Плазменная наплавка: установки, технология, оборудование

Эффективность и проблемы плазменной наплавки стоят перед инженерами-материаловедами чрезвычайно остро. Благодаря этой технологии можно не только значительно увеличить срок эксплуатации и надежность высоконагруженных деталей и узлов, но восстановить, казалось бы, на сто процентов изношенные и разрушенные изделия.

Внедрение плазменной наплавки в технологический процесс значительно повышает конкурентоспособность машиностроительной продукции. Процесс не является принципиально новым и используется уже достаточно давно. Но он постоянно совершенствуется и расширяет технологические возможности.

Плазменная наплавка: установки, технология, оборудование

Общие положения

Плазмой называется ионизированный газ. Достоверно известно, что плазму можно получить различными методами в результате электрического, температурного или механического воздействия на молекулы газа. Для ее образования необходимо оторвать отрицательно заряженные электроны от положительных атомов.

В некоторых источниках можно встретить информацию о том, что плазма является четвертым агрегатным состоянием вещества наряду с твердым, жидким и газообразным.

Ионизированный газ обладает рядом полезных свойств и применяется во многих отраслях науки техники: плазменная наплавка металлов и сплавов с целью восстановления и упрочнения высоконагруженных изделий, испытывающих циклические нагрузки, ионно-плазменное азотирование в тлеющем разряде для диффузионного насыщения и упрочнения поверхностей деталей, для осуществления процессов химического травления (используется в технологии производства электроники).

Плазменная наплавка: установки, технология, оборудование

Подготовка к работе

Прежде чем приступить к наплавке, нужно настроить оборудование. В соответствии со справочными данными, необходимо подобрать и установить правильный угол наклона сопла горелки к поверхности изделия, выверить расстояние от торца горелки до детали (оно должно составлять от 5 до 8 миллиметров) и вставить проволоку (если осуществляется наплавка проволочного материала).

Если наплавка будет осуществляться путем колебаний сопла в поперечных направлениях, то необходимо выставить головку таким образом, чтобы сварной шов находился ровно посередине между крайними точками амплитуд колебания головки. Также необходимо отрегулировать механизм, который задает частоту и величину колебательных движений головки.

Технология плазменно-дуговой наплавки

Процесс наплавки довольно прост и может с успехом выполняться любым опытным сварщиком. Однако он требует от исполнителя максимальной концентрации и внимания. В противном случае можно запросто испортить заготовку.

Для ионизации рабочего газа используется мощный дуговой разряд. Отрыв отрицательных электронов от положительно заряженных атомов осуществляется за счет теплового воздействия электрической дуги на струю рабочей газовой смеси. Однако при соблюдении ряда условий возможно протекание не только под влиянием тепловой ионизации, но и за счет воздействия мощного электрического поля.

Газ подается под давлением 20-25 атмосфер. Для его ионизации необходимо напряжение 120-160 вольт с силой тока порядка 500 ампер. Положительно заряженные ионы захватываются магнитным полем и устремляются к катоду.

Скорость и кинетическая энергия элементарных частиц настолько велика, что при соударении с металлом они способны сообщать ему огромную температуру – от +10…+18 000 градусов по Цельсию. При этом ионы движутся со скоростью до 15 километров в секунду (!).

Установка плазменной наплавки оборудована специальным устройством под названием «плазмотрон». Именно этот узел отвечает за ионизацию газа и получение направленного потока элементарных частиц.

Мощность дуги должна быть такой, чтобы исключить оплавление основного материала. В то же время температура изделия должна быть максимально высокой, чтобы активизировать диффузионные процессы. Таким образом, температура должна приближаться к линии ликвидус на диаграмме железо-цементит.

Мелкодисперсный порошок специального состава или электродная проволока подается в струю высокотемпературной плазмы, в которой материл расплавляется. В жидком состоянии наплавка попадает на упрочняемую поверхность.

Плазменная наплавка: установки, технология, оборудование

Плазменное напыление

Для того чтобы реализовать плазменное напыление, необходимо существенно увеличить скорость потока плазмы. Этого можно добиться регулировкой напряжения и силы тока. Параметры подбираются опытным путем.

  • Материалами при плазменном напылении служат тугоплавкие металлы и химические соединения: вольфрам, тантал, титан, бориды, силициды, окись магния и оксид алюминия.
  • Неоспоримым преимуществом напыления по сравнению с наплавкой является возможность получения тончайших слоев, порядка нескольких микрометров.
  • Данная технология применяется при упрочнении режущих токарных и фрезерных сменных твердосплавных пластин, а также метчиков, сверл, зенкеров, разверток и другого инструмента.

Плазменная наплавка: установки, технология, оборудование

Получение открытой плазменной струи

В этом случае в роли анода выступает непосредственно сама заготовка, на которую осуществляется плазменная наплавка материала. Очевидный недостаток данного метода обработки – нагрев поверхности и всего объема детали, что может привести к структурным превращениям и нежелательным последствиям: разупрочнению, повышению хрупкости и так далее.

Закрытая плазменная струя

В этом случае в роли анода выступает непосредственно газовая горелка, точнее — ее сопло. Данный способ используется для плазменно-порошковой наплавки с целью восстановления и повышения эксплуатационных характеристик деталей и узлов машин. Особую популярность данная технология завоевала в сфере сельскохозяйственного машиностроения.

Преимущества плазменной технологии наплавки

Одним из основных преимуществ является концентрация тепловой энергии в небольшой зоне, что позволяет уменьшить влияние температуры на исходную структуру материала.

Процесс хорошо поддается управлению. При желании и соответствующих настройках аппаратуры слой наплавки может варьироваться от нескольких десятых долей миллиметра до двух миллиметров.

Возможность получения контролируемого слоя особенно актуальна на данный момент, так как позволяет значительно увеличить экономическую эффективность обработки и получить оптимальные свойства (твердость, коррозионная стойкость, износостойкость и многие другие) поверхностей стальных изделий.

Еще одно не менее важное преимущество – возможность осуществлять плазменную сварку и наплавку самых разных материалов: медь, латунь, бронза, драгоценные металлы, а также неметаллы. Традиционные методы сварки далеко не всегда могут позволить это сделать.

Плазменная наплавка: установки, технология, оборудование

Оборудование для наплавки

Установка для плазменно-порошковой наплавки включает в себя дроссель, осциллятор, плазмотрон и источники питания. Также она должна быть оснащена устройством автоматической подачи гранул металлического порошка в рабочую зону и системой охлаждения с постоянной циркуляцией воды.

Плазменная наплавка: установки, технология, оборудование

Источники тока для плазменной наплавки должны удовлетворять строгим требованиям постоянства и надежности. С этой ролью как нельзя лучше справляются сварочные трансформаторы.

При наплавке порошковых материалов на металлическую поверхность используется так называемая комбинированная дуга. Одновременно используются открытая и закрытая плазменная струя. Регулируя мощность этих дуг, можно менять глубину проплавления заготовки. При оптимальных режимах коробление изделий не будет проявляться. Это важно при изготовлении деталей и узлов точного машиностроения.

Устройство для подачи материала

Металлический порошок дозируется специальным устройством и подается в зону оплавления.

Механизм, или принцип действия питателя, заключается в следующем: лопатки ротора выталкивают порошок в газовый поток, частицы разогреваются и прилипают к обрабатываемой поверхности.

Подача порошка осуществляется через отдельное сопло. Всего в газовой горелке установлено три сопла: для подачи плазмы, для подачи рабочего порошка и для защитного газа.

Если вы используете проволоку, целесообразно использовать стандартный механизм подачи сварочного автомата для сварки под флюсом.

Подготовка поверхностей

Плазменной наплавке и напылению материалов должна предшествовать тщательная очистка поверхности от жировых пятен и других загрязнений.

Если при обычной сварке позволительно производить только грубую, поверхностную очистку стыков от ржавчины и окалины, то при работе с плазмой газа поверхность обрабатываемого изделия должна быть идеально (насколько это возможно) чистой, без посторонних включений. Тончайшая пленка окислов способна значительно ослабить адгезионное взаимодействие наплавки и основного металла.

С целью подготовки поверхности под наплавку рекомендуется снять незначительный поверхностный слой металла посредством механической обработки резанием с последующим обезжириванием. Если габариты детали позволяют, то рекомендуется провести промывку и очистку поверхностей в ультразвуковой ванной.

Важные особенности наплавки металлов

Существует несколько вариантов и способов осуществления плазменной наплавки. Применение проволоки в качестве материала для наплавки значительно повышает производительность процесса по сравнению с порошками.

Это объясняется тем, что электрод (проволока) выступает в роли анода, что способствует значительно более быстрому нагреву наплавляемого материала, а значит позволяет скорректировать режимы обработки в сторону увеличения.

Однако качество покрытия и адгезионные свойства явно на стороне порошковых присадок. Использование мелких частиц металла позволяет получать на поверхности равномерный слой любой толщины.

Наплавочный порошок

Использование порошковой наплавки является предпочтительным с точки зрения качества получаемых поверхностей и износостойкости, поэтому на производстве все чаще используют именно порошковые смеси. Традиционный состав порошковой смеси – кобальтовые и никелевые частицы.

Сплав данных металлов обладает хорошими механическими свойствами. После обработки таким составом поверхность детали остается идеально гладкой и не возникает необходимости в ее механической доводке и устранении неровностей. Фракция частиц порошка – всего несколько микрометров.

Источник: https://autogear.ru/article/381/607/plazmennaya-naplavka-oborudovanie-i-tehnologiya-protsessa/

Плазменная и плазменно-порошковая наплавка

Плазменная наплавка – это нанесение с помощью сжатой дуги слоя металла на поверхность изделия.

Плазменная наплавка применяется при восстановлении изношенных деталей, когда необходимо восстановить размеры деталей и при этом обеспечить свойства наплавленного слоя, близкие к свойствам основного металла.

Она также применяется при изготовлении новых деталей с целью придания рабочим поверхностям специальных свойств, например, жаропрочности, износостойкости, коррозионной стойкости и т. д.

Масса металла наплавки в таких изделиях обычно составляет несколько процентов от массы всего изделия, а работоспособность поверхности детали значительно превосходит работоспособность однородного (без наплавки) изделия. При плазменной наплавке стремятся к минимальному перемешиванию основного металла с наплавленным, что обеспечивает высокие свойства наплавленного слоя.

Сущность плазменной наплавки состоит в том, что присадочный и основной металл расплавляются с помощью высококонцентрированного электродугового разряда (плазменного потока), который формируется между электродом плазмотрона и изделием (плазма прямого действия) или между электродом и водоохлаждаемым соплом плазмотрона (косвенного действия). При этом присадочный материал также может быть электрически нейтральным по отношению к струе плазмы или электрически связанным с ней (рис. 1). В качестве присадочного материала используются проволоки, прутки, сыпучие порошковые материалы или специально приготовленные шнуры из порошков.

Плазменная наплавка: установки, технология, оборудование

Рис. 1. Схемы плазменной наплавки: а – плазменной струей с токоведущей присадочной проволокой; б – плазменной дугой с нейтральной присадочной проволокой; 1 – защитное сопло; 2 – сопло плазмотрона; 3 – защитный газ; 4 – плазмообразующий газ; 5 – электрод; 6 – присадочная проволока; 7 – изделие; 8 – источник питания косвенной дуги; 9 – источник питания дуги прямого действия

Читайте также:  Химико-термическая обработка металлов и сплавов

Преимущества плазменной наплавки по сравнению с другими способами нанесения слоев на поверхность сводятся к следующему.

  • Гладкая и ровная наплавленная поверхность, что позволяет оставлять припуск на механическую обработку в пределах 0,4…0,9 мм.
  • Малая глубина проплавления основного металла (0,3…2,5 мм) и небольшая зона термического влияния (3…6 мм) обусловливают долю основного металла в покрытии < 5 %.
  • Малое вложение тепла в обрабатываемую деталь обеспечивает небольшие деформации и термические воздействия на структуру основы.
  • При плазменной наплавке получают слой толщиной 0,2…6,5 мм и шириной 1,2…45 мм. Если наносится легкоплавкий материал, то возможно нанесение покрытия с проплавлением очень тонких поверхностных слоев практически без оплавления поверхности.
  • Термический КПД наплавки в 2…3 раза выше, чем при электродуговом процессе. Производительность процесса 0,4… 5,5 кг/ч. Производительность плазменно-порошковой наплавки аустенитных нержавеющих сталей не уступает производительности электродуговой наплавки.

Плазменно-порошковая наплавка (ППН) (рис. 2) – механизированный процесс, при котором источником теплоты служит сжатая дуга (плазма), а присадочным материалом – гранулированные металлические порошки, которые подаются в плазмотрон транспортирующим газом с помощью специального питателя.

Плазменная наплавка: установки, технология, оборудование

Рис. 2. Схема плазменно-порошковой наплавки: 1 – изделие; 2 – источник питания плазменной дуги; 3 – вольфрамовый электрод; 4 – стабилизирующее сопло плазмотрона; 5 – ввод транспортирующего газа с порошком; 6 – фокусирующее сопло; 7 – ввод защитного газа; 8 – защитное сопло; 9 – устройство поджига дуги

Процесс плазменно-порошковой наплавки отличается уникальными технологическими возможностями.

Малая глубина проплавления основного металла, прецизионная точность, высокая культура производства и возможность наплавки самых разнообразных сплавов – все это делает его незаменимым при наплавке клапанов ДВС, запорной арматуры, шнеков экструдеров и термопластавтоматов, инструмента и многих других деталей. Для плазменно-порошковой наплавки используется специализированное оборудование, состоящее из источника питания плазмы, плазмотрона, устройства для подачи порошка, пульта управления, блока охлаждения и газобаллонной арматуры. Например, аппарат типа ПМ-300 и его модификации предназначены для плазменно-порошковой наплавки плоских, цилиндрических и других поверхностей различных деталей (рис. 3). Для вращения или перемещения детали относительно плазмотрона может использоваться токарно-винторезный станок, манипулятор либо какой-нибудь другой механизм. Наплавка осуществляется высокотемпературной сжатой дугой, получаемой в плазмотроне с неплавящимся электродом. Присадочным материалом служит мелкозернистый порошок износостойких, коррозионно-стойких и других сплавов на основе Fe, Ni, Co и Cu.

Плазменная наплавка: установки, технология, оборудование

Рис. 3. Установка для плазменно-порошковой наплавки ПМ-300В: 1 – источник питания; 2 – плазмотрон; 3 – манипулятор-вращатель; 4 – механизм регулировки плазмотрона и подачи порошка; 5 – пульт управления; 6 – баллон с аргоном

Благодаря возможности регулирования в широком диапазоне соотношения между тепловой мощностью дуги и подачей присадочного порошка ППН обеспечивает достаточно высокую производительность при минимальном проплавлении основного металла, что позволяет обеспечивать требуемую твердость и заданный химический состав наплавленного металла уже на расстоянии 0,3…0,5 мм от поверхности сплавления. Это дает возможность ограничиться однослойной наплавкой там, где электродуговым способом необходимо наплавить 3…4 слоя.

Важной особенностью ППН является отличное формирование наплавленных валиков, стабильность и хорошая воспроизводимость их размеров.

Установлено, что у 95 % наплавленных деталей отклонение толщины наплавленного слоя от номинального размера не превышает 0,5 мм.

Это позволяет существенно сократить расход наплавочных материалов, время наплавки, а также затраты на механическую обработку наплавленных деталей.

ППН обеспечивает высокую работоспособность деталей за счет отличного качества наплавленного металла, его однородности, а также благоприятной структуры, определяемой специфическими условиями кристаллизации металла сварочной ванны.

Основные преимущества ППН:

  1. высокая производительность (до 10 кг/ч);
  2. высокое качество наплавленного металла;
  3. малая глубина проплавления основного металла (до 5 %);
  4. минимальные потери присадочного материала;
  5. возможность наплавки относительно тонких слоев (0,5…5,0 мм).

В наплавочных плазмотронах можно использовать три схемы ввода порошка в дугу:

  1. распределенный через кольцевую щель между соплами (рис 2);
  2. локальный боковой через канал в торце сопла;
  3. аксиальный через полый электрод.

Наплавка комбинированным способом состоит в том, что в зону наплавки одновременно подаются порошок из питателя транспортирующим газом и проволока подающим механизмом (рис. 4).

Плазменная наплавка: установки, технология, оборудование

Рис. 4. Схема установки плазменной наплавки комбинированным способом: 1 – корпус плазмотрона (анод); 2 – вольфрамовый электрод; 3 – электродная проволока; 4 – механизм подачи проволоки; 5 – источник питания; 6 – наплавляемая деталь; 7 – порошковый питатель

Известный способ наплавки плазменной струей с токоведущей проволокой позволяет наплавлять слои с минимальной глубиной проплавления. Однако этот способ ограничивается использованием проволок с температурой плавления ниже температуры плавления основного металла (проволоки из меди, медных сплавов, аустенитных сталей).

Применение для наплавки на стальные изделия сварочных низкоуглеродистых проволок (Св-08А, Св-082ГС), а также легированных износостойких наплавочных проволок (Нп-ЗОХГСА, Нп-65Г и др.) в качестве токоведущих не обеспечивает качественного формирования слоев из-за недостаточного подвода теплоты к основному металлу и плохой смачиваемости его подложки.

Слои, наплавленные порошками твердых сплавов, характеризуются высокой износостойкостью, но низкой пластичностью. Слои, наплавленные проволоками, имеют, как правило, высокую пластичность, но значительно уступают порошкам по износостойкости и степени перемешивания с основным металлом.

Объединение проволоки и порошка в единую схему позволило повысить эффективность сжатой дуги и добиться образования слоев без пор, трещин за один проход.

Важное преимущество комбинированного способа наплавки – возможность расширения диапазона регулирования состава наплавленного металла и получения слоев с требуемыми свойствами.

Плазменная наплавка твердыми сплавами. Для восстановления быстроизнашивающихся деталей тракторов, автомобилей, сельскохозяйственных машин и т. д. широко применяется износостойкая наплавка.

Такая наплавка осуществляется различными твердыми сплавами: литыми (стеллит, сормайт), трубчатыми (рэлит), порошковыми (сталинит, сормайт, боридохромовые смеси).

Плазменная наплавка рассматриваемых твердых сплавов может быть осуществлена как по схеме наплавки с токоведущей присадочной проволокой (в случае применения литых или трубчатых сплавов), так и по схеме наплавки порошками.

Так как проволока из литых и трубчатых сплавов не изготавливается, то вместо присадочной проволоки применяются присадочные токоведущие прутки. Присадочный пруток подается к плазменной струе между двумя направляющими роликами по направляющей медной трубке. В качестве плазмообразующего и защитного газа используется аргон.

Плазменная наплавка с применением в качестве присадочного материала металлического порошка. В ряде случаев из наплавочного сплава трудно изготовить проволоку, ленту или даже прутки.

Тогда для плазменной наплавки в качестве присадочного материала могут применяться металлические порошки.

Способы наплавки с использованием порошков удобно применять и тогда, когда необходимо получить тонкий (менее 1 мм) слой металла наплавки.

При наплавке по слою порошка присадкой служит крупнозернистый порошок требуемого состава. Такой порошок либо заранее насыпается на наплавляемую поверхность, либо подается в сварочную ванну из питателя непосредственно в процессе наплавки через плазмотрон.

Разработана целая гамма плазмотронов для плазменнопорошковой наплавки различных поверхностей и рассчитанных на различные мощности плазмы. Например, универсальный плазмотрон ПП-6-03 предназначен для плазменно-порошковой наплавки различных деталей сплавами на основе Fe, Ni и Co с целью защиты их от износа, коррозии и т.

д. Конструктивно плазмотрон состоит из двух частей – собственно плазмотрона и держателя с горизонтальным расположением коммуникаций, являющегося неотъемлемой его частью.

Плазмотрон присоединяется к держателю с помощью четырех питающих трубок и фиксируется четырьмя полыми винтами, что позволяет очень быстро присоединять или отсоединять его при монтаже и обслуживании (рис. 5).

Плазменная наплавка: установки, технология, оборудование

Рис. 5. Универсальный плазмотрон для плазменно-порошковой наплавки ПП-6-03: а – схема плазмотрона; б – внешний вид

Чаще всего для плазменной наплавки применяются порошки на основе никеля, кобальта или железа. Присадки бора и кремния снижают температуру плавления сплава, что позволяет получить тонкий слой металла наплавки при малой (меньше 10 %) степени проплавления основного металла. В то же время примеси бора и кремния повышают твердость и износостойкость металла наплавки.

Такие сплавы жаростойки до температуры 950 °С, сохраняют высокую твердость при нагреве до 750 °С и обладают хорошей коррозионной стойкостью в растворах NH4Cl, KCl, NaOH, 10 %-ной серной кислоте и других средах. Поэтому хромоникелевые сплавы с бором и кремнием нашли широкое применение для наплавки клапанов двигателей внутреннего сгорания, поршней кислотных насосов и т.

д.

Плазменная наплавка по способу вдувания порошка в струю может применяться как для наплавки на основной металл легкоплавких, так и тугоплавких сплавов. Достижимая минимальная глубина проплавления основного металла составляет около 0,25 мм.

Минимальная толщина слоя наплавки 0,5 мм; максимальная толщина при наплавке в один проход составляет 5…6 мм. Для наплавки по способу вдувания порошка в плазменную струю используются те же порошки, что и при наплавке по слою порошка.

Качество наплавки при этом остается хорошим.

Плазменная наплавка с применением присадочных материалов в виде порошковых сплавов обеспечивает высокое качество наплавленного металла. Так, наплавленный порошком ЛП8 металл по химическому составу соответствует кобальтовому стеллиту.

Порошки ПГ-У30Х28Н4С4 и ЛП3 предназначены для наплавки деталей, работающих в условиях абразивного износа.

При наплавке сплавов на основе кобальта с добавками хрома (21…32 %), вольфрама (4…17 %), углерода, кремния, марганца, железа, никеля обеспечивается твердость наплавленного слоя HRC 32…52, на основе никеля HRC 34…54, на основе железа – HRC 55…63.

Микроплазменное напыление с использованием проволочных материалов. Одним из видов плазменно-дугового напыления (наплавки) является метод получения покрытий с использованием проволок в качестве присадочного материала. До настоящего времени такое напыление осуществлялось плазмотронами достаточно большой мощности.

Например, в установке УПУ-8М плазмотрон мощностью 40 кВт проводит напыление из проволочных материалов диаметром 0,8…1,2 мм. При этом на деталях с толщиной стенок  1 мм возникает опасность местного перегрева и коробления изделия.

Необходимость плазменного напыления на узкие ребра или дорожки ведет к большим потерям напыляемого материала (диаметр пятна напыления обычно составляет 15…30 мм). Анализируя существующие установки и теоретическую оценку возможности распыления проволоки микроплазменной струей, ученые ИЭС им. Е.О.

Патона разработали приставку к плазмотрону для микроплазменного напыления, позволяющую проводить процесс с применением проволочных материалов. Приставка была использована в комплекте с существующей установкой МПН-004, предназначенной для напыления покрытий из порошковых материалов.

Читайте также:  Фрезерный станок оф-55 технические характеристики и паспорт

Она включает источник питания с панелью управления, плазмотрон и специальное устройство для подачи порошка. Конструкция и параметры работы плазмотрона обеспечивают формирование ламинарной плазменной струи, что обусловливает ряд особенностей процесса:

  • возможность уменьшения размера пятна напыления до 1…5 мм;
  • возможность нанесения покрытий на изделия малых размеров с тонкими стенками без излишнего локального перегрева и коробления;
  • низкий уровень звука ламинарной плазменной струи (всего 30…50 дБ).

Отличительной особенностью этой установки является наличие компактного механизма подачи проволоки в межэлектродный участок плазменной струи. Проволока подается приводом постоянного тока при помощи фрикционных роликов. Подающий механизм имеет ступенчатую (за счет сменных роликов) и плавную (за счет изменения числа оборотов на валу электродвигателя) регулировки скорости подачи проволоки.

Источник: https://extxe.com/2827/plazmennaja-i-plazmenno-poroshkovaja-naplavka/

Оборудование плазменной сварки ручной и автоматической, особенности, виды, все подробности

Главная страница » Плазменная сварка » Оборудование

Плазменная наплавка: установки, технология, оборудованиеПлазменная сварка активно используется не только в промышленных масштабах, но и при домашних ремонтно-строительных работах. Поскольку спрос на данную технологию не уменьшается, а наоборот, неуклонно растет, рассмотрим технологию данной сварки, необходимое для процесса оборудование и его основные свойства.

Назначение оборудования для плазменной сварки

Использование специальных видов металлов и их сплавов требует применения особых способов сварки.

Ведь в большинстве случаев нержавеющая сталь, цветные металлы и другие материалы данной группы не поддаются обработке традиционными сварочными аппаратами.

По этой причине была создана технология плазменной сварки, которая на данный момент нашла широкое применение в строительных и ремонтных работах.

Плазменная обработка основана на использовании ионизированного газа. Благодаря его свойствам температура сварочной дуги находится в границах от 5 до 30 тысяч градусов по Цельсию. Обычные сварочные аппараты могут достигать не более, чем 5 тысяч градусов. Под воздействием ионизированным газом на поверхность металла его ограниченная поверхность легко поддается плавлению.

Плазменная наплавка: установки, технология, оборудование

Сварка плазмой алюминия

Чем отличается оборудование плазменной сварки от оборудования плазменной резки

Устройства, предназначенные для проведения сварки, производятся преимущественно в универсальном формате, позволяющем проводить сварку в различных направлениях и плоскостях. Например, зона работы сосредоточена на потолке или вертикальной стене и т. д. Сварочные аппараты, основанные на плазменных методах, работают по принципу плавления кромок деталей с последующим их соединением.

Оборудование плазменной сварки можно классифицировать по нескольким параметрам:

  1. По типу воздействия — прямое и косвенное.
  2. По методам стабилизации дуги — посредством газа, воды или магнитного поля.
  3. По силе тока — для микроплазменной сварки, на средних и высоких токах.

Устройства резки в свою очередь делятся на:

  • Трансформаторные и инверторные.
  • Водно-плазменные и воздушно-плазменные.
  • Контактные и бесконтактные.

Плазменная наплавка: установки, технология, оборудование

Основное отличие работы устройств сварки от устройств резки в следующем:

  • Сварка проводит одновременно разрезание заготовок и заваривание мест разреза.
  • Резка расплавляет металл в месте, подверженном обработке, и затем выдувает с помощь фракции разжиженный материал.

Особенности оборудования для плазменной дуговой сварки

Плазменная наплавка: установки, технология, оборудование

  • Давление на металлы увеличивается в несколько раз. Обычно показатели колеблются от 6 до 8 или 10.
  • Плазменная дуга получается меньшего диаметра, что позволяет работать более аккуратно и выполнять тонкую работу.
  • Дуга из плазмы поддерживается при наличии достаточно малого тока от 0,2 до 30 ампер.
  • Дуга имеет форму цилиндра, а не конуса.

В зависимости от того, какие задачи потребуется выполнить, оборудование плазменной сварки делится на 3 типа:

  1. микроплазменная аппаратура с силой тока от 0,1 до 25 А;
  2. оборудование со средними токами силой от 50 до 150 А;
  3. оборудование с большими токами силой от 150 А.

Микроплазменное оборудование позволяет работать с мелкими и тонкими деталями. Устройства средней мощности считаются самыми безопасными и мощными, а также похожими на аргоновую сварку.

Довольно популярные ручные сварочные аппараты:

  • «Горыныч» — удобный аппарат для бытового использования. На данный момент выпускается в нескольких моделях. Основное их отличие — мощность, изменяющаяся от 8,10 до 12 ампер.
  • Аппарат сварки и резки Plasma 33 multi. Использует воздушно-плазменную сварку, способен сваривать металлы толщиной до 8 мм.
  • Другие популярные модели смотрите в разделе аппаратов.

Оборудование для плазменной наплавки

Среди оборудования, используемого для наплавки — напыления устойчивого покрытия на металлическую поверхность — стоит обратить внимание на:

  • SNMI — установки французской компании, предназначенные для осуществления плазменной наплавки с использованием порошка.
  • Оборудование производителя Castolin-Eutectic — Micro GAP 50 DC. Используется для проведения ручной наплавки.

Основные виды оборудования

Плазменная наплавка: установки, технология, оборудование

Аппараты — применяются для проведения сварочных работ вручную.
Установки — используются в промышленных масштабах. Мобильны, несмотря на крупные габариты изделия. Устанавливаются на специальных рамах.
Станки и машины — также служат для обеспечения промышленной сварки, более громоздкие и занимают больше места, чем установки. Но дают высокую скорость работы.

Наибольшее распространение получили именно аппараты и установки для плазменной сварки и резки, в том числе с ЧПУ.

Материалы плазменно-дуговой сварки

Расходные материалы требуются в любом производственном процессе. Плазменная сварка и резка — не исключение. Для работы с устройствами плазменной обработки металлов требуются следующие расходники:

  • Электроды, изготавливаемые из тугоплавких материалов, таких как вольфрам, цирконий или гафний. Электрод является одной из основных деталей плазматрона и подбирается в зависимости от типа работы.
  • Сопло. Для его изготовления используется медь или сталь. Изнашивается наиболее быстро из-за особенностей работы аппарата.
  • Завихритель или диффузор. Увеличивает давление и обеспечивает расширение, замедляя поток.

Обслуживание оборудования для плазменной сварки

Как и любое другое устройство, аппараты и установки плазменной сварки и резки металлов требуют внимания и ухода. Особенно это касается ремонта оборудования. Он может потребоваться в нескольких случаях:

  • При выходе из строя конкретных деталей. Чаще всего это расходные материалы, указанные в пункте выше.
  • При возникновении короткого замыкания.
  • При сильных перепадах напряжения.

Вне зависимости от типа поломки владелец оборудования может потратить не так много времени на его ремонт. Это обусловлено стремлением производителей сделать починку устройств максимально удобной и простой.

В аппаратуре зачастую не требуется производить замену всего модуля. Достаточно поменять одну изношенную или поврежденную деталь.
Обязательно нужно соблюдать условия эксплуатации аппаратуры. Такие как работа в сухом и максимально чистом помещении.

Наличие пыли и влаги только испортит устройство.

Источник: https://plazmen.ru/rub/svarka/oborudovanie-s/

Плазменная наплавка металла

27.11.2019

Для восстановления старых деталей, повышения износостойкости новых, применяют плазменную наплавку. Инновационный метод образования защитных покрытий сродни плазменной сварке, используется для оборудования, эксплуатируемого в жестких условиях, контактирующего с агрессивной средой.

Плазменная наплавка: установки, технология, оборудование

Сущность и область применения

Принцип плазменной наплавки металла основан на расплавлении присадки электродугой высокой плотности. Плазма возникает двумя способами:

  • за счет электрического разряда, возникающего между плазмотроном и направляемой поверхностью (прямое действие);
  • между электродом и соплом, к которому подводится охлаждение (косвенное действие).

Для наплавки деталей применяются различные присадки:

  • сыпучие и гранулированные порошковые материалы;
  • наплавочная порошковая проволока, используемая для сварки;
  • металлические прутки, лента;
  • спецшнуры, в составе которых имеется металлический порошок.

По сути, наплавка – это поверхностная сварка плазмотроном, обработка металла плазменной дугой. На поверхности образуется диффузионный слой, прочно удерживающий защитную пленку, обладающую специфическими свойствами.

Коротко!

Наплавка – это поверхностная  обработка металла плазменной дугой для восстановления старых деталей и повышения износостойкости новых. Применяется в промышленности и ремонтных мастерских.

Преимущества плазменной наплавки

Популярность методики наплавления защитных покрытий плазмотроном объясняется рядом положительных свойств:

  • метод применим для многих материалов, включая тугоплавкие;
  • геометрические параметры и форма детали значения не имеют, результативность обработки стандартная;
  • можно наносить наплавку в несколько слоев, до 6,5 мм толщиной с припуском от 400 до 900 микрон;
  • при небольшой глубине расплавления (от 300 микрон до 2,5 мм) формируется незначительная зона термического влияния, риск образования внутренних дефектов минимальный;
  • за счет большой скорости разогрева обрабатываемый металл не успевает прогреться на большую глубину, структурная зернистость не изменяется, удается избежать коробления, деформации деталей;
  • защитные покрытия можно наносить на тонкие поверхности, минимальная толщина плазменного напыления не более 200 микрон;
  • плазменная обработка эффективнее электродуговой наплавки в разы;
  • поток плазмы регулируется с большой точностью.

  Визуальный и измерительный контроль сварных соединений (ВИК)

Метод применяется в промышленности и ремонтных мастерских, можно подобрать необходимое оборудование.

Технология плазменной наплавки металла

Разработано несколько способов нанесения наплавочного материала:

  • Плазменная предусматривает нанесение проволоки сжатой дугой, процесс подобен ручной сварке.
  • При плазменно-порошковой наплавке наплавочный гранулят из питателя механически подается в плазмотрон, транспортируется газом.
  • Комбинированный способ объединяет два вида подачи: автоматически в рабочую зону поступают гранулы и проволока, получается расплав с определенными физико-химическими свойствами. Возможно наплавление твердых сплавов: литых, трубчатых, порошковых. Принцип работы такой же, как с присадочной проволокой.
  • Применение измельченного металла в качестве присадки оправдано при получении тонкого слоя, менее миллиметра.
  • Микроплазменная обработка металлов – разновидность проволочного плазменно-дугового напыления тонкостенных изделий, формируется пятно диаметром от 1 до 5 мм, ламирная плазменная струя отличается низким уровнем шума в пределах 50 дБ.

Различают три вида струи плазмы:

  • закрытая с анодным подключением к соплу или горелки формируется широкой, характеризуется небольшой интенсивностью (главный минус – много тепла уходит в атмосферу, металл прогревается медленно);
  • открытая формирует направленный тепловой поток, анод подключается к присадочному прутку, ленте или проволоке, температурный пик расположен над обрабатываемой поверхностью, обеспечивается высокая скорость разогрева;
  • комбинированная предназначена для плазменно-порошкового напыления, одновременно разжигается две дуги: открытая и закрытая (закрытая формируется в зоне подачи порошковых гранул, открытая – на выходе жесткой присадки).

В качестве формирующей плазму среды применяют воздух, водород или любой инертный газ. По мнению специалистов, качественный слой образуется, когда применяют гелий и аргон.

Читайте также:  Как правильно согнуть оргстекло в домашних условиях: по радиусу, форме

Применяемое оборудование

Разработаны установки для всех типов напыления. В комбинированных плазмотронных агрегатах электроды выполнены из тугоплавкого вольфрама, сопло обычно керамическое. Предусмотрены инверторы дежурной и основной дуги.

Горелка плазматрона работает с двумя независимыми электродугами, к каждой подводится независимый источник электропитания.

У комбинированных аппаратов формируется мощная дуга, газ быстро ионизируется, активно расширяется в плазмотроне, создается интенсивное давление на выходе, плазменный поток с частичками расплавленной присадки устремляется на обрабатываемую поверхность.

  Что такое стилоскопирование сварных швов

Для разных видов наплавляемых деталей (плоскостных, объемных, трубных) разрабатывается индивидуальное оборудование.

Плазменная наплавка металла Ссылка на основную публикацию Плазменная наплавка: установки, технология, оборудование Плазменная наплавка: установки, технология, оборудование

Источник: https://svarkaprosto.ru/tehnologii/plazmennaya-naplavka-metalla

Установка плазменной наплавки PPC 250 PTM

Установка PPC 250 PTM смонтирована на несущей станине и выполнена в виде интегрированной ячейки, которая легко перемещается целиком и устанавливается в необходимом месте.

PPC 250 PTM состоит из следующих основных компонентов:

  • система позиционирования горелки
  • позиционер
  • шкаф управления и энергоситемы
  • источник плазмы
  • охлаждающий блок плазменной горелки
  • система подачи порошка
  • плазменная горелка

С левой (или правой, по выбору) стороны расположен шкаф управления с энергосистемами, на передней стенке которого размещен 15-дюймовый XVGA тачскрин дисплей программирования и индикации текущих параметров, а также органы управления.

В этом же шкафу установлен источник питания, смонтированы все органы управления газами, электрическими сварочными параметрами, управление электроприводами (вращение сварочного стола, колебания осциллятора, подъём и опускание плазмотрона). Система управления позволяет программировать параметры сварки, создавать новые, а также вызывать изменять и сохранять имеющиеся сварочные программы.

Содержит в себе все функции, необходимые оператору для настройки, тестирования, программирования и текущего контроля всех параметров наплавочных работ.

Второй 5,7-дюймовый сенсорный экран QVGA расположен на панели пульта оператора ближе к позиционеру и позволяет вносить оперативные изменения в процессе работы с установкой. Предназначен для оперативной подстройки сварочных параметров. Особенно удобен для настройки сварочных программ. Значительно снижает процент брака в тестовых образцах.

  • Находясь в непосредственной близости от наблюдательного окна этот пульт позволяет корректировать следующие параметры в процессе наплавки:
  • — Рабочий ток — Подачу порошка — Поток плазменного газа — Вертикальное положение плазмотрона
  • — Горизонтальное положение плазмотрона (смещение центрального положения осциллятора)

Позиционер оснащен двумя цифровыми сервомоторами которые обеспечивают нагрузочную способность до 1000 кг. Планшайба позиционера диметром -600(800) мм оборудована концевым выключателем нулевого положения. На планшайбе может быть закреплён трёхкулачковый патрон или специальный кондуктор для детали.

Осциллятор обеспечивает максимальную амплитуду колебаний — 200 мм. Работа осциллятора программируется с центральной панели. Программируются отдельно амплитуды вправо и влево от центрального положения, а также времена задержек в крайних и центральном положениях.

Система подачи  порошка обеспечивает подачу порошка в диапазоне 0,3 – 5,0 кг/час. Бункер порошка ёмкостью 10кг. Возможна установка дополнительного питателя для облегчения работы с различными материалами.

В зависимости от способа наплавки и формы изделия предлагается 7 типов плазмотронов. Конструкция плазмотрона обеспечивает  эффективное охлаждение даже на максимальных режимах работы. 

 

Источник: http://www.metsol.ru/catalog/svarka/ustanovki-plazmenno-poroshkovoy-naplavki/ustanovka-plazmennoy-naplavki-ppc-250-ptm/

АЭМ-технологии ввела в эксплуатацию установку плазменной наплавки

Подробности 18.08.2017 14:36

  • аэм-технологии
  • атомэнергомаш
  • петрозаводскмаш
  • плазменная наплавка
  • Новая установка плазменной наплавки на Петрозаводскмаше
  • Компания АО «АЭМ-технологии» (входит в машиностроительный дивизион Росатома – Атомэнергомаш) ввела в эксплуатацию установку плазменной наплавки.
  • Эта технология будет использоваться на Петрозаводскмаше для повышения прочности запорной арматуры, сообщает пресс-служба предприятия.

До настоящего времени наплавку производили вручную — электродами. При этом трудно было добиться стабильного качества наплавляемой поверхности,  упрочняющий материал наносился многослойно,  что требовало дополнительной трудоемкой мехобработки. Плазменная наплавка позволяет наносить материал в один слой, обеспечивая при этом необходимые твердость и химический состав покрытия.

Для внедрения плазменной наплавки был использован уже имеющийся сварочный центр российской фирмы «ПРОМОС», который был модернизирован и дооснащен производителем головкой для плазменно-порошковой наплавки. Поставщиком наплавочного порошка также является российский производитель.

На новом оборудовании изготовлены образцы опытных наплавок, подтверждена твердость и качество наплавленного слоя. Оборудование плазменно-порошковой наплавки принято в эксплуатацию.

Это значительно сократит сроки изготовления трубопроводной арматуры и повысит её качество.

Опыт использования плазменных процессов сварки теперь доступен сварщикам «Петрозаводскмаша» и может быть распространен на другие виды оборудования, изготавливаемого на заводе.

«Атомэнергомаш» – энергомашиностроительный дивизион Госкорпорации Росатом. «Атомэнергомаш» является поставщиком эффективных комплексных решений для атомной, тепловой энергетики, газовой и нефтехимической промышленности. Он объединяет более 50 производственных, научно-исследовательских, инжиниринговых предприятий на территории России и зарубежных стран.

АО «АЭМ-технологии» было создано в 2007 г. в структуре АО «Атомэнергомаш». В управлении АО «АЭМ-технологии» находятся головной инжиниринговый офис «АЭМ-технологии» в г. Санкт-Петербург, АО «Петрозаводскмаш» (г. Петрозаводск), Филиал АО «АЭМ-технологии» в г. Волгодонск.

Спектр производимого оборудования постоянно расширяется и включает оборудование для атомной отрасли, тепловой энергетики, газнефтехимии.

Основные направления деятельности компании: комплексное производство атомных реакторов и оборудования реакторной установки ВВЭР, а также инженерно-консультационные услуги, в том числе конструирование и проектирование основного оборудования для АЭС.

Зарегистрируйтесь для добавления комментариев

Источник: https://www.seogan.ru/aem-texnologii-vvela-v-ekspluataciyu-ustanovku-plazmennoiy-naplavki.html

Оборудование плазменная наплавка

  • Стандартная комплектация:
  • — Плазменный источник питания.   
  • — Порошковый  питатель.   
  • — Блок управления плазменной наплавки и сварки.  

— Плазмотрон ручной 6ДЭ.394.485 или плазмотрон механезированный ПМН – 2

  1. — Блок автономного охлаждения БАО-1
  2. — Комплект запасных частей и приспособлений
  3. — Паспорт с технической документацией
  4. — Комплект газовых и водяных коммуникаций
  5. Дополнительная комплектация:
  6. — Механизм вращения детали и перемещение плазмотрона
  7. — Пуско-наладка, обучение

Удобное управление процессом

По требованию заказчика оборудование может оснащаться множеством различных дополнительных опций

Возможность выбора процесса наплавки: ручной, механезированный

Осуществляет нанесение покрытия на изделия, изготовленные практически из любого материала

Оборудование позволяет сократить затраты на изготовление запасных частей

Высокая надёжность и производительность оборудования

Широкая область применения в различных сферах производства

Конкурентноспособная стоимость оборудования — различные варианты комплектации

Автомобилестроение. Автомобили и подвижная техника, двигатели и компрессоры:

Производство. Станки, оборудование и перефирийная техника:

Промышленность. Детали и механизмы следующих отраслей:

ТЕХНОЛОГИЯ ПЛАЗМЕННОЙ НАПЛАВКИ

Плазменная наплавка является одним из наиболее интересных и эффективных способов нанесения защитных и упрочняющих покрытий на поверхность деталей при их изготовлении или восстановлении. Собственно, плазмой является высокотемпературный ионизированный газ.

Дуговой разряд создается под воздействием электрического тока высокой частоты и преобразуется в плазменную струю, с помощью которой плазмообразующий газ наплавляют на поверхность обрабатываемой детали. Наиболее долговечным является покрытие с использованием аргона и гелия.

Однако также весьма распространенно используются азот, кислород, воздух и водород.

Плазменная наплавка  является одним из наиболее распространенных процессов плазменной обработки. По степени распространенности оно уступает плазменной резке, но является более сложным в силу круга решаемых задач, состава плазмообразующих газов и смесей и бесконечного разнообразия наносимых материалов. Даже перечень классов плазменных покрытий выглядит весьма внушительно.

Плазменная наплавка делает поверхность деталей более прочной, защищает ее от коррозии и преждевременного износа при высоких нагрузках.

На стальную деталь можно наплавить различные материалы, повышающие ее срок эксплуатации: медь, пластмассу, латунь и т.д. Толщина наплавляемого слоя может достигать от 0,1 мм до 5 мм.

Преимущества плазменной наплавки состоит в том, что она требует минимальных навыков от исполнителя, а то и вовсе подключается к автоматизированной системе, деталь при наплавке минимально деформируется и перемешивается с материалом наплавляемым, позволяет получить высокие качественные характеристики покрытия, создавая гладкий, ровный слой наплавления. Сложная современная технология с использованием высокой температуры допускает даже расплавление и нанесения на деталь самых тугоплавких материалов, что делает ее более востребованной по сравнению с вакуумной, гальванической или кислородно-ацетиленовой. Кроме того, поток инертного газа, образующийся вокруг плазменной дуги, помогает защитить наплавляемый слой от воздействия окружающей среды, что также способствует созданию качественного, идеально-ровного покрытия.

Варианты плазменной наплавки:

  • Декоративные — почти на любой вкус.

Узнать стоимость оборудования

НаноПлазма • Оборудование • Оборудование для плазменной наплавки

  • рулевые рейки
  • валы и корпуса коробок передач
  • клапаны и др.
  • коленчатые валы
  • бронзовые и баббитовые подшипники скольжения
  • штоки гидро и пневмоцилиндров
  • полуоси

[removed]

  • судостроение
  • нефтегазовый комплекс
  • металлургическое производство
  • пищевая и биохимическая промышленность(шлюзовые затворы, экструдеры, валы и барабаны помольных мельниц)
  • карьерная техника и горнодобывающее оборудование
  • текстильная промышленность

[removed]

  • пиноли
  • валы, крышки, корпуса двигателей
  • вал шестерни
  • детали полиграфического и бумажного производств
  • детали гидро и пневмосистем (поршни, штоки, плунжера)
  • защитные втулки, рабочие колёса, лопатки и корпуса насосов, вентиляторов и дымососов, нагнетателей

Купить оборудование для плазменной наплавки

Процесс плазменной наплавки-напыления (РТА – процесс) обеспечивает использование пилотной (косвенной) дуги для расплавления присадочного порошка и основной дуги (переносимой) для поддержания необходимой температуры частиц порошка осажденной на детали. При этом увеличение времени нахождения частиц порошка при высокой температуре способствует максимальному сцеплению и уплотнению частиц с минимальным перегревом поверхности детали.

Оптимизация основных характеристик процесса (токов основной и пилотной дуги, расстояния до изделия, скорости подачи порошка и скорости перемещения плазмотрона) выявило минимальную чувствительность к скорости подачи порошка и в определенных пределах к скорости перемещения плазмотрона. Ручной и механизированный плазмотроны для реализации процесса плазменной наплавки-напыления показаны на рисунке.

При анализе микроструктуры самофлюсующихся покрытий, нанесенных методом плазменной наплавки-напыления, было отмечено получение литой структуры (в отличие от слоистой структуры, типичной для процессов плазменного напыления), а также отсутствие пористости (около 0,3 %). Микротвердость покрытия составила HV 800. Зона термического влияния зафиксирована порядка 0,5 мм, в то время как при плазменной наплавке она составляет около 3-4 мм.

Процесс плазменного напыления наиболее часто используется для наплавки автомобильных и судовых клапанов, различных экструдеров и шнеков, посадочных мест деталей арматуры, при нанесении абразивостойких покрытий на основе карбидов вольфрама и других деталей.

Источник: https://konstantinu.wixsite.com/nano/oborudovanie-plazmennaya-naplavka

Ссылка на основную публикацию
Adblock
detector