Электронно-лучевая сварка: технология, процесс и особенности

21.02.2019

Метод электронно-лучевой сварки разработан в середине прошлого века. Он используется для соединения тонкостенных и толстостенных деталей из различных сплавов, включая тугоплавкие, сложные, деформирующиеся при нагреве.

Лучевая сварка применяется даже для обработки керамики. Метод ЭЛС основан на способности электронов переносить энергию. Для образования потока заряженных частиц необходим вакуум высокой степени разряжения.

Из-за этой технологической особенности перспективный метод не получил широкого применения.

Электронно-лучевая сварка: технология, процесс и особенности

Сущность процесса и область его применения

Электроннолучевую сварку применяют при обработке тугоплавких металлов, легко окисляемых сплавов, которые невозможно варить другими методами. Под электронным лучом образуется расплав, который заполняет стык на всю глубину. Электроны одновременно воздействуют на металл по всей поверхности стыка.

Функции сварочного устройства выполняет электронная пушка. Из разогретого тугоплавкого металла в глубоком вакууме до 10-6 Па вырываются электроны, они ускоряются под силовым воздействием тока, устремляются в рабочую зону. ЭЛС действует аналогично лазерной, только в отличие от светового луча пучок электронов невидим.

Энергия его значительно превосходит лазер, площадь воздействия меньше.

Достоинства и недостатки ЭЛС

Как и любой горячий метод соединения деталей, электронно-лучевая сварка имеет ряд преимуществ и недостатков. Сначала о достоинствах:

  • можно соединять детали толщиной от 0,2 мм;
  • во время плавки металла ванна расплава перемещается в нижнюю зону, стык заполняется полностью, затем начинается кристаллизация;
  • глубокое соединение образуется за один проход луча, высокая производительность процесса;
  • пучок электронов генерируется в постоянном или импульсном режиме, при обработке магниево-алюминиевых сплавов применяется импульсное воздействие;
  • вакуумизация улучшает качество шва, металл не реагирует с компонентами воздуха;
  • большой диапазон силы тока луча расширяет возможности установки.

Недостатки:

  • сложность технологического оборудования, для работы на нем требуется длительная подготовка;
  • быстрый износ катода, тугоплавкая проволока под воздействием электрического поля разогревается до 2400°C;
  • при генерации электронов возникает рентгеновское излучение, необходимо обеспечить защиту сварщиков.

  Алюминотермитная сварка железнодорожных стыков

Технология электронно-лучевой сварки

Обязательным условием считается вакуумизация. Глубина разряжения в пушке обеспечивает беспрепятственное движение электронов. Из рабочей камеры также удаляется воздух с содержащимся в нем кислородом, окисляющим металл. Вакуум действует на шов аналогично флюсу – защищает от коррозии.

Метод сварки электронным лучом основан на способности электронов переносить энергию. Когда движению ничего не мешает, частицы прямолинейно следуют к свариваемой поверхности. Металл плавится под их воздействием. Прогрев идет по всей глубине зазора между деталями.

Область воздействия частиц – площадь в десятые доли микрона. Электроны проникают на глубину до 20 см. При методе электронно-лучевой сварки соотношение толщины зазора к ширине образуемого шва достигает 25.

Возможности сварки за счет этого расширяются, электронным лучом соединяют детали из тугоплавких сплавов. Из-за высокой скорости воздействия в металле не создается остаточных напряжений.

Хотя по мощности потребляемого тока ЭЛС сварка сопоставима с другими методами, энергозатраты в разы меньше за счет большой скорости варки.

Особенности и режимы сварки электронным лучом

Для сварочных работ соединяемые детали укладывают с минимальным зазором, пространство между двумя частями металла толщиной 20 мм не должен превышать 0,1 мм. Для сварки больших зазоров используется присадочный металл, допустимая доля присадки в шве – не более 50%. Направление луча, выходящего из электронной пушки, строго контролируется, допуск не более 0,3 мм.

В установках варят детали толщиной от 0,2 мм до 200 мм. Регулируемые мощностные параметры электронно-лучевого метода:

  • лучевая сила тока (для вольфрама толщиной 1 мм – до 80 мА, для сталей 35 мм – до 500 мА)
  • ускоряющее напряжение (для тонкостенных металлов используют низковольтные блоки питания, для толстостенного – высоковольтные);
  • скорость движения луча в зоне сварки (для вольфрама толщиной 1 мм – до 50 м/ч, для сталей 35 мм – 20 м/ч).

  Дефектоскопия сварных швов

Степень вакуумизации влияет на плотность электронного луча, вакуум обеспечивает защиту шва от окисления. Из-за высокой скорости сварки, металл, склонный к пластической деформации, не успевает разогреться, на нем не появляются трещины. Сохраняется целостность деталей.

Оборудование ЭЛС

Устройство любой промышленной установки включает несколько обязательных элементов:

  • пушка – генератор плотного луча;
  • блок электропитания, обычно они подключаются к стандартной сети 220 В, дополнительно встраивается трансформатор;
  • электронный блок управления, визуально контролировать процесс варки нельзя, нужна точная контролирующая аппаратура;
  • вакуумная система, различается по мощности.
  • Электронно-лучевая сварка: технология, процесс и особенности
  • В зависимости от назначения, установки способны образовывать криволинейные стыки, проваривать металл на всю глубину. Различают:
  • По типу вакуумирования:
  • камерные установки электронно-лучевой сварки предусматривают размещение деталей в камере, из нее полностью откачивают воздух;
  • локальные – изолируют только зону сварки, вакуум создается в небольшом объеме.

По параметрам разряжения:

  • специализированные установки создают разряжение до 10-2Па;
  • универсальные установки ЭЛС рассчитаны на максимальное давление до 10Па;
  • с параметрами так называемого промежуточного вакуума, давление инертного газа – от 10 до 100 Па;
  • ЭЛС с защитной атмосферой, в зону стыка аргон нагнетается под давлением свыше 100 Па.

Электронная пушка во всех установках устроена по одному принципу. Поток электронов создается между:

  • катодом, он бывает двух видов: плазменный (косвенного накала) или прямого накаливания (по сути, катод – это спираль из вольфрама, тантала или другого тугоплавкого сплава);
  • анодом, его делают их меди или стальной.

Поток меняет направление, отклоняется в одну или другую сторону, когда на управляющем электроде меняется потенциал.

На установках ЭЛС проводят сварку тугоплавких сплавов, стык проваривается насквозь за один проход. Метод электронно-лучевой сварки применяется в наукоемких областях, бытового распространения не получил из-за сложности и высокой стоимости оборудования.

Что такое электронно-лучевая сварка и где она применяется Ссылка на основную публикацию Электронно-лучевая сварка: технология, процесс и особенности Электронно-лучевая сварка: технология, процесс и особенности

Источник: https://svarkaprosto.ru/tehnologii/elektronno-luchevaya-svarka

Электронно-лучевая сварка — сущность, типы, преимущества

Электронно-лучевая сварка (или просто лучевая, ЭЛС.) является одним из быстро развивающихся способов соединения различных тугоплавких металлов, разнородных, химически активных, качественных сталей, сплавов высокой прочности на основе титана и алюминия.

Лучевая сварка — процесс, основанный на использовании тепла, выделяемого во время торможения остросфокусированного пучка заряженных частиц, ускоренных до высоких энергий. Широкое применение этот источник нагрева приобрел лишь с развитием вакуумной техники и электронной оптики, только после этого он стал применяться в металлургической технике.

Стимулом для поиска нового способа соединения послужили сложности с трудносвариваемыми металлами: молибден, тантал, цирконий, ниобий и вольфрам отличаются высокой температурой плавления и химической активностью, что требовало использования источников тепла большой концентрации и большой защищенности зоны сварки.

Сущность процесса ЭЛС

Основным компонентом является электронный луч, который создается особым прибором — электронной пушкой.

Как видно из рисунка ниже, пушка имеет катод (2), который размещен внутри прикатодного электрода (3). На определенном расстоянии от катода располагается ускоряющий электрод с отверстием — анод (4). Пушка питается электрической энергией от высоковольтного источника постоянного тока (5).

Чтобы увеличить плотность энергии в электронном луче после выхода из первого анода электроны концентрируются магнитным полем в магнитной линзе (6), Летящие электроны, сфокусированные в плотный пучок, ударяются на большой скорости о малую площадку на изделии (1). На данном этапе кинетическая энергия электронов вследствие их торможения превращается в теплоту, таким образом нагревая металл до высоких температур.

Для перемещения электронного луча по изделию на пути движения электронов размещают магнитную отклоняющую систему (7), которая позволяет установить луч строго по ли­нии сварки.

Электронно-лучевая сварка: технология, процесс и особенности

Для того, чтобы снизить потерю кинетической энергии электронов вследствие соударения с молекулами газов воздуха, а также для химической и тепловой защиты катода в пушке создается вакуум около 10-4 — 10-6 мм рт.ст.

Столь высокая концентрация энергии луча (до 109 Вт/см2) при минимальной площади места нагрева (до 10-7 см2) ведет к уменьшению термических деформаций в ходе сварки и формированию шва с кинжальной формой проплавления.

Технический вакуум при ЭЛС выполняет несколько функций:

  • снижает потерю кинетической энергии электронов, позволяя частицам достигать поверхности изделия почти не соприкасаясь с молекулами воздуха;
  • предотвращает дуговой разряд между анодом и катодом, обеспечивает химическую защиту катода;
  • защищает расплавленный металл от взаимодействия с окружающей атмосферой более эффективно, чем защитный газ, флюс;
  • способствует улучшению дегазации сварочной ванны и удалению оксидных пленок, что сказывается на качестве соединения.

Техника ЭЛС

Из рисунка ниже видно, какую форму имеет проплавление по технике лучевой сварки. Плавка металла лучом (1) происходит по передней стенке углубления (2) — кратера, — а расплавляемый металл сдвигается по боковым стенкам к задней стенке (4), где он кристаллизуется (3).

Электронно-лучевая сварка: технология, процесс и особенности

Возможна сварка непрерывным лучом, однако при работе с легкоиспаряющимися металлами (например, магний, алюминий) уменьшается эффективность электронного потока, как и количество выделяющейся теплоты ввиду потери энергии при ионизации паров металлов.

Здесь рекомендуется проводить сварочные работы импульсным электронным лучом с частотой импульсов 100-500 Гц и с большой плотностью энергии. Данная манипуляция ведет к повышению глубины конуса проплавления. Таким способом возможно сваривать очень тонкие металлические листы.

В случае, если происходит образование подрезов, их можно удалить сваркой расфокусированным либо колеблющимся лучом.

Параметры режима лучевой сварки и типы сварных соединений

Основные параметры режима ЭЛС включают:

  • степень вакуумизации;
  • силу тока в луче;
  • скорость движения луча по поверхности изделия;
  • ускоряющее напряжение;
  • точность фокусировки луча;
  • продолжительность импульсов и пауз.

Режимы электронно-лучевой сварки отражены в таблице ниже:

Металл Толщина, мм Режим сварки Ширина шва, мм
ускоряющее напряжение, кВ сила тока луча, мА скорость сварки, м/ч
Вольфрам 0,5 18-20 40-50 60 1,0
1,0 20-22 75-80 50 1,5
Тантал 1,0 20-22 50 50 1,5
Сталь вида 18-8 1,5 18-20 50-60 60-70 2,0
20,0 20-22 270 50 7,0
35,0 20-22 500 20
Молибден + вольфрам 0,5 + 0,5 18-20 45-50 35-50 1,0

Для передвижения электронного луча по изделию необходимо перемещать само изделие или луч при помощи отклоняющей системы. Эта система позволяет осуществлять колебания луча как вдоль, так и поперек шва, а также по более сложной траектории.

До начала сварки требуется соблюдение точной сборки деталей и точное направление луча по оси стыка. Так, при толщине металла до 5 мм зазор составляет не более 0,07 мм, при толщине до 20 мм — до 0,1 мм с отклонением луча не более 0,2-0,3 мм.

Для увеличенных зазорах (с целью предупреждения подрезов) понадобится дополнительный металл в виде присадочной проволоки либо технологических буртиков. Изменяя размер зазора и количество добавленного металла, можно довести долю присадочного металла по шву до 50%.

Основные типы сварных соединений

Рассмотрим основные типы сварных соединений, которые рекомендуются для электронно-лучевой сварки. Рисунок ниже демонстрирует следующие виды:

  • а) — стыковое;
  • б) — замковое;
  • в) — стыковое с деталями разной толщины;
  • г) — угловое;
  • д), е) — стыковое при сварке шестерен;
  • ж) — стыковое с отбортовкой кромок.
Читайте также:  Зиг-машина своими руками: чертежи, фото, видео

Электронно-лучевая сварка: технология, процесс и особенности

Особенности сварки лучевого типа

Процесс лучевой сварки характеризуют две особенности:

  • процесс сварки реализуется в вакуумной среде, что гарантирует получение максимально чистой поверхности и дегазацию расплавленного металла;
  • нагрев происходит до очень высоких температур, таким образом металл быстро плавится, а шов в результате обработки получается мелкозернистый и минимальной ширины.

Данные особенности позволяют работать со сплавами, чувствительными к интенсивному нагреву.

Электронно-лучевой сваркой изготовляют детали из алюминиевых и титановых сплавов, высоколегированных сталей.

Металлы и сплавы подвергаются сварке в однородных и разнородных комбинациях, разными по толщине и температуре плавления. Минимальная толщина свариваемых заготовок — 0,02 мм, а максимальная – до 100 мм.

Достоинства и недостатки электронно-лучевой сварки

Сварка электронным лучом имеет ряд весомых преимуществ, среди которых:

— Малое количество вводимой теплоты. В большинстве случаев для получения одинаковой глубины проплавления при сварке данного типа потребуется теплоты в 5 раз меньше, чем при дуговом виде, что значительно снижает коробление изделий;

— Возможность сварки керамики и тугоплавких металлов (тантала, вольфрама), керамики и т. д. С четкой фокусировкой луча становится возможным нагреть поверхность диаметром менее миллиметра. Это в свою очередь позволяет единовременно приваривать металлы толщиной от десятых долей миллиметра;

— Высокое качество сварных соединений химически активных металлов и сплавов: молибдена, титана, ниобия, циркония. Как правило, во многих случаях происходит дегазация металла шва и одновременно повышение его пластических характеристик. ЭЛС также незаменима при соединении низкоуглеродистых, коррозионно-стойких, медных, никелевых сталей, алюминиевых сплавов.

  • Но несмотря на большее количество достоинств, ЭЛС имеет и минусы.
  • Недостатки электронно-лучевой сварки
  • — Время затрата при создании вакуума в рабочей камере после загрузки изделий;
  • — Возможность образования несплавлений, полых отверстий в корне шва при сваривании металлов с большой теплопроводностью, а также швах с большим отношением глубины к ширине.

Применение ЭЛС оправдано, когда нужно проводить работы в труднодоступных и неудобных местах. Сварка данной разновидности универсальна и экономична. Универсальность этой сварки выражена тем, что посредством нее соединяют изделия как с любой разделкой кромки, так и без разделки. Экономичность же заключается в сравнительно малом потреблении электричества.

Сегодня на отечественных предприятиях применяется электронно-лучевое оборудование с пушками прямого и косвенного накала катодов и собственного производства, и от иных российских и зарубежных фирм.

В установках с внутрикамерным расположением лучевых пушек есть возможность сварки соединений горизонтальным либо наклонным лучом по сложным траекториям движения.

Точная механика в сочетании с компьютерными технологиями и системами управления устраняют зависимость качества итоговых соединений от человеческого фактора, то есть присутствие оператора-сварщика практически исключается, так как процесс происходит почти автоматизировано.

Сварочное оборудование несложно в эксплуатации и его обслуживание не подразумевает затрат трудовых ресурсов. Запрограммировав установку, нужно лишь следить за тем, как луч наводится в нужное место и следует вдоль стыка. От рабочего персонала потребуется только изменять мощность луча и регулировать фокусировку на конкретном отрезке траектории стыка.

В целом, электронно-лучевая сварка – это рациональное и перспективное направление в развитии современных технологий сварки!

Источник: http://GoodSvarka.ru/metalov/electron-beam/

Электронно-лучевая сварка (ЭЛС)

Виды сварки — Электронно-лучевая сварка (ЭЛС)

Сущность процесса

Электронно-лучевая сварка (ЭЛС) осуществляется в вакууме за счет расплавления кромок основного металла сфокусированным потоком электронов, имеющим высокую удельную мощность q2. Технологический диапазон для целей нагрева, плавления, испарения составляет ~104—5*108 Вт/см2.

Сварка металлов малых толщин (до 3 мм) ведется с удельной мощностью q2≈104 Вт/см2, когда испарение с поверхности сварочной ванны незначительно. Однопроходная сварка металлов больших толщин (до 200—300 мм) требует q2=105÷106 Вт/см2.

В этом случае проникновение электронного луча на большую глубину сопровождается испарением металла и формированием канала проплавления, на стенках которого рассеивается практически вся мощность электронного луча.

Канал проплавления, поверхность которого сильно перегрета относительно температуры плавления металла Тпл и может достигать температуры кипения Tкип, движется через толщу металла, образуя по всей глубине канала область расплава металла, который перемещается в хвостовую часть ванны и гам кристаллизуется.

Переход от сварки металлов малых толщин к однопроходной сварке металлов больших толщин осуществляется по достижении критической удельной мощности q2*, величина которой для большинства металлов q2*=105÷106 Вт/см2.

Верхнее значение удельной мощности электронного луча для технологических целей ограничено уровнем q2≤ Вт/см2 (выше процесс обработки материала становится неуправляемым из-за взрывного характера разлета образующейся плазмы). Высокая концентрация энергии в луче позволяет получать при больших скоростях ЭЛС узкие и глубокие сварные швы с минимальной зоной термического влияния и высокими механическими свойствами металла шва и околошовной зоны.

Параметры и показатели ЭЛС

Параметрами электронного луча, измеряемыми в процессе сварки, являются: ток луча I, ускоряющее напряжение U, ток фокусирующей системы Iф, рабочее расстояние (расстояние от центра фокусирующей системы до поверхности свариваемого изделия) l, угол сходимости луча α, скорость перемещения луча v.

При заданных значениях параметров: мощности (Вт) q=IU, l, Iф, α можно определить диаметр электронного луча d и соответственно удельную мощность q2, Вт/см2.

q2=IU/(πd2/4).    (5.1)

При использовании импульсно-периодического режима сварки средняя мощность луча, Вт, равна:

qср=IиUfτ,    (5.2)

где Iи — ток луча в импульсе. A; U — ускоряющее напряжение. В;  f — частота следования импульсов, Гц; τ — длительность импульса, с. Скорость сварки в импульсном режиме, см/с:

vсв = b(l—K)f,    (5.3)

где К — коэффициент перекрытия точек (обычно K=0,5÷0,9); b — диаметр сварной точки, см.

Количественными показателями ЭЛС являются: погонная энергия Q1=q/vсв (Дж/см) — затраты энергии на единицу длины сварного шва; Q2=q/vсвH (Дж/см2) — затраты энергии на формирование единицы площади стыка; q/H (Вт/см) — затраты мощности на единицу глубины сварного шва; К=Н/В (здесь В — ширина шва, К — коэффициент формы шва; Н — глубина шва).

Типичные интервалы значений параметров электронного луча для сварки следующие: q=1÷120 кВт при U=25÷120 кВ, α= 1÷5°, l=20÷200 мм. vсв=0,1÷3 см/с, d=0,1÷3 мм, f=1÷100 Гц, τ=5÷100 мс, К>10.

Камеры и вакуум для электронно-лучевой сварки

Электронно-лучевую сварку осуществляют чаще всего вертикальным либо горизонтальным лучом (рис 5.1) в вакуумных камерах, размеры которых зависят от габаритов свариваемых изделий. Объем камер современных установок составляет от 0.1 (и менее) до сотен кубических метров.

Электронно-лучевая сварка: технология, процесс и особенности

Рис. 5.1. Схема установки электронно-лучевой сварки: 1 — пушка; 2 — электронный луч; 3 — изделие (труба); 4 — откачка; 5 — камера

  • Камера с находящейся на ней (или в ней) электронной пушкой, формирующей электронный луч, может откачиваться как до высокого (~10-3 Па), так и до низкого (~1—10 Па) вакуума, но с отдельной откачкой объема электронной пушки до 10-3 Па.
  • Даже в низком вакууме ~1 Па содержание кислорода в 17 раз, а азота в 10 раз меньше, чем в особо чистом аргоне, поэтому при ЭЛС защита расплавленного металла очень эффективна.
  • Установки с выпуском электронного луча в атмосферу на расстояние 15—20 мм при U = 175÷200 кВ обеспечивают мощность до 40 кВт и коэффициент формы шва K≈3 из-за малой удельной мощности вследствие сильного рассеяния луча.

Техника электронно-лучевой сварки

Сварку электронным лучом можно успешно применять в нижнем положении вертикальным лучом, вертикальным и горизонтальным швом на вертикальной стене (горизонтальным лучом) с неполным и сквозным проплавлением. Сварка в нижнем положении рекомендуется для толщин до 40 (стали) и до 80 мм (титановые и алюминиевые сплавы).

Горизонтальным лучом со сквозным проплавлением сваривают металлы толщиной до 400 мм. Типичная взаимосвязь глубины проплавления с параметрами сварки представлена на рис. 5.6. Конструкция соединения для однопроходной ЭЛС выполняется с учетом глубокого проникновения луча в металл (рис. 5.7).

Толщина зазора в стыке составляет 0,1—0,2 мм при глубине шва ≤20÷30 мм и 0,3 мм при глубине шва >30 мм. В общем случае, зазор должен быть меньше диаметра луча.

Электронно-лучевая сварка: технология, процесс и особенности

Рис. 5.7. Типы конструкций стыка при ЭЛС

При ЭЛС используют ряд технологических приемов для улучшения качества шва:

  • сварку наклонным лучом (отклонение в направлении перемещения на 5—7°) для уменьшения пор и несплошностей и создания более равномерных условий кристаллизации;
  • сварку с присадкой для легирования металла шва или восстановления концентрации легкоиспаряющихся в вакууме элементов;
  • сварку на дисперсной подкладке для улучшения выхода паров и газов из канала (подкладка толщиной ~40 мм из гранул или рубленой сварочной проволоки);
  • сварку в узкую разделку (0,8—8 мм) в нижнем положении за счет наплавки присадки в прямоугольную разделку кромок;
  • тандемную сварку двумя электронными пушками, из которых одна осуществляет проплавление, а вторая (меньшей мощности) формирует либо корень канала, либо хвостовую часть ванны. При квазитандемной сварке используют один луч, но периодически отклоняя его, например в хвост ванны, получают практически два луча;
  • предварительные проходы для проверки позиционирования луча и очистки и обезгаживания кромок свариваемых металлов;
  • двустороннюю сварку одновременно или последовательно двух противоположных сторон стыка примерно на половину толщины стыка. Одновременную двустороннюю сварку осуществляют как с общей ванной, так и с раздельными;
  • развертку электронного луча: продольную, поперечную, Х-образную, круговую, по эллипсу, дуге и т. п. с амплитудой порядка диаметра луча и частотами до 1—2 кГц для создания более благоприятных газо- и гидродинамических условий формирования канала (резонансные режимы нагрева). Двойное преломление луча в процессе развертки позволяет, например, расширить корневую часть канала, что необходимо для подавления корневых дефектов;
  • расщепление луча (за счет отклоняющей системы) для одновременной сварки двух и более стыков (точек);
  • модуляцию тока луча (обычно с частотой 1—100 Гц) для управления теплоподачей в сварной шов;
  • «косметическое» заглаживание — повторный проход для ремонта видимых дефектов шва как с внешней, так и с внутренней сторон. В некоторых случаях «косметические» проходы осуществляют с присадкой.

Особенности технологии сварки цветных, тугоплавких металлов и сплавов, а также конструкционных сталей подробно изложены в монографии: Электронно-лучевая сварка/О. К. Назаренко, А. А. Кайдалов, С. Н. Ковбасенко и др./Под ред. Б. Е. Патона.— Киев: Наукова думка, 1987.— 256 с.

Волченко В.Н. Сварка и свариваемые материалы, том 2.

См. также:

  • Оборудование для электронно-лучевой сварки

Источник: https://www.autowelding.ru/index/ehlektronno_luchevaja_svarka/0-76

Электронно-лучевая сварка: понятие, особенности и технология процесса, состав применяемого оборудования

Электронно-Лучевая Сварка (ЭЛС) — это один из видов сварки плавлением. Источником энергии для осуществления процесса ЭЛС служит электронно-лучевая пушка с системой управления электронным пучком (лучом).

Читайте также:  Шпиндельный узел станка: конструкция, принцип работы, типы

ГОСТ

Технология процесса ЭЛС регламентируется отраслевыми стандартами и подлежит контролю качества по ГОСТ ISO 13919-1—2017 «Сварка. Соединения, полученные электронно-лучевой и лазерной сваркой. Руководство по оценке уровня качества для дефектов».

Область применения

Этот вид неразъёмного соединения различных материалов нашел широкое применение в авиационно-космической технике, судостроении, строительстве, микроэлектронике и других сферах человеческой жизнедеятельности, где необходимо сваривать тугоплавкие, прецизионные (особо чистые) материалы с уникальными свойствами.

Такие металлы, как вольфрам, тантал, молибден, ниобий, имеющие температуры плавления выше 2500 °C, могут быть сварены только лучевыми методами сварки.

Уникальность метода заключается в том, что с его помощью удается сваривать как сверхтонкие детали толщиной до десятков микрон, так и особо толстые (200…300 мм) конструкции из однородных и разнородных металлов и даже некоторые неметаллические материалы.

Особенности процесса электронно-лучевой обработки

Сущность процесса состоит в использовании кинетической энергии потока электронов, движущихся с высокими скоростями в вакууме под воздействием электромагнитного поля. Для уменьшения потери кинетической энергии электронов за счет соударения с молекулами газов воздуха, а также для химической и тепловой защиты катода в сварочной камере создают вакуум до 10-6 Па.

Электронный луч в зоне сварки обладает высокой мощностью, превосходящей альтернативные сварочные источники, уступая по некоторым параметрам только лучу лазера.

Сварка может производиться как непрерывным, так и импульсным электронным лучом. Импульсные лучи большой плотности с частотой импульсов 100—500 Гц используются при сварке легко испаряющихся металлов, таких, как алюминий, магний, цинк.

Электронно-лучевая сварка: технология, процесс и особенностиСхема электронно-лучевой сварки

ЭЛС позволяет соединять между собой термоупрочненные, тугоплавкие, а также химически активные при высоких температурах материалы. Создает минимальную околошовную зону термического влияния.

КПД электронно-лучевой сварки составляет рекордные 85…90 %. Но такие достижения сопряжены с большими капитальными затратами на оборудование.

Речь идет не только об основном технологическом оборудовании, но и о системах обеспечения вакуума, необходимого для ведения процесса сварки, а также о ЧПУ для автоматизированного управления этим процессом.

Технология и оборудование

Оборудование для электронно-лучевой сварки можно разделить:

  • на универсальное, то есть предназначенное для реализации различных технологических процессов по обработке любых материалов: разделительная резка и прожигание отверстий; сварка и наплавка; нанесение покрытий и напыление; гравировка и т. д.
  • и специализированное – предназначенное для выполнения конкретных операций при изготовлении серийных деталей и конструкций.

В состав оборудования входят:

  1. Электронная пушка, создающая эмиссию и ускорение электронов.
  2. Фокусирующая электромагнитная линза, концентрирующая электронный луч и способствующая увеличению плотности потока электронов.
  3. Электромагнитная отклоняющая система для точного управления лучом.
  4. Вакуумная установка, которая исполняет следующие функции: удаляет атмосферные газы, молекулы которых препятствуют свободному прохождению электронного луча; обеспечивает защиту от воздействия газов и влаги атмосферы на расплавленный металл и зону термического влияния.

Для ЭЛС применяются установки и агрегаты камерного типа (свариваемые детали помещаются целиком в рабочую камеру) и бескамерные (вакуум создается локально — только в месте выполнения сварочных работ).

Технологические приемы и регулируемые параметры ЭЛС

Технологические приемы:

  1. Для уменьшения пор в сварном шве применяют регулировку наклона луча на 5-7° от перпендикуляра.
  2. Для легирования металла шва возможно применение присадок.
  3. Применение способа соединения без разделки кромок или в узкую разделку.
  4. Одновременное или последовательное использование двух электронных лучей, при этом один луч производит проплавление металла, а второй формирует корень шва.
  5. Возможность варьировать продольную и поперечную развертку электронного луча по форме сечения.

Основные параметры режима электронно-лучевой сварки:

  • сила тока в луче;
  • ускоряющее напряжение;
  • скорость перемещения луча по поверхности изделия;
  • продолжительность импульсов и пауз;
  • точность фокусировки луча;
  • глубина вакуума.

Преимущества и недостатки

Обычно преимущества и недостатки определяются в сравнении с аналогами. В данном случае приходится говорить об условных недостатках, так как для определенных конструкций и свариваемых материалов просто нет альтернативных методов и аналогов для сравнения. Главным и непревзойденным преимуществом является высокое качество сварных швов.

Преимущества Недостатки
  • высокая концентрация энергии позволяет за один проход сваривать металлы толщиной от 0,01 до 300 мм;
  • КПД в 10-15 раз выше, чем при дуговой сварке;
  • отсутствует взаимодействие расплавленного металла с атмосферными газами, что положительно влияет на качество шва;
  • значительно снижаются сварочные деформации деталей и конструкций;
  • возможность сварки соединений различных конфигураций, в том числе принципиально новых, не выполнимых традиционными методами сварки плавлением;
  • высокая производительность и экономичность;
  • наличие существенных предпосылок для комплексной автоматизации и роботизации процесса сварки
  • большие капитальные затраты на приобретение оборудования;
  • повышенные требования к точности сборки;
  • требуется высокая квалификация операторов и обслуживающего персонала;
  • необходимость создания вакуума в рабочей камере, что приводит к увеличению трудоемкости подготовительно-заключительных процессов;
  • генерация мощных электромагнитных полей и рентгеновского излучения. Это приводит к принятию дополнительных мер по охране труда и технике безопасности

Источник: https://elsvarkin.ru/texnologiya/vidy/elektronno-luchevaya/

Электронно лучевая сварка

Для создания сварных соединений подобным способом требуется сложное оборудование. Это означает, что в домашних условиях или на производстве, не обладающем специальным оснащением, выполнить такую работу невозможно.

Тем не мене, методика постоянно совершенствуется и находит всё более широкое применение, поскольку обладает рядом важных достоинств и позволяет справляться с задачами, решить которые обычными способами сварки не удаётся.

Электронно-лучевая сварка: технология, процесс и особенности

Суть процесса

Часто бывает так, что чем сложнее технология, тем труднее объяснить её принципы. В конкретном случае вполне можно ограничиться осознанием того факта, что при проведении работ методом электронно-лучевой сварки детали помещают в вакуум и воздействуют на них пучком электронов, направляемых с помощью электронной пушки.

Пугаться словосочетания «электронная пушка» не следует. Простейшим примером такого устройства могут служить кинескопы, игравшие в телевизорах ранних моделей роль экранов.

Вот только в них основной проблемой было создание широкой развёртки, позволяющей бомбардировать электронами поверхность экрана электронами, а в сварочных системах электроны, напротив, концентрируют, регулируя плотность их потока и изменяя частоту импульсов.

Важные преимущества

Чем же так привлекательна относительно недавно появившаяся технология? Попробуем разобраться.

  • Электронно-лучевая сварка даёт возможность надёжно соединять между собой не только тугоплавкие металлы, такие как титан или вольфрам, но даже керамику. Для современного производства, в процессе которого используются новые материалы, плохо поддающиеся традиционным методам обработки, это имеет ключевое значение.
  • Прогрессивная технология, благодаря высокой концентрации теплоты, даёт возможность сваривать металлы и сплавы в большом диапазоне толщин, от 0,1 до 200 мм. Подобное качество позволяет применять электронно-лучевую сварку при изготовлении и небольших по размеру деталей, и массивных конструкций.
  • Обеспечивается высокое качество сварного шва, особенно в тех случаях, когда приходится соединять между собой химически активные металлы. Это происходит по причине повышения характеристик пластичности сварного шва и дегазации металла в процессе обработки.
  • Важную роль играет низкая степень тепловыделения в месте наложения сварного шва. Таким образом, снижается риск коробления соединяемых деталей и обеспечивается максимальное соответствие требуемым размерам. Преимущество, несомненно, оценили специалисты в области точного машиностроения.
  • Кратно снижается расход электроэнергии. Затраты на приобретение оборудования для электронно-лучевой сварки быстро окупаются. Далее – чистая экономия и зависть конкурентов, продолжающих оплачивать большие счета за электричество.

Характерные недостатки

Более широкому распространению новой методики проведения сварочных работ мешают два основных недостатка.

  • Сложность необходимого оборудования. В первую очередь того, которое требуется для создания вакуума над местом сварки. Теория считает возможным создание вакуумных камер даже очень большого, в сотни кубических метров, объёма. На практике подобные устройства ненадёжны. Как следствие, ограничивается максимальный размер соединяемых деталей. Отчасти помогают решить проблему камеры, с помощью которых создаётся локальный вакуум над обрабатываемой частью изделия. Однако, степень разрешения в них меньше, чем в стационарных установках, а значит, качество сварных швов хуже. В последнее время ведётся разработка технологических циклов, где электронно-лучевая сварка производится в среде нейтральных газов. Но вакуум пока не сдаёт лидирующих позиций.
  • При сваривании металлов с высокой теплопроводностью в корне шва могут образовываться полые отверстия и несплавления. Полностью решить эту проблему не удаётся, даже используя роботизированные устройства. Для обеспечения качества выполняемых работ необходимо, чтобы технологический участок, на котором используется электронно-лучевая сварка, был оборудован системами неразрушающего контроля качества сварных швов.

Влияя на результат

В зависимости от уровня решаемых задач на производстве используются различные способы электронно-лучевой сварки

  • Стараясь уменьшить размер и количество пор и несплошностей, обработку производят отклонённым на 5 – 7 градусов от вертикали лучом.
  • В случаях, когда необходимо повысить локальную прочность сварного шва или его коррозионную стойкость используют легирующие присадки.
  • Значительно повысить качество сварного соединения удаётся при выполнении операции за один заход сразу двумя электронными пушками. В этом случае одна из них проплавляет металл, а другая формирует корень канала.
  • Снизить энергозатраты, особенно при соединении листов металла значительной толщины, уменьшить количество отходов и сократить время работ удаётся, применяя технологию сварки в узкую разделку.
  • Улучшить выход из металла паров и газов позволяет дисперсная подкладка.
  • С учётом размеров соединяемых деталей можно ускорить процесс, производя с помощью двух электронных пушек последовательную или одновременную сварку, или напротив, расщепить один луч для сварки двух и более стыков.
  • Меняют форму развёртки электронного луча. Она может быть сколь угодно сложной – круговой, эллиптической,X-образной…

Разумеется, это далеко не все ухищрения, на которые идут технологи, стремясь добиться оптимальных результатов. Благодаря проводимым исследованиям появляются новые методики. Не исключено, что именно у тех, кто прочтёт эту статью, появятся свежие идеи относительно того, как можно усовершенствовать электронно-лучевую сварку.

  • Поделись с друзьями
  • 0
  • 0
  • 0
  • 0

Источник: https://svarkalegko.com/tehonology/elektronno-luchevaya-svarka.html

Введение

В промышленности все более широкое применение находят тугоплавкие и химически активные металлы и сплавы.

Поэтому для их сварки необходимо применять источники с высокой концентрацией теплоты, а для защиты расплавленного и нагретого металла использовать среды, содержащие минимальное количество водорода, кислорода и азота. Этим условиям отвечает электронно-лучевая сварка, или сварка электронным лучом.

Электронно-лучевая сварка (ЭЛС) относится к методам сварки высококонцентрированными источниками энергии и обладает широкими технологическими возможностями, позволяя соединять за один проход металлы и сплавы толщиной от 0,1 мм до 400 мм.

ЭЛС в вакуумных камерах выполняется преимущественно при давлении остаточных газов порядка 10-2 Па. Благодаря этому ЭЛС оказалась эффективной для соединения деталей из любых металлических материалов, особенно сплавов на основе химически активных металлов, таких как алюминий, титан и тугоплавкие элементы.

При этом обеспечиваются максимальная пластичность и вязкость сварных соединений. Наиболее перспективным является соединение деталей из термически упрочненных материалов, когда затруднена или не возможна последующая термообработка.

Читайте также:  Зенкеры по металлу: гост, диаметры, виды

Максимальная пластичность и вязкость сварных соединений, минимальные сварочные деформации позволяют также успешно использовать ЭЛС при изготовлении изделий после завершающей механической обработки.

Основным компонентом ЭЛС является электронный луч, который создается особым прибором — электронной пушкой.

Рис 1.1 — Принципиальная схема установки для сварки электронным лучом

Как видно из рисунка 1.1, пушка имеет катод (2), который размещен внутри прикатодного электрода (3). На определенном расстоянии от катода располагается ускоряющий электрод с отверстием — анод (4). Пушка питается электрической энергией от высоковольтного источника постоянного тока (5).

Чтобы увеличить плотность энергии в электронном луче после выхода из первого анода электроны концентрируются магнитным полем в магнитной линзе (6), Летящие электроны, сфокусированные в плотный пучок, ударяются на большой скорости о малую площадку на изделии (1). На данном этапе кинетическая энергия электронов вследствие их торможения превращается в теплоту, таким образом нагревая металл до высоких температур.

Для перемещения электронного луча по изделию на пути движения электронов размещают магнитную отклоняющую систему (7), которая позволяет установить луч строго по линии сварки.

Для того, чтобы снизить потерю кинетической энергии электронов вследствие соударения с молекулами газов воздуха, а также для химической и тепловой защиты катода в пушке создается вакуум около 10-4 —10-6 мм рт.ст.

Столь высокая концентрация энергии луча (до 109 Вт/см2) при минимальной площади места нагрева (до 10-7 см2) ведет к уменьшению термических деформаций в ходе сварки и формированию шва с кинжальной формой проплавления.

Технический вакуум при ЭЛС выполняет несколько функций:

  • · снижает потерю кинетической энергии электронов, позволяя частицам достигать поверхности изделия почти не соприкасаясь с молекулами воздуха;
  • · предотвращает дуговой разряд между анодом и катодом, обеспечивает химическую защиту катода;
  • · защищает расплавленный металл от взаимодействия с окружающей атмосферой более эффективно, чем защитный газ, флюс;
  • · способствует улучшению дегазации сварочной ванны и удалению оксидных пленок, что сказывается на качестве соединения.

С помощью ЭЛС можно производить сварку в труднодоступных местах и в узких разделках — щелях.

В ряде случаев, например, при сварке элементов из весьма тонкого металла или металлов, имеющих низкую температуру плавления и легко испаряющихся (магний, алюминий), необходимо использовать импульсный режим.

Такая сварка импульсно- модулированным пучком производится с помощью специальных автоматических прерывателей при частоте до 300 имп/с и продолжительностью импульса 0,01-0,00005 с.

В целом при конструировании и выборе способа сварки изделий следует учитывать следующие преимущества ЭЛС, по сравнению, с другими способами сварки плавлением:

  • · широкий диапазон толщин свариваемых деталей — от долей миллиметра до 100 мм и более;
  • · возможность получения узких швов с глубоким проплавлением;
  • · возможность регулирования отношения глубины проплавления к ширине шва;
  • · большие скорости нагрева и охлаждения металла в вакууме, что позволяет получать максимальную степень чистоты и высокие физико-механические свойства соединения;
  • · резкое снижение величины деформаций сварных конструкций;
  • · возможность сварки соединений различных типов, в том числе принципиально новых, не выполнимых известными способами сварки плавлением;
  • · высокая производительность и экономичность;
  • · универсальность аппаратуры, позволяющая сваривать детали разных толщин;
  • · наличие предпосылок для комплексной автоматизации процесса.

С другой стороны, внедрение электронно-лучевой сварки в высокотехнологичные производства затрудняется ее экономическими и техническими особенностями, такими как:

  • · высокие капиталовложения;
  • · необходимость весьма точной подгонки свариваемых элементов;
  • · ограниченный размер конструкций, поскольку сварку приходится выполнять в камерах;
  • · необходимость принятия специальных мер для обеспечения безопасности рабочего персонала.

Процесс лучевой сварки характеризуют две особенности:

  • 1. Процесс сварки реализуется в вакуумной среде, что гарантирует получение максимально чистой поверхности и дегазацию расплавленного металла;
  • 2. Нагрев происходит до очень высоких температур, таким образом металл быстро плавится, а шов в результате обработки получается мелкозернистый и минимальной ширины.

Данные особенности позволяют работать со сплавами, чувствительными к интенсивному нагреву. Электронно-лучевой сваркой изготовляют детали из алюминиевых и титановых сплавов, высоколегированных сталей.

Металлы и сплавы подвергаются сварке в однородных и разнородных комбинациях, разными по толщине и температуре плавления. Минимальная толщина свариваемых заготовок — 0,02 мм, а максимальная — до 100 мм.

Источник: https://studwood.ru/1017316/tovarovedenie/fizicheskie_osnovy_osobennosti_elektronno_luchevoy_svarki

Электронно-лучевая сварка: суть метода, технология, где используется, плюсы и минусы

ЭЛС считается трендовым методом работ 21 века. Он быстро развивается и набирает высокую популярность. В основном, по причине своей универсальности.

Электронно-лучевая сварка позволяет работать с любым материалом. Даже сверхпрочные соединения и химически активные металлы легко поддаются сварщику.

В нашей статье хотим остановиться на том, что же такое электронно-лучевая сварка со всеми характеристиками этой технологии.

Общая информация

Электронно-лучевое сваривание считается методом, при котором работает световой луч. Из него выходит тепло, которое получают после столкновения узла и заряженных частиц.

Вопреки сложностям метода, следует тщательно разбираться в нем. Хотя бы потому, что он широко популярен в сварочном деле. В 21 веке таким типом сварки пользуются в микроэлектронике, оптике и других областях.

Появления этой технологии было продиктовано временем. Перед сварщиками стояла проблема соединения тугоплавких материалов. При этом было нереальным получение ровного шва.

Обычные виды сварки не справлялись с высоким качеством работы, для этого был придуман новый метод. ЭЛС направляет тепло в единую точку, а зона сварки при этом полностью ограждена.

Технологические качества

Необходимо описать технологию электронно-лучевой сварки. Главным моментом считают луч, который получается под действием электронной пушки. Он выдаёт при этом энергию высокой плотности, но ее не хватает для сварочных работ высокого качества.

Чтобы решить вопрос, необходимо поместить электроны в центре стекла. Предлагаем посмотреть на рисунок, что расположен внизу текста. Обозначили линзу под цифрой 6.

Затем электроны, которые двигаются, размещаются в плотный узел света и после этого бьются о конструкцию. На картинке этот момент обозначен цифрой 1.

Из-за ударов частицы замедляются, а их активность превращается в тепло. Она достаточно мощная, и за минуты прогревает вещество до высоких температурных показателей.

Под цифрой 7 находится магнитная система, которая отклоняется. Рассчитав ее работу, у вас получится управлять электронным лучом и его движением по механизму. Поток будет расположен достаточно четко, и сформирует соединение в нужном для нас месте.

Когда электрон соединяется с газом, кинетическая энергия рассеивается. Катод при этом необходимо защитить в тепловом плане. Вакуум приходит на помощь для решения таких задач.

В итоге энергия луча размещается в едином месте. Площадь нагрева при этом сводится к минимуму. Поэтому металл не меняет свою форму во время сварочных работ. Это важно, если вы варите тонкий металл или деталь небольших размеров.

Несмотря на то, что технология электронно-лучевого сваривания достаточно сложная, сварщику нужно разбираться в тонкостях. Если хотите знать, как будет выглядеть результат, нужно понимать строение оборудования и мощность луча.

Особенности ЭЛС

Технология, о которой идёт речь в этой статье, считается сложной. Для того, чтобы понимать, как выглядит вся картина, нужно разобраться в деталях. Первый момент – это то, что электронно-лучевое сваривание происходит в вакуумной среде.

По этой причине детали и их поверхности остаются чистыми. Ещё один момент: механизм прогревается до высоких температур. У нас при этом получится сделать шов с небольшой толщиной, сформированный за минуты. Это можно считать преимуществом метода.

Электронно-лучевая сварка за счет таких характеристик используется во время металлообработки разных материалов. Две детали могут обладать не одинаковой толщиной, быть разными по составу, иметь не одинаковую температуру плавления.

Несмотря на эти моменты, шов будет высококачественным. Если говорить о толщине сварки, наименьшим значением будет 0.02 мм, а наибольшим – 100 мм. Благодаря широкому диапазону можно работать с любыми элементами.

Преимущества и недостатки

Электронно-лучевая сварка имеет много плюсов, которые послужили распространению этого метода:

  • Тепло, используемое при этом виде сварки, выделяется в 5 раз меньше, чем у иных технологий. Это помогает деталям сохранять форму, потому что на них распространяется небольшой объём тепла.
  • Благодаря технологии можно варить детали всех размеров. У вас получится работать как с керамикой, так и вольфрамом. Возможна настройка фокусировки луча и прогрев области, диаметр которой не превышает 1 мм.
  • Шов при этой технологии получается ровным. На это не влияет выбор вида металла. При работе с любым материалом качество шва будет высоким. ЭЛС помогает улучшить особенности вашего металла. Работая по этой технологии, получается варить разные сплавы, даже устойчивые к коррозии.
  • Сварка использует немного электрической энергии при работе. Можно не отделять кромки, если такая возможность не представилась. Это поможет работать со многими видами металла.

Если говорить о минусах технологии, то их немного. Могут появиться дыры в корне соединения, когда вы работаете с высокими теплопроводными характеристиками. Это может сказаться на качестве сварочных швов.

Эту технологию не всегда можно применять. Используйте электронно-лучевое сваривание, когда работаете в труднодоступных местах. Но если сварка происходит в рабочих условиях – применяйте другой метод сварки.

Рабочие установки

В 21 веке можно купить как местное, так и зарубежное оборудование. Оно будет разным по свойствам и качеству. Но стоит учитывать, что каждая вторая модель включает в себя пушки с косвенным или прямым катодным каналом.

Российские и украинские модели для сварки не яркие по дизайну, но при этом на отлично решают все задачи. Это куда важнее внешней картинки.

Есть модели, которые оснащены лучевыми пушками, находящимися в камере. Их работа направлена на металлообработку лучом, имеющим сложную траекторию движения.

Благодаря активному применению компьютерных технологий, человеческий фактор уходит на второй план. Сварочное оборудование тому подтверждение. Из-за режима работы на автопилоте сварщик может не переживать за качество работы.

Ещё одним преимуществом электронно-лучевой сварки считается простота работы. Сварщиков не нужно долго обучать технологии: достаточно раз запрограммировать механизм, и луч будет располагаться в определенном месте.

Оператору остается только следить за фокусировкой или корректировать мощность луча каждый раз, когда он приступает к работе. Помимо этого от мастера не требуется никаких действий.

Подведем итоги

Несмотря на то, что электронно-лучевая сварка – дорогое удовольствие, она позволяет работать с металлом любой сложности. Её нужно выбирать по причине технологичности и ответов на сварочные запросы.

Процесс сварки будет более экономным и доведенным до автоматизма.

Если вы однажды работали с электронно-лучевой сваркой – напишите в х. Желаем успехов в работе!

Источник: https://prosvarku.info/tehnika-svarki/ehlektronno-luchevaya-svarka

Ссылка на основную публикацию
Adblock
detector