Водородная горелка, как и следует из названия, работает за счет тепла, выделяемого при сжигании водорода.
Газовая смесь водорода и кислорода (HHO — две молекулы водорода и одна кислорода) называется у нас гремучим газом, а у «них» — газом Брауна.
Водород в совокупности с кислородом обладает самой большой температурой горения среди газов — до 2800 °C. Однако водород крайне взрывоопасен. Как, в общем-то, любой газ, поставляемый в больших баллонах под высоким давлением.
Преимущество же водорода (или HHO газа) перед другими видами заключается в возможности получения его методом электролиза из обыкновенной воды! Причем для создания водородной горелки своими руками нам совершенно не нужно накапливать водород в какие-либо баллоны.
Водородная электролизная горелка производит газ в необходимых для моментального сжигания количествах. Это значительно повышает безопасность газовой сварки или резки с применением водородной горелки на базе электролизного HHO генератора.
Пользуясь такой водородной горелкой, мы полностью исключаем вероятность взрыва газа, ведь весь производимый газ тут же сгорает и не успевает накапливаться в объемах, необходимых для взрыва.
Благодаря этому часто применяется водородная горелка и для ювелирных работ, потому как мастера ювелиры, создающие свое домашнее производство, вряд ли будут пользоваться дома газовыми баллонами, что, наверняка, даже не законно!
Я тоже решил построить водородную горелку своими руками на базе HHO генератора, в качестве которого выступает обычный электролизер. И ведь еще в школе я ставил опыты с электролизом, засовывая в банку с водой оголенные провода из розетки через выпрямительный диод. Сейчас я хочу повторить свои школьные опыты, только теперь в более крупном масштабе и более осознанно.
Что же нужно для постройки водородной горелки своими руками?
- Лист нержавеющей стали
- Пара болтов М6 х 150. Шайбы и гайки по вкусу.
- Кусок прозрачной трубки. Например, подойдет водяной уровень из строительного магазина. Там шланг 10 метров стоит всего около 300 рублей.
- Несколько штуцеров с «елочкой» внешним диаметром 8мм (как раз под шланг от водяного уровня).
- Пластиковый контейнер 1,5 литра за 110 рублей из хозяйственного магазина (для герметичной упаковки пищевых продуктов).
- Фильтр для проточной очистки воды маленький (для стиральной машинки).
- Обратный клапан для воды.
Какая нужна нержавейка? В идеальном варианте марка на буржуйский манер должна быть AISI 316L, что соответствует нашей нержавеющей стали 03Х16Н15М3. Но я специально не заказывал нержавейку, а взял кусок, который удалось отыскать в сарае.
Купить целый лист довольно накладно: при толщине в 2мм на него уйдет около 5000 рублей, да еще нужно как-то его доставить, а размеры у него метр на два! У меня нашелся кусочек около 50 х 50 см.
Почему, собственно, нержавейка? Дело в том, что обычная сталь подвергается коррозии в воде. Кроме того, для достижения максимального эффекта мы будем использовать не воду, а щелочь, а это уже агрессивная среда. Кроме того, мы будем пропускать через наш электролит электрический ток. Поэтому обычные металлические пластины долго в таких условиях не проживут.
Я разметил свой листик, и получил 16 примерно квадратных пластин из нержавеющей стали для постройки своей водородной горелки своими руками. Пилил как обычно — болгаркой. Обратите внимание на форму пластины — с одной стороны у нее спилен уголок. Это нужно для того, чтобы в дальнейшем особым образом скрепить пластины между собой.
С противоположной стороны от среза сверлим отверстие под болт М6, которым мы будем скреплять пластины между собой. Отверстия в нижней части пластины мне оказались не нужны. Дело в том, что я просверлил их на всякий случай, если вдруг задумаю делать сухой электролизер.
Но его конструкция несколько сложнее, да и площадь пластин в нем используется крайне неэффективно. В общем, у меня и так пластин мало, поэтому я хочу использовать их по максимуму, поэтому выбрал вариант «мокрого» электролизера для HHO генератора.
В этом случае пластины целиком погружаются в электролит, и в процессе генерации газа Брауна (HHO или гремучего газа) участвует вся площадь пластины из нержавейки.
Суть водородного генератора, который лежит в основе горелки, заключается в том, что при прохождении постоянного электрического тока через электролит от одной пластины к другой, вода (которая содержится в электролите) разлагается на составляющие компоненты: водород и кислород. Значит нам нужно иметь две пластины: положительную и отрицательную (анод и катод).
Чем больше площадь пластин, тем больше площадь воздействия на электролит, тем больший ток пройдет через воду и тем больше HHO газа у нас образуется. Поэтому на анод и катод мы повесим сразу несколько пластин. В моем случае получилось по 8 пластин на анод и катод.
Для изоляции пластин разной полярности между собой я использовал кусочки той же трубки от водяного уровня.
На самом деле существует множество вариантов включения, и этот не самый оптимальный. Он является просто более простым с точки зрения изготовления и крепления пластин на электродах. Как видно из фотографии, у меня пластины просто чередуются +—+—+—+— и т.д.
Такая схема включения рассчитана на малое питающее напряжение и очень большой ток для получения достаточного количества газа для создания водородной горелки своими руками.
Или делаем вот такой Электролизер принцеп одинаковый на нем может даже ездить авто но про это позже
Добавляем сайт в закладки или лайкаем на соц сети чтобы не пропустить что то новое .
https://kumir.online/bloger/sasha-novikov.html
Мастерская. Водородный генератор H160 для пайки латуни — DRIVE2
- Осенняя эпопея 2019, связанная с покупкой нового оборудования для пайки и сварки, продолжается.
- Началось все с того, что мне нужно было спаять несколько кусочков латуни на серебряный припой, для того чтобы скопировать одну сложную деталь для механики саксофона.
- Пробовал использовать мелкую ручную горелку с газом для зажигалок, но она не давала нужной температуры.
- Начал смотреть более крупные горелки, даже взял одну, но тут столкнулся с кучей вариантов подключения к разным баллонам и притормозил от обилия информации и переключился на мелкие горелки, которые были на бензине и водороде.
- Данная тема была для меня новой, но посмотрев несколько видео с ютуба, понял что мне достаточно обычный китайской водородной горелки H160 и заказал ее на алиэкспресс.
Водородный генератор H160
Ценник был настолько гуманный, что я заинтересовал товарища, так что мы взяли 2 набора из H160 и отдельных горелок.
Продавец горелок выкладывал совсем другие фото, от горелки с наполнителем,
Полный размер
Заказывали такие
но приехали цельно-металлические, без песочка внутри.
Металлическая горелка
Печалька, потому что в видосах были именно с песочком.
Пока посылки ехали, товарищ успел приобрести несколько килограммов гидроксида натрия, чтобы использовать в качестве электролита и поделился со мной, так что я дождавшись прихода посылок, сразу начал пробовать.
В инструкции на китайском, было что-то написано про 1л жидкости, но без пропорций. Пришлось лезть в сеть и искать типичные варианты использования водородного генератора. Там я прочитал, что гидроксид натрия не самый лучший вариант для электролита и лучше использовать гидроксид калия. Но очень хотелось проверить работу и я не стал ничего менять.
- Разболтал в емкости раствор 100гр на 1000мл, залил внутрь до верхней метки индикатора на передней панели.
- В металлическую емкость спереди залил водку, потому что где-то слышал что это положительно влияет на цвет пламени горелки.
- Как ни странно, приборчик после включения сразу заработал, пошел газ.
Полный размер
Пламя с насадкой А
Я его поджег, появилось пламя, стал пробовать его тушить убиранием давления и через погружения в чашку с водой. Оба варианта не привели к каким-то серьезным проблемам, так что нет смысла ныть про отсутствие пламегасителя, без него все работает как надо.
С плавлением припоя ПСр70 тоже все хорошо получилось хорошо, так что я не стал ждать и загипсовав детали, смог запаять все, как и планировал.
Тут можно было бы и остановиться, но дальше было не все так радужно.
Через неделю, мне снова понадобилось спаять латунь, я вытащил из коробки генератор и стал греть детали. А они вдруг греться не захотели. Цвет был бордовый, но не достаточный для расплавления припоя.
Я продумал, что раствор потерял свою «живительную силу», откачав немного, долил более концентрированный и стал пробовать.
Возможно, это и помогло разогреть латунь, я даже успел спаять детали, но когда я стал прогревать шов, чтобы припой растекся более равномерно, горелка вдруг начала плеваться водой и потухла.
Стал смотреть, на «плевки» а там даже не водка была, а электролит, причем достаточной концентрации, чтобы оставить белые следы на пластиковой коробке. Причина подобного поведения мне была непонятна, но т.к. я торопился применить спаяные детали в конструкции, просто сунул генератор обратно в коробку, даже не сливая электролит.
Думал я, что скоро придется еще паять, но оказалось, вся эта штука пролежала у меня почти полгода в заправленном состоянии. Тем не менее, это никак не повлияло на работоспособность и генератор завелся и горелка вполне себе горела, пока снова не пошла пузырями.
Тут я вспомнил, что в расширительном бачке нужно поменять водку и когда сливал оттуда то, что там было, очень удивился запаху и цвету. Пахло электролитом, а цвет был коричневатым как чайная заварка.
Заменил водку на новую, стал греть горелкой и снова пошли пузыри. Открутил расширительный бачок, а он снова с коричневатой жижей.
Открутил крышку основного бачка, вытянул оттуда раствор в шприц, чтобы по уровню было 85-90% от максимума на индикаторе, жижа более темная, чем была в расширительном. Снова поменять водку в расширительном на новую (перевел больше бутылки уже), открыл крышку корпуса и стал смотреть как эта фигня работает.
Где-то через минуты три после включения, вижу что по одному из прозрачных шлангов начинает идти пена.Выключаю, откачиваю раствор шприцем до 75% примерно снова запускаю. Тут держится еще минут пять, потом снова пена, но уже не так много. Слил еще чуток, до 65-70% и после этого пены более не наблюдалось.
Получается, нужно держать уровень электролита не выше середины по индикатору, а у меня был такой.
Полный размер
Высокий уровень жидкости
Так и допаял, что нужно было, но грелось все очень неохотно, на пределе возможностей горелки.
После завершения процесса, я полностью слил весь раствор в унитаз, промыл оба бачка водой и оставил сушиться, а сам стал думать, что не так.
Первая мысль была о том, что нужно было все таки купить гидроксид калия, чтобы не страдала производительность. Тем более, что я находил видео, где человек сравнивал эффективность двух электролитов и гидроксид натрия там сильно проиграл, почти на 25-30%.
Потом я подумал, что нужно было не заливать раствора полный бак, чтобы не было пены. Кстати, пена могла быть и от излишней концентрации электролита. Тут нужно будет еще экспериментировать, тем более что я уже заказал гидроксид калия (КОН), рекомендованный производителем.
И еще один момент, который меня расстроил немного в том, что нельзя было надолго оставлять электролит внутри бачка, потому что это могло привести к коррозии. Или как иначе объяснить изменение цвета на коричневый. Хотя читал в сети, что кто-то просто доливает дистилированную воду в тот же раствор. Но мне не критично, компоненты не дорогие, можно и сливать в унитаз или в отдельную бутыль.
В общем, жду прихода нового электролита (гидроксида калия КОН) и продолжу экспериментировать с концентрацией и количеством жидкости в бачках. Возможно, в этом все дело. Заодно, сравню разные растворы между собой.
А пока электролит не приехал, в качестве заменителя, я приобрел себе два интересных прибора, бензиновую горелку и плазмотрон Алплаз-04, о которых напишу чуть позже.
Горелка на водороде своими руками
Главная » Горелки
Рейтинг статьи Загрузка…
Приветствую, Самоделкины!
- В начале июня прошлого года был собран генератор водорода из огнетушителя.
- Более подробно о процессе сборке вы узнаете посмотрев видеоролик.
С генерацией водорода он справляется хорошо, но в качестве источника газа для газовой горелки его использовать нельзя. Причин на то две. Во-первых, нет нормальной регулировки подачи газа, а во-вторых, есть опасность попадания пламени прямо в баллон.
Вероятность, что это произойдет в принципе слишком туманна, но все равно полностью это исключать нельзя. Поэтому потребуются какие-то механизмы отсечения пламени. Обо всем этом будет изложено в сегодняшней статье. Даже в нескольких вариантах исполнения.
Использование водорода в качестве топлива для газовых горелок вполне оправданно. Так как температура пламени водорода выше чем у пламени многих других газов. К тому же добыть водород очень просто. Для производства водорода потребуется алюминий в любом доступном виде. Также потребуется щелочь. Килограмм щёлочи можно купить дешевле чем за 100 рублей.
Водорода из нее можно получить очень много. Из килограмма натриевой щёлочи (каустическая сода) получается 840 л водорода. А из килограмма калийной щёлочи получается примерно 600 л водорода. При этом на каждые 10л водорода потребуется всего лишь 8 г алюминия. Короче, из одной пивной алюминиевой банки получается примерно канистра (20 л) водорода. И это круто.
Алюминия можно загружать сразу много. Чем больше, тем лучше. Но в разумных пределах. Набивать под завязку конечно же не нужно. 100 г алюминия будет вполне достаточно.
Регулировать объем полученного водорода проще с помощью щёлочи. 100 г калиевой щёлочи выработает примерно 60 л водорода. Если учитывать, что огнетушитель вполне уверенно может держать 26 атм, а свободный объем у него около 6 л, то можно произвести в нем не более 150 л водорода за раз. Это очень даже неплохо.
Воды нужно налить грамм 500, ну или даже можно побольше. Реакция сразу начинается и выделяется водород. Газы очень хорошо перемешиваются. Потоки выделяющегося горячего водорода и водяного пара, идущие из поверхности раствора, проходят через весь объем огнетушителя. При этом они перемешивают все газы, которые там есть.
Изначально 6 л воздуха, которые были в баллоне, содержали 20% кислорода. Но после того как было произведено 60 л водорода, объем газов увеличился более чем в 10 раз. То есть содержание кислорода составило уже всего лишь 2%.
Емкость заполняем водой. Теперь она создаст преграду гипотетическому пламени. Обжатый кусок медной трубки попробуем использовать как горелку. Водород горит практически невидимым пламенем и постоянно затухает.
Это из-за того, что давление идет рывками, слишком малый объем у камеры и механизма отсечки пламени. Ничего сейчас увеличим.
5-ти литровая пластиковая бутылка отлично сгладит рывки, получающиеся из-за лопающихся пузырей. Но ее нужно обязательно продувать, чтобы выгнать кислород из емкости. Придётся потерять минимум 5 литров водорода, но ничего, все это будет исправлено чуть позже.
Горит равномерно. Есть небольшое окрашивание пламени из-за водяных паров идущих вместе с водородом. Медную проволоку плавит вообще легко, а это уже выше 1000°C однако. Даже такая простая горелка работает очень даже хорошо. На световой меч конечно не тянет, но на заточку джедая уже похоже.
Далее понадобятся шприцы разного объема. С ними в комплекте идут иглы с разным диаметром 1,2 мм, 0,8 мм и 0,7 мм. Если сточить им острую часть, получим неплохие такие горелочки разной мощности. Затем автор подключил шприц, на который можно надевать разные иглы.
Прикручиваем последнюю запчасть. Нужно же ее как-то проверить. Для этого автор многократно набирает внутрь этой детальки водород. С одной стороны кладет вату, вымоченную в ацетоне. Его пары вспыхивают от малейшего пламени.
Если пламя сможет пройти через этот гаситель, то ватка вспыхнет. Обратите внимание, что система находится даже не под давлением.
Это будет похоже как раз на тот случай, когда давление в баллоне снизилась до минимума и велика опасность попадания пламени внутрь баллона.
Периодически автор сам поджигал ватку, чтобы проверить, не испарились ли пары ацетона полностью. И при необходимости он снова ее смачивал.
- Теперь не нужно ничего продувать и тратить водород в пустую.
Как сделать водородную горелку своими руками?
- 29 декабря
- 3132 просмотров
- 36 рейтинг
Водородная горелка своими руками – это вполне посильная задача для опытного мастера и новичка, вооруженного подробными рекомендациями о ее самостоятельном изготовлении. Этот прибор работает благодаря выделяемому водорода теплу. Смесь водорода с кислородом – это газ с наибольшей возможной температурой горения – 2800°С. Его называют гремучим или газом Брауна. Однако при работе с этой смесью необходимо быть осторожным, так как она очень взрывоопасна.
Схема генератора с водородной горелкой.
Водород обладает определенными преимуществами перед другими горючими газами. Например, его можно получить путем электролиза непосредственно из воды.
Самостоятельно изготовленная водородная горелка не требует использования водорода в баллонах. Электролизная горелка способна сама поставлять газ в необходимых количествах.
Благодаря этому водородная сварка является очень экономичным и наиболее безопасным способом.
Самодельный сварочный аппарат с водородной горелкой можно сделать на основе электролизного генератора. Вероятность взрыва газа с использованием такого оборудования полностью исключается, так как весь газ сразу же пускается на сварку и не накапливается в достаточном для взрыва количестве.
Что потребуется для изготовления горелки?
Электрическая схема водородной горелки.
Перед началом работ рекомендуется подготовить все необходимо для изготовления прибора.
Чтобы сделать водородную горелку, нужно запастись таким материалами:
- листовая нержавеющая сталь;
- 2 болта М6х150 с гайками и шайбами;
- прозрачная трубка, например, такая, как в водяном уровне;
- штуцеры с внешним диаметром соответствующим шланге;
- герметичный пластиковый контейнер объемом 1,5 литра;
- маленький фильтр для очистки приточной воды;
- обратный водный клапан.
К выбору нержавейки необходимо подходить ответственно. Желательно выбирать марку импортной стали AISI 316L или отечественный аналог – 03Х16Н15М3. Однако если есть небольшой кусочек нержавеющей стали 50х50 см толщиной 2 мм, то приобретать целый лист нет необходимости.
Использовать нужно именно нержавейку, так как она не подвергается коррозии в воде в отличие от обычной стали.
Кроме того, водородная сварка будет более эффективной, если использовать щелочь, а не простую воду. Щелочная среда является агрессивной, поэтому использовать обычную сталь недопустимо.
Особенности изготовления
Нержавейку нужно распилить на небольшие пластинки. Из куска 50х50 см получится 16 пластинок по форме приближенных к квадрату. Распилить металл можно болгаркой, один из углов каждой пластины необходимо спилить, чтобы в дальнейшем можно было соединить их между собой.
На противолежащей срезу стороне нужно просверлить отверстия для крепежных болтов, чтобы потом соединить элементы.
Работа приспособления будет основываться на том, что постоянный ток, проходя через раствор электролита последовательно от пластины к пластине, будет расщеплять воду на кислород и водород.
Для обеспечения этого процесса необходимо создать пластины с противоположными зарядами: положительным и отрицательным.
Для наибольшей эффективности работы прибора необходимо, чтобы площадь пластин была максимальной.
Это обеспечит максимальную площадь воздействия на раствор, через воду пройдет максимальный ток, благодаря чему образуется наибольшее возможное количество газа.
Чтобы добиться желаемого результата, необходимо обеспечить положительный и отрицательный заряд наибольшему возможному количеству пластин. При 16 пластинах на анод и катод приходится по 8 элементов.
Пластины разной полярности необходимо изолировать друг от друга. Для этого можно использовать кусочки прозрачной трубы.
Таким образом, при помощи самодельного водородного генератора и горелки можно осуществлять безопасную сварку металлов.
Водяная горелка — миниатюрный автоген
Используется принцип получения водорода с помощью электролиза водного раствора щелочи. Благодаря малым наружным габаритам электролизера ему найдется место и на небольшом рабочем столе, а использование в качестве блока электропитания стандартного выпрямителя для подзарядки аккумуляторных батарей облегчает изготовление установки и делает работу с ней безопасной.
Относительно небольшая, но вполне достаточная для нужд моделиста производительность аппарата позволила предельно упростить конструкцию водяного затвора и гарантировать пожара — и взрывобезопасность.
Устройство электролизера
Между двумя платами, соединенными четырьмя шпильками, размещена батарея стальных пластин-электродов, разделенных резиновыми кольцами. Внутренняя полость батареи наполовину заполнена водным раствором КОН или NaOH.
Приложенное к пластинам постоянное напряжение вызывает электролиз воды и выделение газообразного водорода и кислорода.
Эта смесь отводится через надетую на штуцер полихлорвиниловую трубку в промежуточную емкость, а из нее в водяной затвор. Газ, прошедший через помещенную там смесь воды с ацетоном в соотношении 1 :1, имеет необходимый для горения состав и, отведенный другой трубкой в форсунку — иглу от медицинского шприца, сгорает у ее выходного отверстия с температурой около 1800° С.
1 — изолирующая полихлорвиниловая трубка 10 мм, 2 — шпилька М8 (4 шт.), 3 — гайка М8 с шайбой (4 шт.), 4— левая плата, 5 — пробка-болт М10 с шайбой, б — плас-.
тина, 7 — резиновое кольцо, 8 — штуцер, 9 — шайба, 10 —полихлорвиниловая трубка 5 мм, 11 — правая плата, 12 — короткий штуцер (3 шт.
), 13 — промежуточная емкость, 14 — основание, 15 — клеммы, 16 — барботажная трубка, 17 — форсунка-игла, 18 — корпус водяного затвора.
Для плат электролизера я использовал толстое оргстекло. Этот материал легко обрабатывается, химически стоек к действию электролита и позволяет визуально контролировать его уровень, чтобы при необходимости добавлять через наливное отверстие дистиллированную воду.
Пластины можно изготовить из листового металла (нержавеющая сталь, никель, декапированное или трансформаторное железо) толщиной 0,6—0,8 мм. Для удобства сборки в пластинах выдавлены круглые углубления под резиновые кольца уплотнения, глубина их при толщине кольца 5—6 мм должна быть 2—3 мм.
Изоляции пластин, вырезаются из листовой маслобензостойкой или кислотоупорной резины. Сделать это вручную несложно, и все же идеальный для этого инструмент — “кругорез-универсал”.
Четыре стальные шпильки М8, соединяющие детали, изолированы кембриком диаметром 10 мм и пропущены в соответствующие отверстия диаметром 11 мм.
Количество пластин в батарее — 9. Оно определяется параметрами блока электропитания: его мощностью и максимальным напряжением — из расчета 2В на пластину.
Потребляемый ток зависит от количества задействованных пластин (чем их меньше, тем ток больше) и от концентрации раствора щелочи. В более концентрированном растворе ток больше, но лучше применять 4—8-процентный раствор — при электролизе он не так пенится.
Контактные клеммы припаиваются к первой и трем последним пластинам. Стандартное зарядное устройство для автомобильных аккумуляторов ВА-2, подключенное на 8 пластин, при напряжении 17 В и токе около 5А обеспечивает необходимую производительность горючей смеси для форсунки — иглы с внутренним диаметром 0,6 мм.
Надежным заслоном от распространения пламени по подводящей трубке внутрь электролизера является простейший водяной затвор, который сделан из двух порожних баллончиков для заправки газовых зажигалок. Достоинства их те же, что и у материала плат: легкость механической обработки, химическая стойкость и полупрозрачность, позволяющая контролировать уровень жидкости в водяном затворе.
Промежуточная емкость исключает возможность смешивания электролита и состава водяного затвора в режимах интенсивной работы или под действием разряжения, возникающего при выключении электропитания. А чтобы этого избежать наверняка, по окончании работы следует сразу же отсоединять трубку от электролизера.
Штуцеры емкостей сделаны из медных трубок диаметром 4 и 6 мм, устанавливаются в верхней стенке баллончиков на резьбе. Через них же осуществляется заливка состава водяного затвора и слив конденсата из разделительной емкости. Отличная воронка для этого получится из еще одного пустого баллончика, разрезанного пополам и с установленной на месте клапана тонкой трубкой.
- Соедините короткой полихлорвиниловой трубкой диаметром 5 мм электролизер с промежуточной емкостью, последнюю — с водяным затвором, а его выходной штуцер более длинной трубкой — с форсункой-иглой.
- Включите выпрямитель, подрегулируйте напряжением или количеством подключаемых пластин номинальный ток и подожгите выходящий из форсунки газ.
- Если вам необходима большая производительность — увеличьте количество пластин и примените более мощный блок питания — с ЛАТРом и простейшим выпрямителем.
Температура пламени также поддается некоторой корректировке составом водяного затвора. Когда в нем только вода, в смеси содержится много кислорода, что в некоторых случаях нежелательно.
О том, как сделать метиловый спирт в домашних условиях, мы описали в этой статье.
Залив в водяной затвор метиловый спирт, смесь можно обогатить и поднять температуру до 2600°С.
Для снижения температуры пламени водяной затвор заполняют смесью ацетона и воды в соотношении 1:1. Однако в последних случаях следует не забывать пополнять и содержимое водяного затвора.
Водородная сварка: изготовление горелки своими руками и электролизный сварочный аппарат
Водородная сварка представляет собой разновидность газопламенной обработки. Ее отличительной особенностью является горение пламени в атмосфере водорода. На сегодняшний день среди всех видов газопламенных обработок наибольшей популярностью пользуется именно такой метод.
Он обладает высокой эффективностью и служит отличной альтернативой ацетиленовой сварке. Кроме того, изготовить водородный сварочный аппарат можно своими руками в домашних условиях, что делает его еще более интересным.
Преимущества водородной сварки
Водородная сварка обладает рядом преимуществ по сравнению с другими аналогами. Главным ее достоинством является то, что в процессе горения сварочной горелки выделяется водяной пар, поэтому она является самой безопасной.
Кроме того, данная технология обеспечивает высокие рабочие температуры, а значит позволяет работать с более тугоплавкими металлами. Водородную сварку можно легко использовать в домашних условиях, так как изготовить сварочный аппарат своими руками может любой желающий.
- Еще одним наиболее часто используемым методом является ацетиленовая сварка.
- Технология сварки при помощи водорода.
- В то же время водородная во многих случаях оказывается более предпочтительной благодаря своим особенностям:
- позволяет получать аккуратные плотные швы;
- возможность работы с мелкими деталями;
- высокая температура газовой горелки позволяет осуществлять не только сварку, но и резку материалов;
- водородная горелка своими руками – это посильная задача не только для мастеров, но и для новичков;
- возможность выполнения работ в замкнутом пространстве;
- водородный сварочный аппарат является малогабаритным и его удобно транспортировать.
Несмотря на многочисленные достоинства атомно-водородной сварки, она не лишена недостатков. Главные из них – это трудности работы с медными изделиями, некоторыми легированными сталями, а также с массивными материалами.
Схема создания устройства
На первом этапе создания водородной горелки для отопления дома мастеру нужно проделать специальные ячейки, предназначенные для генерации водорода.
Топливная ячейка отличается своей укомплектованностью (немного меньше длины и ширины корпуса генератора), поэтому не займет слишком много места.
Высота блока с электродами внутри доходит до 2/3 высота главного корпуса, в который устанавливаются основные детали конструкции.
https://www.youtube.com/watch?v=5IyVNcV6TOI\u0026t=1319s
Ячейку можно создать из оргстекла либо текстолита (толщина стенки варьируется от 5 до 7 миллиметров). Для этого текстолитовая пластина разрезается на пять равных частей. Далее из них формируют прямоугольник и склеивают границы эпоксидным клеем. Нижняя часть полученной фигуры должна оставаться открытой.
Из таких пластин принято создавать корпус топливной ячейки водородного отопителя. Но в этом случае специалисты применяют немного другой способ сборки с использованием винтов.
На внешней стороне готового прямоугольника высверливают небольшие отверстия, предназначенные для проведения электродных пластин, а также одно маленькое отверстие для датчика уровня. Для комфортного высвобождения водорода потребуется дополнительное отверстие шириной от 10 до 15 миллиметров.
Внутрь вставляются платины электродов, контактные хвостики которых проводят через высверленные отверстия на верхней части прямоугольника. Далее встраивается датчик уровня воды на отметке 80 процентов заполнения ячейки. Все свободные отверстия в текстолитовой пластине (исключая то, из которого будет выходить водород) заливаются эпоксидным клеем.
Применение метода
Газопламенная сварка осуществляется за счет горения газообразной смеси. Самой часто используемой является ацетиленовая сварка. Она основана на окислении карбида в воде.
Если необходима небольшая температура, например, для работы с мелкими деталями или тонким металлом, используется пропан. Он подается из баллона в смесительную камеру, а затем в горелку.
В эту же камеру подается кислород, поддерживающий горение газа. Регулируя давление кислорода можно достичь температуры горения до 3000 градусов, что позволяет осуществлять не только сварку, но и резку металла.
Недостатком этой технологии является необходимость использование баллона с газом. Это накладывает ограничения на применение сварки во многих сложных условиях.
Агрегат для водородной сварки.
Принцип работы водородной сварки основан на процессе разделения воды на водород и кислород. В результате последующей рекомбинации одноатомного водорода в двухатомный происходит высвобождение энергии, ускоряющей сварку.
Область сварки оказывается защищенной водородом от кислорода, что исключает окисление поверхности и обеспечивает гладкие швы.
Использовать водородные баллоны для сплава опасно. Его утечка в замкнутых помещениях может привести к удушью или головокружению. Также он является взрывоопасным.
Производство водорода, необходимого для работы сварочного аппарата, осуществляется непосредственно на месте проведения сварочных работ в электролизной камере. Это исключает указанные риски при правильном использовании оборудования и соблюдении техники безопасности.
Водородная сварка широко применяется в сложных условиях: тоннелях, шахтах, коллекторах. Использовать в таких задачах пропилен-ацетиленовые баллоны невозможно из-за высокого риска утечки смеси и ее взрыва.
Электролизное оборудование лишено этих недостатков и широко применяется в указанных областях.
Использовать водородные сварочные аппараты достаточно просто. Они не требуют частой перезарядки и быстро выходят на рабочие температуры.
Кроме того, они могут работать от бытовой сети, что делает их весьма привлекательными для простого пользователя. Особенно учитывая то, что водородная сварка может быть изготовлена своими руками по одной из многочисленных схем электролизера для сварки доступной в интернете.
Получение водорода
Водород можно получить при помощи электролиза воды, точнее, щелочного раствора гидроксида натрия (каустической соды, едкого натра, это все названия одного и того же вещества). Гидроксид добавляют в воду для ускорения реакции.
Для получения водорода достаточно опустить в раствор два электрода и подать на них постоянный ток. В ходе электролизного процесса на положительном электроде будет выделяться кислород, на отрицательном – водород. Объем выделяемого водорода будет в два раза больше, чем объем выделяемого кислорода.
В химическом выражении реакция выглядит следующим образом:
2H2O=2H2+O2
Остается технически разделить эти два газа и воспрепятствовать их смешиванию, поскольку в результате образуется смесь, обладающая огромной потенциальной энергией. Оставлять процесс без контроля крайне опасно.
Для сварки водород получают при помощи специальных аппаратов – электролизеров. Для их питания необходимо электричество напряжением от 230 В. Электролизеры, в зависимости от конструкции, могут работать на трехфазном токе и на однофазном.
Как самому сделать водородный сварочный аппарат?
Сварка водородом пригодится любому умельцу. Водородный резак является недешевым оборудованием. Кроме того, доступные в продаже аппараты зачастую оказываются непригодными для пайки мелких деталей, особенно для ювелирных изделий.
Простой прием подрезки шканта на лицевой стороне детали
Выходом из этой ситуации является изготовление атомно-водородной сварки своими руками. Все детали, необходимые для создания такого прибора можно легко приобрести в любом хозяйственном магазине. Итак, давайте рассмотрим, как это сделать в домашних условиях.
Основная емкость
Установка для сварки при помощи водорода.
Аппарат водородной сварки работает в результате горения водорода, благодаря диссоциации водного раствора щелочи.
Этот процесс осуществляется в емкости, для которой отлично подойдет пол литровая банка. Ее необходимо закрыть пластмассовой крышкой с двумя отверстиями, проделанными для вывода контактов от электродов.
Все выводы необходимо плотно загерметизировать. Для этих целей подойдет клей «Момент».
В качестве электродов можно использовать четырехсантиметровые полоски из нержавеющей стали. Для наибольшей производительности сварочного аппарата требуется задействовать весь объем жидкости.
Для этого пластины просверливаются по верхнему и нижнему краю и соединяются между собой диэлектрическими шпильками. На получившемся блоке делаются клеммы: два минуса, расположенные по краям, и полюс между ними.
Каждая клемма загибается и фиксируется на емкости болтом. На эти болты будут накидываться клеммы от источника питания.
Емкость необходимо заполнить с помощью шприца рабочей жидкостью через штуцер отвода газов. Электролит представляет собой 8-10% смесь гидроокиси натрия в дистиллированной воде. При работе электролизера температура рабочей жидкости щелочного раствора обычно не превышает 80 °С.
Гидродозатором выступает второй сосуд. В нем газы насыщаются парами горючих веществ. Затем полученная смесь направляется в третью емкость, наполненную обычной водой. Она выполняет функцию затвора для выхода газов.
В качестве сопла, через которое буду выходить кислород, водород и горючие вещества, может быть использована обычная медицинская игла.
Источник тока для атомно-водородной сварки
В качестве источника тока может использоваться обычный аккумулятор на 12 вольт. Этот вариант отлично подойдет для работы с металлом фиксированной толщины.
Его недостатком является отсутствие возможности контроля силы пламени горелки, так как ее производительность определяется выработкой водорода и кислорода, зависящей от силы тока.
Выбор зарядного устройства для автомобильных аккумуляторов будет более предпочтительным. Для работы с тонкими металлическими пластинами или ювелирными изделиями зарядку можно настроить на 3 вольта.
Запитать кислородом водородную сварку можно от обычной сети в 220 В, что позволяет использовать данный аппарат в домашних условиях.
Обменная камера
- Принципиальная схема аппарата водородной сварки.
- Для отбора водорода и кислорода, подаваемого в горелку, используется еще одна емкость – обменная камера.
- Внутри нее необходимо проделать 3 отверстия:
- для заправки рабочей жидкостью;
- снизу штуцер для подачи рабочей жидкости в основную емкость;
- штуцер для подачи газовой смеси на сопло.
Конструкцию дополнительной емкости также необходимо тщательно загерметизировать. Через водородные затворы водородного генератора не должны просачиваться газы и жидкость. Это также решается с помощью «Момента».
Изготовление горелки
Для изготовления горелки можно использовать обычный резиновый шланг. Именно по нему водород и кислород будут транспортироваться от обменной камеры к соплу. В качестве сопла можно применить иглу от шприца или капельницы. Последняя будет более предпочтительным выбором, так как стенки этой иглы толще.
Шланг необходимо плотно закрепить со штуцером обменной камеры и основанием иглы. Это достигается при помощи хомутов. После завершения всех операций по сборке аппарата можно приступать к его испытанию.
Электролиз рабочей жидкости начинается быстро. Уже через несколько минут можно будет поджечь пламя на конце сопла. Регулировка пламени осуществляется изменением напряжения на аппарате.
Ячейки генератора
Чаще всего при создании водородного генератора используют цилиндрическую форму исполнения модулей. Электроды в такой конструкции выполнены немного по другой схеме.
Отверстие, из которого выходит водород, должно быть дополнительно оборудовано специальным штуцером. Его фиксируют креплением либо вклеивают. Готовая ячейка генерации водорода встраивается в корпус отопительного прибора и заделывается со стороны верха (в этом случае можно также использовать эпоксидную смолу).
Итог
Во многих случаях использование водородной сварки оказывается более удобным, чем других газопламенных методов. Особенно актуальной она становится, когда речь заходит про работу в домашних условиях.
Приведенное описание того, как сделать водородную горелку своими руками, поможет всем мастерам, желающим изготовить такой прибор. Это существенно сэкономит средства на покупку магазинного варианта сварки.
Кроме того изготовленный своими руками водородный резак является более перспективным для работы с мелкими изделиями. Водородная сварка является экологически чистой, а ее изготовление не требует большого труда и крупных затрат.
Также метод аналогичен с ацетиленовой сваркой, и освоить его не составит труда.
Финальный этап
В конце работы мастер сможет получить качественный и надежный водородный генератор для отопительной системы частного дома. Далее останутся лишь финальные штрихи:
- установить готовую топливную ячейку в главный корпус устройства;
- подключить электроды к клеммнику крышки прибора;
- штурец, установленный на отверстии выхода водорода, следует подсоединить к водородному коллектору;
- крышка накладывается сверху на корпус устройства и фиксируется через уплотнитель.
Теперь водородный генератор полностью готов к работе. Владелец частного дома может смело подключать воду и дополнительные модули для комфортного обогрева частного дома.