датчик взвешивания людей (прообраз напольных весов). Вариантов применения механического плоского датчика много, а его особенностью, как рассмотрено выше, является возможность легкой маскировки. Плоский датчик надежен и долговечен.
Акустические датчики
На рис.2 и рис.3 показаны две разные электрические схемы весьма чувствительного акустического датчика, вырабатывающего пачки импульсов при звуковом воздействии, отличном от спокойного акустического фона. Схема на операционном усилителе (рис.
2) использует в качестве датчика воздействия пьезоэлемент.Такой вариант неоднократно публиковался в сочетании с другими типами операционных усилителей (далее — ОУ), поэтому он не претендует на оригинальность. В качестве пьезоэлемента использован капсюль ЗП-22, который из-за невысокой чувствительности реагирует только на удары, однако с успехом может применяться в охранных устройствах, например, для охраны целостности стеклянных окон. Для этого капсюль нужно надежно приклеить к стеклу, и датчик будет выдавать одиночные импульсы при ударах по стеклу и при постукиваниях в районе расположения капсюля.
Чем больше площадь стекла (охраняемой зоны), тем более чувствительным должен быть датчик. Он может применяться для охраны со стороны внешних стекол и витрин в магазинах и офисах.
Чем больше сопротивление резистора R4 на входе компаратора, тем чувствительнее схема. С выхода компаратора (вывод 6) импульс поступает на ключевую схему. Конденсатор C1 (К50-24, К50-29, К50-35) фильтрует помехи по питанию.На рис.3 показан более чувствительный вариант акустического датчика. В качестве микрофона ВМ1 используется любой угольный микрофон от старых телефонных аппаратов (МК-10, МК-16-У и аналогичные).
В таких микрофонах находится угольный порошок, очень чувствительный к сотрясениям и звуковым волнам, он изменяет сопротивление микрофона по постоянному току. Эти импульсы и улавливает усилитель на транзисторах VT1-VT4.
Транзисторный усилитель НЧ собран таким образом, что коэффициент усиления второго каскада вдвое больше, чем у первого. На электрической схеме показан усилитель с большой чувствительностью, однако, если такая чувствительность не является необходимой, то можно обойтись только одним каскадом на составном транзисторе /Т1,VT2.
Усилитель НЧ работоспособен в широких пределах напряжения питания схемы.
С коллектора последнего транзистора пачки импульсов поступают на ключевую или формирующую последовательность импульсов схему (к примеру, одновибратор). Усиление эффективно регулируется резистором R1 (чем больше его сопротивление, тем чувствительнее схема) и в незначительных пределах резистором R6.
Многие знают о недостатках угольных микрофонов, и я здесь не буду скрывать их от читателя.
Действительно, отрицательной особенностью устройства на основе приведенной схемы является его инерционность, обусловленная свойствами самих угольных микрофонов.
Но для некоторых радиолюбительских разработок приведенная электрическая схема практически незаменима по своей простоте, эффективности и «финансовому» взносу, ведь угольный микрофон можно приобрести практически за бесценок.
Проводники от микрофона к электрической схеме должны иметь минимальную длину. Транзисторы можно применять любые из серий КТ3107, КТ361 или аналогичные импортные.
Рассмотренные варианты схем акустических датчиков могут найти разное практическое применение, к примеру, использоваться как акустический датчик, реагирующий на разговор в помещении и включающий локальную электрическую подсветку (бра).
Если корпус устройства вместе с микрофоном смонтировать на полу, то тогда устройство будет оповещать о приближении человека задолго до его подхода к датчику. Звук от шагов человека по полу передается на несколько метров, таким образом, вариантов применения акустического датчика в 2-4-комнатной «обычной» квартире (деревенском доме) даже на устаревшем угольном микрофоне очень много.
Индуктивный датчик
Его вариантов также несколько.
На рис.4 показан относительно простой датчик, реагирующий на магнитное поле, создаваемое переменным током. Когда вблизи обмотки катушки L1 протекает даже небольшой переменный ток (десятки мА), он «наводится» в катушке и передается на усилительный каскад на составном транзисторе.
Усилитель для этой схемы (вместо VT1 и VT2) может быть любой конфигурации, но обязательно с большим коэффициентом усиления по току. Катушку наматывают проводом ПЭВ или ПЭЛ диаметром 0,1…0,15 мм «внавал», 2500 витков, на любом подходящем картонном, деревянном или пластмассовом каркасе диаметром 8 мм.
Внутрь каркаса вставляют сердечник из феррита марки 600-2000НН. Длина каркаса соответствует длине сердечника и находится в пределах 25…40 мм.
С положительной обкладки конденсатора С2 снимается переменное напряжение, наведенное в катушке L1.
Если в качестве катушки применить магнитную антенну (используемую для приема радиостанций в диапазонах ДВ и СВ), можно получить прибор, реагирующий на радиоволны определенной длины.
Как необычный вариант катушки, можно использовать катушку, в том числе «плоскую» намотку из магнитной карты доступа, представленной (в раскрытом виде) на рис.5.
Чувствительность устройства регулируют резистором R1 задающим смещение на составном транзисторе. Чем больше сопротивление переменного резистора, тем чувствительнее схема.
Для оптимального режима усиления (так как напряжение питания этой схемы может быть разным) номинал резистора R2 подбирают так, чтобы ток, потребляемый этим узлом от источника питания, был в пределах 2 мА.
На практике датчик улавливает переменный ток от 50 мА в проводке на расстоянии до 5 см от него. Длина проводов от катушки L1 до входного каскада электрической схемы (для исключения наводок) должна стремиться к минимуму.
переменным током. Когда вблизи обмотки катушки L1 протекает даже небольшой переменный ток (десятки мА), он «наводится» в катушке и передается на усилительный каскад на составном транзисторе.
Усилитель для этой схемы (вместо VT1 и VT2) может быть любой конфигурации, но обязательно с большим коэффициентом усиления по току.
Катушку наматывают проводом ПЭВ или ПЭЛ диаметром 0,1…0,15 мм «внавал», 2500 витков, на любом подходящем картонном, деревянном или пластмассовом каркасе диаметром 8 мм.
Внутрь каркаса вставляют сердечник из феррита марки 600-2000НН. Длина каркаса соответствует длине сердечника и находится в пределах 25…40 мм.
С положительной обкладки конденсатора С2 снимается переменное напряжение, наведенное в катушке L1.
Если в качестве катушки применить магнитную антенну (используемую для приема радиостанций в диапазонах ДВ и СВ), можно получить прибор, реагирующий на радиоволны определенной длины.
Как необычный вариант катушки, можно использовать катушку, в том числе «плоскую» намотку из магнитной карты доступа, представленной (в раскрытом виде) на рис.5.Чувствительность устройства регулируют резистором R1 задающим смещение на составном транзисторе. Чем больше сопротивление переменного резистора, тем чувствительнее схема.
Для оптимального режима усиления (так как напряжение питания этой схемы может быть разным) номинал резистора R2 подбирают так, чтобы ток, потребляемый этим узлом от источника питания, был в пределах 2 мА.
На практике датчик улавливает переменный ток от 50 мА в проводке на расстоянии до 5 см от него. Длина проводов от катушки L1 до входного каскада электрической схемы (для исключения наводок) должна стремиться к минимуму.
Датчик тока
Конструкция устройства показана на рис.6.Этот датчик представляет собой геркон с намоткой по всей длине стеклянного корпуса изолированного обмоточного провода диаметром 0,08…0,1 мм. Намотка «внавал» содержит 300-400 витков (в зависимости от практического назначения датчика).
Когда по обмотке протекает электрический ток, геркон под воздействием магнитной индукции замыкает / размыкает (в зависимости от типа геркона) контакты, коммутируя электрическую цепь.
На основе этого датчика радиолюбитель может самостоятельно изготовить «токовое реле», соединив один из контактов геркона с концом обмотки, как показано на рис. 7.Сразу после замыкания в электрической цепи, протекающий через нагрузку ток создает падение напряжения на обмотке L1.
Падение напряжения на обмотке прямо пропорционально силе тока в этой цепи. Наведенное напряжение создаст небольшое электромагнитное поле, которое будет достаточным для воздействия на контакты геркона, которые (согласно схеме, показанной на рис.7) заблокируют саму электрическую цепь.
Когда нагрузка обесточится (или ток в ее цепи уменьшится, что может произойти в силу разных причин), падение напряжения на L1 уменьшится, уменьшится магнитное поле, и контакты геркона разомкнутся.
Чувствительность такого датчика зависит от количества витков L1 и силы тока в цепи. Токовое реле, как и электромагнитный датчик, имеет много вариантов применения в радиотехнических конструкциях.
Литература
1. Кашкаров А.П. 500 схем для радиолюбителей. Электронные датчики // СПб.: Наука и Техника, 2007.
2. Кашкаров А.П. Датчики в электронных схемах: от простого к сложному. — М.: ДМК Пресс, 2013.
Андрей Кашкаров, г. Санкт-Петербург
Источник: Радиоаматор №11/12, 2014
Малогабаритный датчик переменного тока
Для обустройства электроснабжения гаража очень удобно знать ток, который потребляется тем или иным устройством, включаемым в эту сеть. Спектр этих устройств достаточно широк и увеличивается постоянно.: дрель, точило, болгарка, нагреватели, сварочные аппараты , ЗУ, промышленный фен, да и много ещё чего….
Для измерения переменного тока, как известно, в качестве собственно токового датчика, как правило, применяют трансформатор тока. Этот трансформатор, в общем похож на обычный понижающий, включенный как бы «наоборот», т.е.
его первичная обмотка –это один или несколько витков (или шина) пропущенные через сердечник — магнитопровод, а вторичная представляет собой катушку с большим количеством витков тонкого провода, располагаемую на этом же магнитопроводе (рис1).
Однако, промышленные трансформаторы тока достаточно дороги, громоздки и зачастую рассчитаны на измерение сотен ампер. Трансформатор тока, рассчитанный на диапазон бытовой сети, встретишь в продаже нечасто.
Именно по этой причине родилась идея использовать для этой цели электромагнитное реле постоянного/переменного тока, без какого либо использования контактной группы такого реле.
В самом деле, любое реле уже содержит катушку с большим количеством витков тонкого провода и единственное, что необходимо для превращения его в трансформатор – это обеспечить вокруг катушки наличие магнитопровода с минимумом воздушных зазоров.
Кроме этого, конечно, для такой конструкции необходимо достаточно места , чтобы пропустить первичную обмотку, представляющую вводную сеть.На снимке показан такой датчик, изготовленный из реле типа РЭС22 на 24 В постоянного тока . Это реле содержит обмотку сопротивлением примерно 650 ом.
Скорее всего, подобное применение могут найти и многие реле других типов и в том числе остатки неисправных магнитных пускателей и т.п. Для обеспечения магнитопровода якорь реле механически блокируется при максимальном сближении с сердечником. Реле, как бы постоянно находится в сработке. Далее, вокруг катушки делается виток первичной обмотки ( на снимке это тройной провод синего цвета ).
Собственно, на этом датчик тока готов, без лишней суеты с наматыванием провода на катушку.
Конечно, данное устройство трудно считать полноправным трансформатором и ввиду незначительной площади поперечного сечения вновь полученного магнитопровода и, возможно, ввиду отличия характеристики его намагничивания от идеальной.
Однако все это оказывается менее важно ввиду того, что мощность такого «трансформатора» нам нужна минимальна и необходима лишь для того, чтобы обеспечить пропорциональное (желательно линейное ) отклонение стрелочного индикатора магнитоэлектрической системы в зависимости от тока в первичной обмотке.
Возможная схема сопряжения датчика тока с таким индикатором изображена на схеме (рис.2). Она довольно проста и напоминает схему детекторного приемника. Выпрямительный диод (Д9Б) – германиевый и выбран ввиду малости падения на нем напряжения (около 0,3 В). От этого параметра диода будет зависеть порог минимального значения тока, который способен определить данный датчик.
В этой связи, для этого лучше использовать так называемые детекторные диоды с малым падением напряжения, например ГД507 и подобные. Пара кремниевых диодов кд521в установлена в целях защиты стрелочного прибора от перегрузки, которая возможна при значительных бросках тока, вызванных, например, коротким замыканием внутри сети, включением мощных трансформаторов или сварочника.
Это весьма обычный в таких случаях прием. Следует заметить, ч то такая простейшая схема имеет тот недостаток что абсолютно может не «увидеть» нагрузку в виде тока одной полярности, как например, нагреватель или ТЭН, подключенный через выпрямительный диод . В этих случаях применяют несколько «усложненную» схему, например, в виде выпрямителя с удвоением напряжения (рис.3).