В таблице приведены средние значения температурного коэффициента линейного расширения ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).
Металл, сплав | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алюминий | 2,4 |
Бронза | 13-21 |
Вольфрам (в интервале температур от 0 до 200 °С) | 4,5 |
Дуралюмин (при t = 20 °С) | 23 |
Золото | 14 |
Железо | 12 |
Инвар* | 1,5 |
Иридий | 6,5 |
Константан | 42339 |
Латунь | 17-19 |
Манганин | 18 |
Медь | 17 |
Нейзильбер | 18 |
Никель | 14 |
Нихром (от 20 до 100 °С) | 14 |
Олово | 26 |
Платина | 9,1 |
Платинит** (при t = 20 °С) | 41920 |
Платина-иридий*** (от 20 до 100 °С) | 8,8 |
Свинец | 29 |
Серебро | 20 |
Сталь углеродистая | 43009 |
Цинк | 32 |
Чугун (от 20 до 100 °С). | 41952 |
* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов.** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп.*** Из этого сплава изготовлены прототипы килограмма и метра. |
Температурный коэффициент линейного расширения твердых веществ
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура).
Вещество | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алмаз | 1,2 |
Бетон (при t = 20 °С) | 41913 |
Гранит (при t = 20 °С) | 8 |
Графит | 7,9 |
Древесина (при t = = 20 °С): | |
— вдоль волокон | 5,5-5,5 |
— поперек волокон | 34-60 |
Кварц плавленый (при * = 40 °С) | 0,4 |
Кирпич (при t = 20 °С) | 41885 |
Лед (в интервале температур от —20 до 0 °С) | 51 |
Парафин (от 16 до 48 °С) | 70* |
Дуб (от 2 до 34 °С): | |
— вдоль волокон | 4,9 |
— поперек волокон | 54,4 |
Сосна (от 2 до 34 °С): | |
— вдоль волокон | 5,4 |
— поперек волокон | 34 |
Стекло лабораторное | 41885 |
Стекло оконное (от 20 до 200 °С) | 10 |
Фарфор | 2,5-4,0 |
Шифер (при t = 20 °С) | 10 |
* коэффициент объемного расширения парафина. |
Температурный коэффициент обьемного расширения жидкостей
В таблице приведены средние значения температурного коэффициента обьемного расширения β жидкостей при температуре 20 °С (если не указана иная).
Жидкость | Коэффициента обьемного расширения β, 10-6°С-1 |
Бензин | 1240 |
Вода | 200 |
Вода (в интервале от 10 до 20 °С) | 150 |
Вода (от 20 до 40 °С) | 302 |
Воздух жидкий (от -259 до -253 °С) | 12600 |
Глицерин | 505 |
Керосин | 960 |
Кислород (от -205 до -184 °С) | 3850 |
Нефть | 900 |
Раствор соли (6%) | 300 |
Ртуть | 181 |
Серная кислота | 570 |
Скипидар | 940 |
Спирт | 1080 |
Эфир | 1600 |
Хлор (в интервале температур от -101 до -34,1 °С) | 1410 |
Примечание. Связь между коэффициентами объемного (β) и линейного (а) расширений определяется следующим соотношением: β = 3а |
- В таблице представлены значения коэффициента температурного расширения металлов (коэффициент линейного расширения металлов) в зависимости от температуры.
- Значения коэффициента температурного расширения металлов даны для следующих металлов: алюминий Al, бериллий Be, висмут Bi, вольфрам W, галлий Ga, железо Fe, золото Au, иридий Ir, кадмий Cd, кобальт Co, магний Mg, марганец Mn, медь Cu, молибден Mo, никель Ni, олово Sn, платина Pt, родий Rh, свинец Pb, серебро Ag, сурьма Sb, титан Ti, хром Cr, цинк Zn.
Коэффициент линейного теплового расширения металлов в таблице приведен со множителем 106.Например, значение коэффициента температурного расширения металлов в таблице для алюминия при 0°С указано 22,8, а с учетом множителя 106, это значение составляет 22,8·10-6 1/град.
Следует отметить, что к металлам с низким коэффициентом расширения относятся такие металлы, как вольфрам, молибден, сурьма, титан и хром. Наименьшее линейное удлинение при нагревании испытывает вольфрам — коэффициент линейного расширения этого металла составляет величину от 4,3·10-6 при 0°С до 5,8·10-6 1/град при температуре 2100°С.
Металлом, который максимально хорошо расширяется при нагреве, является цинк — его коэффициент температурного расширения имеет значение от 22·10-6 до 34·10-6 1/град. Также хорошо расширяются при нагревании такие металлы, как алюминий, кадмий и магний.
Примечание: температурные коэффициенты линейного расширения сталей (более 300 марок) представлены в этой статье.
Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.
Известно, что все металлы при нагревании расширяются, а при охлаждении сжимаются. Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется коэффициентом линейного расширения.
- Таким образом, длина l0 какой-то детали после нагрева на температуруt° составит:
- где а — коэффициент линейного расширения.
- При наблюдении за изменением объема детали используют коэффициент объемного расширения, который определяется как утроенный коэффициент линейного расширения.
Материалы, имеющие большой коэффициент расширения, применяются в приборостроении для деталей автоматически действующих механизмов. При определенной температуре такие детали, удлиняясь, могут включать либо размыкать электрическую цепь.
Минимальный коэффициент линейного расширения имеет сплав Fe — Ni, называемый инваром. Его коэффициент расширения в 8 раз меньше железа.
Различные детали теплотехнической аппаратуры — радиаторы автомобилей и самолетов, внутренние стенки рабочих камер холодильных установок, стенки котлов и т.д. — должны обладать способностью хорошо проводить тепло.
Детали и инструменты, подвергающиеся в процессе работы местным разогревай, также должны быстро отдавать это тепло, чтобы не (наступало оплавление.
Способность проводить тепло называется теплопроводностью
Лучшей теплопроводностью обладают чистые металлы, такие, как:
Удельное сопротивление
Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:
p=(R*S)/l.
Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.
Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:
- Материал. У разных металлов различная плотность атомов и количество свободных электронов;
- Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
- Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.
На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.
Удельное сопротивление металлов
Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.
Проводимость и электросопротивление
Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:
R=(p*l)/S.
Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:
g=1/R.
Проводимость жидкостей
Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.
Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.
Электросопротивление проводов
Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.
До какой температуры нужно нагреть металл чтобы он расширился
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).
Металл, сплав | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алюминий | 2,4 |
Бронза | 13-21 |
Вольфрам (в интервале температур от 0 до 200 °С) | 4,5 |
Дуралюмин (при t = 20 °С) | 23 |
Золото | 14 |
Железо | 12 |
Инвар* | 1,5 |
Иридий | 6,5 |
Константан | 42339 |
Латунь | 17-19 |
Манганин | 18 |
Медь | 17 |
Нейзильбер | 18 |
Никель | 14 |
Нихром (от 20 до 100 °С) | 14 |
Олово | 26 |
Платина | 9,1 |
Платинит** (при t = 20 °С) | 41920 |
Платина-иридий*** (от 20 до 100 °С) | 8,8 |
Свинец | 29 |
Серебро | 20 |
Сталь углеродистая | 43009 |
Цинк | 32 |
Чугун (от 20 до 100 °С). | 41952 |
* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов.** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп.*** Из этого сплава изготовлены прототипы килограмма и метра. |
Температурный коэффициент линейного расширения твердых веществ
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура).
Вещество | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алмаз | 1,2 |
Бетон (при t = 20 °С) | 41913 |
Гранит (при t = 20 °С) | 8 |
Графит | 7,9 |
Древесина (при t = = 20 °С): | |
— вдоль волокон | 5,5-5,5 |
— поперек волокон | 34-60 |
Кварц плавленый (при * = 40 °С) | 0,4 |
Кирпич (при t = 20 °С) | 41885 |
Лед (в интервале температур от —20 до 0 °С) | 51 |
Парафин (от 16 до 48 °С) | 70* |
Дуб (от 2 до 34 °С): | |
— вдоль волокон | 4,9 |
— поперек волокон | 54,4 |
Сосна (от 2 до 34 °С): | |
— вдоль волокон | 5,4 |
— поперек волокон | 34 |
Стекло лабораторное | 41885 |
Стекло оконное (от 20 до 200 °С) | 10 |
Фарфор | 2,5-4,0 |
Шифер (при t = 20 °С) | 10 |
* коэффициент объемного расширения парафина. |
Температурный коэффициент обьемного расширения жидкостей
В таблице приведены средние значения температурного коэффициента обьемного расширения β жидкостей при температуре 20 °С (если не указана иная).
Жидкость | Коэффициента обьемного расширения β, 10-6°С-1 |
Бензин | 1240 |
Вода | 200 |
Вода (в интервале от 10 до 20 °С) | 150 |
Вода (от 20 до 40 °С) | 302 |
Воздух жидкий (от -259 до -253 °С) | 12600 |
Глицерин | 505 |
Керосин | 960 |
Кислород (от -205 до -184 °С) | 3850 |
Нефть | 900 |
Раствор соли (6%) | 300 |
Ртуть | 181 |
Серная кислота | 570 |
Скипидар | 940 |
Спирт | 1080 |
Эфир | 1600 |
Хлор (в интервале температур от -101 до -34,1 °С) | 1410 |
Примечание. Связь между коэффициентами объемного (β) и линейного (а) расширений определяется следующим соотношением: β = 3а |
Источник: https://infotables.ru/fizika/202-temperaturnyj-koeffitsient-linejnogo-rasshireniya-metallov-tverdykh-veshchestv-zhidkostej-tablitsa
Инженеру про алюминий
Наиболее привлекательным для инженеров физическим свойством алюминия является его плотность 2,7 г/см3, что составляет всего лишь треть от плотности сталей.
Коррозионная стойкость алюминия
- Вторым по важности свойством является его хорошая коррозионная стойкость, хотя алюминий с точки зрения химии и не слишком благородный металл.
- Все это потому, что «свежий» алюминий (и алюминиевые сплавы) реагирует с кислородом и водяным паром в воздухе с образованием тонкой, плотной оксидной пленки, которая защищает нижележащий металл от дальнейшего взаимодействия с окружающей средой.
- Поэтому технический алюминий и большинство его сплавов без легирования медью показывают очень хорошее сопротивление коррозии в жидкостях с рН в кислотном интервале от 5 до 8, которому соответствуют и большинство атмосферных условий окружающей среды.
Температурное расширение алюминия
Линейное температурное расширение алюминия и его сплавов составляет 24·10-6 на 1 градус Цельсия – в два раза больше чем у сталей.
Это необходимо учитывать во многих конструкциях, в которых необходимо обеспечивать свободное температурное расширение элементов.
При ограничении температурного расширение (или сжатия) в алюминиевом элементе из-за более низкого модуля упругости возникают напряжения, величина которых составляет 2/3 от напряжений, которые возникли бы в аналогичном стальном элементе.
При какой температуре новорожденному комфортно
Модуль упругости алюминия
Модуль упругости алюминия – 70000 МПа, только треть от модуля упругости сталей. Это влечет за собой существенные последствия для геометрии конструкции, так как прогибы балок, несущая способность колонн, т.е. их боковое выпучивание или местное выпучивание прямо зависят от модуля упругости.
Жесткость алюминиевых профилей
Во многих строительных конструкциях критическим параметром профилей является их жесткость.
Если стальной профиль заменять на алюминиевый с сохранением его жесткости, то утолщать в три раза все стенки не совсем экономично, так как алюминий легче стали как раз в те же три раза.
Однако облегчение конструкций за счет применения алюминия – это естественное стремление, как по физическим, так и по экономическим причинам.
При проектировании балок есть практичное и проверенное правило: увеличивайте все размеры кроме ширины в 1,4 раза и получите поперечное сечение с моментом инерции почти в три раза больше. Тогда для профиля с той же жесткостью (Е · I) сэкономите около 50 % веса. При этом в некоторой степени компенсируется потеря жесткости в отношении бокового выпучивания.
https://www.youtube.com/watch?v=6uDL-KX7Tqw\u0026t=181s
С учетом того, что часто стандартные стальные профили являются весьма не оптимальными, можно сэкономить и больше чем 50 % веса. Это хорошо видно из рисунка 1. Если нет ограничений по высоте, и боковое выпучивание не является конструкционным параметром, то можно сэкономить до 60 % веса.
Если жесткость элемента не важна, а прочность стали близка к прочности алюминиевого сплава, то экономия может быть и до 70 %, но это уже окончательный предел возможной экономии веса.
Эти рассуждения приводят ко второму важному моменту. Если момент инерции профиля увеличивается в три раза при увеличении высоты профиля только в 1,4 раза, то момент сопротивления сечения увеличится соответственно в 3:1,4=2,1 раза.
Поэтому напряжения в алюминиевой балке по сравнению со стальной будут в два с лишним раза меньше.
Теперь понятно, почему конструктору не надо сразу «хвататься» за высокопрочные алюминиевые сплавы, и почему менее легированные алюминиевые сплавы 6060 и 6063 (АД31) настолько популярны.
Нагрев алюминия
Как и у других металлов прочность алюминия с повышением температуры снижается.
До некоторых температур это явление обратимо, то есть после охлаждения материал возвращается к тем же свойствам, что и до нагрева.
До температуры около 80 °С падением прочности можно пренебречь для всех сплавов и состояний. Выше 80 °С некоторые конструкторские ситуации могут потребовать учета эффекта ползучести.
Термически упрочненные сплавы начинают терять прочность при температурах выше 110 °С, причем степень этого явления зависит от длительности нагрева. Сплавы, не упрочняемые термической обработкой, в нагартованных состояниях начинают терять прочность при температурах выше 150 °С и также в зависимости от длительности нагрева.
После нагрева термически не упрочняемых сплавов в отожженном состоянии «О» необратимой потери прочности не происходит.
Считается, что короткий нагрев термически упрочненных алюминиевых профилей до температуры 180-200 °C в течение 10-15 минут, который происходит при «оплавлении» порошковых красок, не приводит к серьезной потере прочности.
Сварка алюминиевых сплавов
Намного серьезней является потеря прочности алюминиевых сплавов при сварке. Здесь температура поднимается настолько высоко из-за локального плавления, что падение прочности вблизи сварного шва надо обязательно принимать во внимание. Термически не упрочняемые сплавы теряют всю свою прочность, полученную при нагартовке, и возвращаются к отожженному состоянию «О».
Термически упрочняемые алюминиевые сплавы в состоянии Т6 теряют приблизительно 40 % их прочности (рисунок 2) за исключением сплава 7020, который теряет только 20 %. Все эти сплавы не доходят до состояния полного отжига, поскольку неизбежен определенный эффект закалки при охлаждении шва.
- Требования к прочностным характеристикам материала в зоне сварного шва устанавливают и контролируют по результатам испытаний образцов.
- Рисунок 2
- Источник: R. Gitter Selection of structural alloys, Brussels 2008
- Источник: https://aluminium-guide.ru/xarakteristiki-alyuminievyx-splavov/
Свойства металлов — скрытая теплота плавления, теплопроводность, электросопротивление, термический коэффициент линейного расширения
Чтобы расплавить твердое вещество, т.е. перевести его в жидкое состояние, требуется не только нагреть его до температуры плавления, но еще затратить дополнительную тепловую энергию, которая не повышает температуры расплавляемого тела, а идет на разрушение кристаллической структуры.
Пока твердое вещество не перейдет все целиком в жидкое состояние, температура не будет повышаться выше температуры плавления, несмотря на приток тепла и на очень высокую температуру источника тепловой энергии. Повышенная мощность источника тепла может лишь ускорить расплавление, но температура плавящегося вещества будет оставаться постоянной, пока не произойдет его полное расплавление.
Количество тепла, идущего на превращение 1 кг твердого вещества при температуре, называется скрытой теплотой плавления и выражается в больших калориях (см. табл. 1).
Теплопроводность
Свойство металла проводить тепло называется теплопроводностью. Теплопроводность характеризуется коэффициентом теплопроводности, показывающим, сколько калорий тепла может пройти в единицу времени сквозь 1 см² вещества при разности температур на двух противоположных гранях кубика в 1° (см. табл. 1), и обозначается буквой λ.
Теплопроводность алюминия в пять раз больше теплопроводности чугуна, и поэтому алюминиевые сплавы часто заменяют чугун при изготовлении поршней двигателей внутреннего сгорания. Кроме того, поршень из алюминиевого сплава, будучи легче чугунного примерно в три раза, облегчает вес конструкции.
Металлы с большой теплопроводностью в то же время являются лучшими проводниками электричества.
Электросопротивление
За единицу электрического сопротивления принято сопротивление ртутного столба длиной 106,3 см. с поперечным сечением 1 см² при 01°С. Эта единица называется омом (обозначается Ω). Чем больше длина проводника и чем меньше поперечное сечение проводника из разных металлов имеют различное сопротивление, что характеризуется удельным сопротивлением.
Удельное сопротивление показывает, какое сопротивление имеет проводник из данного металла длинной 1м и сечением 1мм² (см. табл. 1).Для всех металлов характерно повышение электросопротивления с повышением температуры в отличие от неметаллических материалов, электросопротивление которых при нагревании уменьшается.
Медь и алюминий, обладая самым малым электросопротивлением из всех металлов (за исключением серебра), являются основными металлами электропроводов.
Металлами и сплавами с высоким сопротивлением пользуются, когда хотят электрическую энергию превратить в тепловую. Количество теплоты, выделяемое в проводнике током определенной силы, прямо пропорционально сопротивлению проводника.
Сплавам для элементов обычных нагревательных приборов (электропечей, плит, чайников, утюгов, электропаяльников) служат нихром и др. Для нити в лампах накаливания применяют вольфрам, который, не плавясь, выдерживает температуру более 2000°. Однако такую нить можно нагревать лишь в вакууме. Кислород воздуха ее окисляет.
Термический коэффициент линейного расширения
Приращение длины предмета на единицу длины при нагревании его на 1° называется термическим коэффициентом линейного расширения α.
Так как коэффициент α очень мал, то в таблицах его значение обычно дается с коэффициентом 10 –6, т.е в миллионных долях первоначальной длины, измеренной при 0°.
Свойство металлов расширяться при нагревании и сжиматься при охлаждении необходимо учитывать при изготовлении металлических сооружений и деталей машин.
При какой температуре хранить розы в подвале
Коэффициент линейного расширения может считаться почти постоянным при небольших изменениях температуры. При сильном нагревании он может значительно изменять свою величину.
Имеются сплавы, обладающие особенно малой величиной α.
Например сплав «инвар» (65% Fe и 35% Ni) имеет в пределах от –10 до +90° термический коэффициент линейного расширения α, близкий к нулю; однако при повышении температуры выше 100° он быстро растет.
При застывании отлитых деталей, если тонкие части охлаждаются и сжимаются быстрее, чем толстые, могут получаться трещины там, где возникают вредные внутренние напряжения. Конструктор во избежание трещин должен умело подбирать размеры сечений в отливке.Тепловое расширение имеет большое значение и для сварных конструкций, в которых тоже возникают внутренние напряжения.
Особенно тщательно необходимо учитывать линейное расширение металлов при производстве измерительных и прецизионных (точных) приборов, при изготовлении калибров и деталей машин, работающих при повышенной температуре.
Рубрики: Свойства металлов, применение
Источник: https://www.paxildefects.net/svoiystva-metallov/fiziko-mehanicheskie-svoiystva-metallov-2.html
Линейное тепловое удлинение материалов
Так же, как и здание после строительства может дать «усадку», некоторые материалы, напротив, со временем увеличиваются или удлиняются.
Это явление в физике называется тепловым расширением, потому что возникает оно по мере того, как на твердое тело воздействует высокая температура.
Оно становится причиной увеличения площади, поэтому фактор расширения необходимо принимать во внимание при строительстве автомагистралей и зданий.
К примеру, при возведении дома с железобетонными элементами в климатических условиях, близким к тропическим или южным, строители могут не учесть вероятность линейного расширения. Впоследствии увеличенные металлические конструкции могут привести к повреждению других механизмов и преждевременному разрушению всей конструкции.
Подобный пример можно привести и при строительстве железнодорожных рельс. Нагреваясь под прямыми лучами солнечного света, молекулы металла расширяются и удлиняются. В холодное время года рельсы напротив, укорачиваются. Хотя это сложно заметить невооруженным взглядом, с целью безопасности нужно учитывать это при строительстве с применением не только металла, но и камня, даже пластика.
Как определить температурное линейное расширение
Чтобы избежать негативных последствий расширения материалов, используются специальные термометры. Они чувствительны к малейшим изменениям температуры. Но лучше предусмотреть возможные изменения и перестраховаться еще на стадии планирования производства. Для этого разработан онлайн-калькулятор, который моментально демонстрирует:
- коэффициент линейного теплового расширения;
- удлинение по осям Х, Y и Z;
- величину, на которую удлиняется материал при заданной температуре.
Все, что нужно сделать для этого – выбрать из выпадающего списка нужный материал, выбрать его параметры: толщину, дину и ширину. Если нужно конкретно узнать его состояние при той или иной температуре, можете выбрать и эту функцию на сайте.
Отметим, расчеты проводятся относительно начальной температуры материала 0°C. Ответы выдаются на анализе коэффициентов линейного теплового расширения, и расчетам, которые уже проведены и запрограммированы на сайте.
Система реагирует на изменения и самостоятельно выполняет подсчет.
Какие материалы чаще всего подвергаются расширению
Прежде всего, это – металлы: алюминий, купрум, медь. Среди камней можно отметить гранит базальт, кварцит и даже кирпич. Аналогично на высокие температуры реагируют дерево, сложные штукатурки и стекло. Из вышеперечисленных материалов наименьший коэффициент теплового расширения имеют:
- клинкерный и стеновой кирпич;
- дерево;
- штукатурка;
- базальт;
- стеновой кирпич.
Для сравнения, наибольший показатель – у алюминия, стали и меди. К примеру, КТЛР алюминия составляет 24•10-6 1/град, что в 2 раза больше, чем у стали.
Поэтому монтаж трубопровода невозможен без предварительных расчетов, особенно если планируется использовать алюминиевые трубы для горячего водоснабжения или отопления.
Изменение длины трубопровода при перепадах температуры определяется по формуле
dL = a • l • (tmax – tc), мм, где:
- а – КТЛР материала, из которого изготовлена труба или другое изделие;
- tmax – наибольшая температура, которой достигает теплоноситель;
- tс — температура окружающей среды на момент установки конструкции;
- l — длина трубопровода.
Также есть специально составленные таблицы значений среднего температурного коэффициента линейного расширения различных материалов. Но прибегать к ним и сложным расчетам не обязательно, если под рукой есть интернет и безошибочное решение можно получить с помощью калькулятора за считанные минуты.
Что расширяется при нагревании больше сталь или нержавейка
Значения коэффициента температурного расширения металлов даны для следующих металлов: алюминий Al, бериллий Be, висмут Bi, вольфрам W, галлий Ga, железо Fe, золото Au, иридий Ir, кадмий Cd, кобальт Co, магний Mg, марганец Mn, медь Cu, молибден Mo, никель Ni, олово Sn, платина Pt, родий Rh, свинец Pb, серебро Ag, сурьма Sb, титан Ti, хром Cr, цинк Zn.
Коэффициент линейного теплового расширения металлов в таблице приведен со множителем 10 6 . Например, значение коэффициента температурного расширения металлов в таблице для алюминия при 0°С указано 22,8, а с учетом множителя 10 6 , это значение составляет 22,8·10 -6 1/град.
Следует отметить, что к металлам с низким коэффициентом расширения относятся такие металлы, как вольфрам, молибден, сурьма, титан и хром. Наименьшее линейное удлинение при нагревании испытывает вольфрам — коэффициент линейного расширения этого металла составляет величину от 4,3·10 -6 при 0°С до 5,8·10 -6 1/град при температуре 2100°С.
Металлом, который максимально хорошо расширяется при нагреве, является цинк — его коэффициент температурного расширения имеет значение от 22·10 -6 до 34·10 -6 1/град. Также хорошо расширяются при нагревании такие металлы, как алюминий, кадмий и магний.
Примечание: температурные коэффициенты линейного расширения сталей (более 300 марок) представлены в этой статье.
Источник
Коэффициенты линейного расширения строительных материалов
В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.
Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10 -6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт.
Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь.
Например, коэффициент линейного расширения алюминия равен 24·10 -6 1/град, что в 2 раза больше, чем у стали.
Круг из стали ст45
Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.
Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град -1 ) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.
По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.
Источник
Коэффициент теплового линейного расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое
Коэффициент линейного теплового расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.
Коэффициент линейного теплового расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.
ABS (акрилонитрил-бутадиен-стирол) термопласт | 73.8 | 41 |
ABS — стекло, армированное волокнами | 30.4 | 17 |
Акриловый материал, прессованный | 234 | 130 |
Алмаз | 1.1 | 0.6 |
Алмаз технический | 1.2 | 0.67 |
Алюминий | 22.2 | 12.3 |
Ацеталь | 106.5 | 59.2 |
Ацеталь , армированный стекловолокном | 39.4 | 22 |
Ацетат целлюлозы (CA) | 130 | 72.2 |
Ацетат бутират целлюлозы (CAB) | 25.2 | 14 |
Барий | 20.6 | 11.4 |
Бериллий | 11.5 | 6.4 |
Бериллиево-медный сплав (Cu 75, Be 25) | 16.7 | 9.3 |
Бетон | 14.5 | 8.0 |
Бетонные структуры | 9.8 | 5.5 |
Бронза | 18.0 | 10.0 |
Ванадий | 8 | 4.5 |
Висмут | 13 | 7.3 |
Вольфрам | 4.3 | 2.4 |
Гадолиний | 9 | 5 |
Гафний | 5.9 | 3.3 |
Германий | 6.1 | 3.4 |
Гольмий | 11.2 | 6.2 |
Гранит | 7.9 | 4.4 |
Графит, чистый | 7.9 | 4.4 |
Диспрозий | 9.9 | 5.5 |
Древесина, пихта, ель | 3.7 | 2.1 |
Древесина дуба, параллельно волокнам | 4.9 | 2.7 |
Древесина дуба , перпендикулярно волокнам | 5.4 | 3.0 |
Древесина, сосна | 5 | 2.8 |
Европий | 35 | 19.4 |
Железо, чистое | 12.0 | 6.7 |
Железо, литое | 10.4 | 5.9 |
Железо, кованое | 11.3 | 6.3 |
Золото | 14.2 | 8.2 |
Известняк | 8 | 4.4 |
Инвар (сплав железа с никелем) | 1.5 | 0.8 |
Инконель (сплав) | 12.6 | 7.0 |
Иридий | 6.4 | 3.6 |
Иттербий | 26.3 | 14.6 |
Иттрий | 10.6 | 5.9 |
Кадмий | 30 | 16.8 |
Калий | 83 | 46.1 — 46.4 |
Кальций | 22.3 | 12.4 |
Каменная кладка | 4.7 — 9.0 | 2.6 — 5.0 |
Каучук, твердый | 77 | 42.8 |
Кварц | 0.77 — 1.4 | 0.43 — 0.79 |
Керамическая плитка (черепица) | 5.9 | 3.3 |
Кирпич | 5.5 | 3.1 |
Кобальт | 12 | 6.7 |
Констанан (сплав) | 18.8 | 10.4 |
Корунд, спеченный | 6.5 | 3.6 |
Кремний | 5.1 | 2.8 |
Лантан | 12.1 | 6.7 |
Латунь | 18.7 | 10.4 |
Лед | 51 | 28.3 |
Литий | 46 | 25.6 |
Литая стальная решетка | 10.8 | 6.0 |
Лютеций | 9.9 | 5.5 |
Литой лист из акрилового пластика | 81 | 45 |
Магний | 25 | 14 |
Марганец | 22 | 12.3 |
Медноникелевый сплав 30% | 16.2 | 9 |
Медь | 16.6 | 9.3 |
Молибден | 5 | 2.8 |
Монель-металл (никелево-медный сплав) | 13.5 | 7.5 |
Мрамор | 5.5 — 14.1 | 3.1 — 7.9 |
Мыльный камень (стеатит) | 8.5 | 4.7 |
Мышьяк | 4.7 | 2.6 |
Натрий | 70 | 39.1 |
Нейлон, универсальный | 72 | 40 |
Нейлон, Тип 11 (Type 11) | 100 | 55.6 |
Нейлон, Тип 12 (Type 12) | 80.5 | 44.7 |
Нейлон литой , Тип 6 (Type 6) | 85 | 47.2 |
Нейлон, Тип 6/6 (Type 6/6), формовочный состав | 80 | 44.4 |
Неодим | 9.6 | 5.3 |
Никель | 13.0 | 7.2 |
Ниобий (Columbium) | 7 | 3.9 |
Нитрат целлюлозы (CN) | 100 | 55.6 |
Окись алюминия | 5.4 | 3.0 |
Олово | 23.4 | 13.0 |
Осмий | 5 | 2.8 |
Палладий | 11.8 | 6.6 |
Песчаник | 11.6 | 6.5 |
Платина | 9.0 | 5.0 |
Плутоний | 54 | 30.2 |
Полиалломер | 91.5 | 50.8 |
Полиамид (PA) | 110 | 61.1 |
Поливинилхлорид (PVC) | 50.4 | 28 |
Поливинилденфторид (PVDF) | 127.8 | 71 |
Поликарбонат (PC) | 70.2 | 39 |
Поликарбонат — армированный стекловолокном | 21.5 | 12 |
Полипропилен — армированный стекловолокном | 32 | 18 |
Полистирол (PS) | 70 | 38.9 |
Полисульфон (PSO) | 55.8 | 31 |
Полиуретан (PUR), жесткий | 57.6 | 32 |
Полифенилен — армированный стекловолокном | 35.8 | 20 |
Полифенилен (PP), ненасыщенный | 90.5 | 50.3 |
Полиэстер | 123.5 | 69 |
Полиэстер, армированный стекловолокном | 25 | 14 |
Полиэтилен (PE) | 200 | 111 |
Полиэтилен — терефталий (PET) | 59.4 | 33 |
Празеодимий | 6.7 | 3.7 |
Припой 50 — 50 | 24.0 | 13.4 |
Прометий | 11 | 6.1 |
Рений | 6.7 | 3.7 |
Родий | 8 | 4.5 |
Рутений | 9.1 | 5.1 |
Самарий | 12.7 | 7.1 |
Свинец | 28.0 | 15.1 |
Свинцово-оловянный сплав | 11.6 | 6.5 |
Селен | 3.8 | 2.1 |
Серебро | 19.5 | 10.7 |
Скандий | 10.2 | 5.7 |
Слюда | 3 | 1.7 |
Сплав твердый (Hard alloy) K20 | 6 | 3.3 |
Сплав хастелой (Hastelloy) C | 11.3 | 6.3 |
Сталь | 13.0 | 7.3 |
Сталь нержавеющая аустенитная (304) | 17.3 | 9.6 |
Сталь нержавеющая аустенитная (310) | 14.4 | 8.0 |
Сталь нержавеющая аустенитная (316) | 16.0 | 8.9 |
Сталь нержавеющая ферритная (410) | 9.9 | 5.5 |
Стекло витринное (зеркальное, листовое) | 9.0 | 5.0 |
Стекло пирекс, пирекс | 4.0 | 2.2 |
Стекло тугоплавкое | 5.9 | 3.3 |
Строительный (известковый) раствор | 7.3 — 13.5 | 4.1-7.5 |
Стронций | 22.5 | 12.5 |
Сурьма | 10.4 | 5.8 |
Таллий | 29.9 | 16.6 |
Тантал | 6.5 | 3.6 |
Теллур | 36.9 | 20.5 |
Тербий | 10.3 | 5.7 |
Титан | 8.6 | 4.8 |
Торий | 12 | 6.7 |
Тулий | 13.3 | 7.4 |
Уран | 13.9 | 7.7 |
Фарфор | 3.6-4.5 | 2.0-2.5 |
Фенольно-альдегидный полимер без добавок | 80 | 44.4 |
Фторэтилен пропилен (FEP) | 135 | 75 |
Хлорированный поливинилхлорид (CPVC) | 66.6 | 37 |
Хром | 6.2 | 3.4 |
Цемент | 10.0 | 6.0 |
Церий | 5.2 | 2.9 |
Цинк | 29.7 | 16.5 |
Цирконий | 5.7 | 3.2 |
Шифер | 10.4 | 5.8 |
Штукатурка | 16.4 | 9.2 |
Эбонит | 76.6 | 42.8 |
Эпоксидная смола , литая резина и незаполненные продукты из них | 55 | 31 |
Эрбий | 12.2 | 6.8 |
Этилен винилацетат (EVA) | 180 | 100 |
Этилен и этилакрилат (EEA) | 205 | 113.9 |
Источник |