Привет! Расскажу вам о своей попытке сделать бортовой расходомер на основе Arduino Nano. Это моё второе изделие из ардуинки, первым был шагающий паучок. После экспериментов с лампочками и сервоприводами хотелось сделать что-нибудь более полезное.
Конечно, можно было купить готовое изделие, может, даже за меньшую цену (хотя за меньшую я не находил). Но это было неинтересно, и оно могло не иметь тех функций, которые мне хотелось иметь. К тому же, хобби, как и спорт, редко оправдывает затраты в материальной форме.
Прежде, чем рассказать о процессе, покажу картинку, как это выглядит сейчас. Программа пока в стадии дебага, поэтому контроллер висит на проводах в салоне, а дисплей прилеплен на двухсторонний скотч ) В дальнейшем это будет установлено по-человечески.
2 MB» src=»https://habrastorage.org/getpro/geektimes/post_images/042/119/82c/04211982c97174c32351c97c31db3db3.jpg»>
Прибор вычисляет и отображает на дисплейчике километровый расход топлива: на нижней строке мгновенный, на верхней — средний за последний километр. Мысль сделать эту штуку мне пришла давно, но этому мешала нехватка информации о том, что и как устроено в моей машине. Она у меня достаточно старая — Corolla E11 с двигателем 4A-FE. О двигателе мне было известно, что он инжекторный и что форсунки имеют более-менее постоянную производительность, на что рассчитывает и собственный блок управления. Поэтому основная идея измерения расхода — измерение суммарной длительности открытия форсунок. ЭБУ, как подсказал хороший человек и как потом подтвердила инструкция, управляет форсункой следующим образом: плюс на неё подаётся всегда, а минус открывается и закрывается в зависимости от пожеланий ЭБУ. Стало быть, если подключиться к минусовому проводу форсунки, то можно отслеживать момент её открытия, измеряя потенциал: когда ЭБУ замыкает форсунку на массу, 14 вольт падают до нуля. Эта простая мысль меня посетила далеко не сразу, т. к. мои познания в электронике ограничены школьным курсом физики и законом Ома. Далее потребовалось превратить +14В в +5В, которые можно подавать на логический вход контроллера. Тут я каким-то образом допёр до известной всем электронщикам схемы шунтирования, но перед этим пришлось изучить мануалы и убедиться, что сопротивление форсунки пренебрежительно мало, а сопротивление логического входа почти бесконечно. Чтобы вычислить километровый расход, необходимо было получить данные с датчика скорости. С ним оказалось всё проще, т. к. он выдаёт ступеньки 0… +5В, чем больше ступенек, тем больше пробег. Эти ступеньки пошли сразу на логический вход без преобразований. Очень хотелось выводить данные на ЖК-дисплей. Я рассматривал разные варианты и остановился на текстовом дисплее МЭЛТ за 234 рубля на основе микроконтроллера Hitachi HD44780, с которым ардуино умеет работать с рождения. После долгих и мучительных размышлений была составлена вот такая схема:
Помимо резисторов, понижающих напряжение с форсунки, здесь присутствуют стабилизатор напряжения, дабы запитать контроллер от бортовой сети, а также по советам деда и хорошего друга добавлены конденсаторы, дабы сгладить возможные пики напряжения, и по резистору «на всякий случай» для каждого логического входа. И да, я решил подавать сигналы с форсунки и датчика на аналоговые входы, о чём впоследствии нисколько не пожалел, т. к. в цифровом режиме аналоговые входы не хотели понимать разницу между закрытой и открытой форсункой, а в аналоговом очень чётко показывали разный уровень напряжения. Возможно, это недоработка моей схемы, но всё делалось впервые, вслепую и без тестирования на макете, в общем, наобум. Вслед за схемой я накидал разметку печатной платы (да, я сразу ломанулся печатать, т. к. возиться с копной проводов на монтажной плате не очень хотелось): Плату травил в первый раз и с некоторыми нарушениями технологии, поэтому результат вышел так себе. Но после лужения всё пришло в порядок. Травил методом лазерного утюга, учился по хорошо известным роликам на easyelectronics. После травления плата получилась вот такая:
Чтобы припаять на плату элементы, пришлось изрядно её продырявить. Мне не хотелось покупать дорогую дрель типа Dremel или подобной, и чтобы сэкономить пару тысяч рублей, я сколхозил микродрель из моторчика и цангового зажима, которые были куплены в радиомагазине неподалёку: После сверления дырок, лужения и пайки плата стала выглядеть вот так: И с лицевой стороны: Тут я по глупости припаял лишний стабилизатор, который впоследствии был заменён на резистор. После того, как изделие было готово, я приступил к тестированию в боевых условиях, т. е. прямо на машине. Для этого по моей просьбе провода от форсунки и датчика были выведены в салон. Для микроконтроллера я написал тестовую программу, которая писала в COM-порт сырые данные — число импульсов с датчика скорости и милисекунды, в течение которых была открыта форсунка. Посидев в машине с ноутбуком и увидев, что данные соответствуют действительности, я несказанно обрадовался и пошёл домой писать рабочую версию программы. После двух-трёх сеансов тестирования программа стала показывать годные данные. Поначалу я вычислял средний расход по временному интервалу (5-10 минут), что вызвало интересный эффект: после пяти минут стояния на светофоре (даже не пробка, а лёгкое подобие) километровый расход подскакивал до запредельных величин в 50-100 литров на 100 км. Я поначалу недоумевал, а потом понял, что это обычное дело, т. к. расход километровый, а усредняю я по времени: часики тикают, бензин льётся, а машина стоит. После этого мне пришла в голову светлая идея усреднять по пробегу: в текущей версии программа вычисляет, сколько бензина было израсходовано за последний километр, и показывает, сколько литров уйдёт, если проехать 100 км в таком же темпе. «Моментальный» же расход вычисляется как средний за последнюю секунду и каждую секунду обновляется.
Исходный код (если кому интересно) я выложил на PasteBin. Тут ещё найдётся что доработать, хотя бы сам стиль программы, т. к. она писалась довольно спонтанно.
Пока ещё не окончательный результат:
Датчик расхода топлива автомобиля
Проблема увеличенного расхода топлива и связанных с этих затрат волнует не только владельцев личного автомобиля, но и владельцев автопарков. И если в первом случае увеличенное потребление связано с работой конкретного ДВС, то для автокомпаний проблема в другом — воровство горючего или слив.
Используя современные контактные и спутниковые системы мониторинга, операторы могут на расстоянии осуществлять контроль за расходом ГСМ. Одним из продуктивных механических контроллеров остаются датчики расхода топлива, которые устанавливаются на топливную магистраль и, в зависимости от конструкции, могут передавать информацию в режиме реального времени через систему спутниковой навигации.
Датчик расхода — какой бывает
Второе название — топливный расходомер, прибор относится к проточному оборудованию, устанавливается на магистраль подачи топлива перед ДВС и отслеживает количество бензина или дизеля при работающем двигателе. Проточный датчик расхода топлива конструктивно представлен в трех вариантах:
- однокамерный;
- дифференциальный;
- бесконтактный.
Простой однокамерный ДРТ контролирует единственный поток топлива, в конструкции не учитывается работа обратного клапана топливной магистрали, по которому неизрасходованное горючее возвращается в топливный бак.
Дифференциальный или двухкамерный (двухпоточный) датчик отслеживает расход топлива, сопоставляя данные по двум потокам. В конструкции используется два расходомера. Пара калибруется относительно друг друга на заводе-изготовителе. На выходе формируется единый сигнал о фактическом потреблении.
Бесконтактный датчик является непроточным, топливо не проходит через корпус устройства. Используется на бензиновых моторах. Считывание информации происходит с форсунок перед формированием топливной смеси.
На дизельных авто бесконтактное устройство используется достаточно редко, в основном на грузовых фургонах среднего класса. Информация поступает на бортовой контроллер и передается через систему GPS-мониторинга.
Принцип работы
Принцип работы как двухкамерного, так и однопоточного датчика одинаков. Цифровая плата, расположенная в корпусе устройства, формирует сигнал о количестве проходящего топлива. Информация передается напрямую бортовому контроллеру через выход интерфейса, где сохраняется или автоматически передается через КАН-шину оператору.
Монтаж ДРТ технически возможен не на все топливные системы. Для американских авто устанавливают только однопоточный расходомер, и отслеживают количество бензина без учета количества обратки.
Это происходит потому, что устройство обратного клапана не сможет высчитать количество топлива в чистом виде, а считает пену или воздушно-пенную смесь, поэтому показания имеют большой процент погрешности — до 10 %.
Место установки
Расходомеры изготавливаются с учетом используемого топлива, класса авто. В паспорте на устройство всегда указывается, для каких двигателей предназначен тот или иной датчик, варианты подключения и настройки. Настройку расходомера проводят мастера сервисного центра, не рекомендуется устанавливать это средство измерения самостоятельно, поскольку потребуется врезка в топливную магистраль.
Не рекомендуется использовать схему подключения однопоточного ДРТ с вариантом «закольцовывания» обратки, когда неиспользованный бензин или дизель не возвращается в топливный бак, а поступает в топливную магистраль после датчика. Это приведет к тому, что при минус 5 топливо в баке не будет прогреваться (прогрев осуществляется за счет подачи горячего бензина или дизеля от мотора в бак), и будет большая вероятность заглохнуть на морозе.
Расходомер устанавливается на необходимом участке топливного шланга и дополнительно крепится через кронштейн к кузову. Некоторые модели расходомера не имеют кронштейна. Зажим топливного шланга на штуцерах прибора проходит через металлический хомут. Герметичность стыков обеспечивают внутренняя прокладка или сальник.
Особенности для бензиновых и дизельных авто
Для дизельных и бензиновых моторов используются одинаковые ДРТ. Установка прибора на бензиновые ДВС считается нерентабельной, поскольку бензин быстро разъедает внутренний механизм контроллера и быстро его изнашивает. Альтернативой для бензинового ДВС может стать бесконтактный датчик или система контроля с КАН-шиной.
Проход дизеля через датчик, наоборот способствует смазке движущихся частей устройства, что повышает его срок эксплуатации. Снизить работоспособность может некачественная солярка с большим содержанием парафинов и присадок. Внутренние элементы конструкции засоряются, возникает некорректная передача сигнала. На дизельных топливных магистралях ДРТ систематически снимают и чистят.
Преимущества и недостатки
Учитывая, что минимальная стоимость расходомера с подключением и настройкой составляет 150 $, мало кто из владельцев личного автомобиля его купит. Эти средства измерения актуальны для таксопарков, компаний с большим объемом грузоперевозок и пр. Преимущества датчика:
- Надежность цифровых устройств. Датчики не меняют показаний при высоком/низком магнитном, электрическом поле, что делает невозможным самовольную перенастройку прибора.
- Точность отслеживания расхода. Максимальная погрешность — 3 %. Для сравнения, погрешность неотрегулированного датчика уровня топлива может достигать 15 %.
- Не зависит от конфигурации и объема топливного бака. Двухпоточный ДРТ позволяет контролировать объем обратки.
Главный недостаток проточного датчика — отсутствие контроля за количеством заправок и частотой слива топлива с бака. Устройство требует систематического обслуживания, не реже 1 раз в 30 дней и может устанавливаться не на все классы топливных систем.
Альтернативные способы контроля расхода топлива
Для владельцев личных авто идеальным вариантом отслеживать расход топлива считаются правильная настройка датчика уровня топлива и корректное отображение величины на указателе расхода.
Вторым вариантом узнать настоящий расход остается использование штатного датчика через КАН-шину. Каждый метод имеет свои преимущества и недостатки.
Контроль расхода топлива через КАН-шину
CAN (Controller Area Network) — это интерфейс, который отслеживает все показания блоков, электронных систем и датчиков в авто, распределяет, передает, обрабатывает информацию для корректной работы узлов и агрегатов. Для отслеживания расхода горючего в КАН-интерфейсе используется штатный датчик уровня, установленный в баке.
Чтобы получить информацию с КАН-шины необходимо подключить систему мониторинга к CAN-интерфейсу. Лучшим вариантом считается бесконтактная передача данных, когда к шине подключаются бесконтактные считывали расхода. Для этого используется адаптер CAN-LOG, с помощью которого проводится передача информации с КАН-шины авто на систему мониторинга.
Бесконтактная схема не требует установки дополнительного оборудования в электросистему авто, не нарушает целостность проводки.
Датчик уровня топлива
Проверить расход бензина или дизеля можно используя штатный емкостный датчик уровня топлива. ДУТ может контролировать и передавать данные о динамическом потреблении горючего во время движения, количестве заправок и сливов с топливного бака.
Подключается расходомер к устройству на панели приборов через аналоговый или цифровой разъем. На приборной доске располагается устройство, на шкале (цифровой или стрелочной) отображается реальный объем топлива.
Корректно настроенный датчик уровня имеет максимальную погрешность 3 %. Параметр зависит от правильной работы поплавка и от тарировки топливного бака. Чтобы получить максимально точную информацию, в бак устанавливают несколько приборов.
Датчики расхода топлива позволяют снизить затраты на ГСМ на 30 % за счет несанкционированных сливов. Приборы окупаются в течение 2–3 месяцев, что для владельцев автопарка достаточно выгодно.
Устанавливать ли ДРТ на собственный автомобиль, каждый водитель будет решать сам.
Правильно отрегулированный датчик уровня способен вывести на приборную панель всю необходимую информацию без использования дополнительного оборудования.
Видео по теме
Простейший индикатор расхода топлива на инжекторный двигатель
Сразу же после покупки автомобиля (Mitsubishi Lancer, 2003) озадачился установкой индикатора расхода топлива. Японцы сильно сэкономили на этом авто и не установили некоторые полезные функции — пришлось исправлять ситуацию.
Первой мыслью было или покупка готового — существуют множество промышленных устройств, в том числе заточенных под Lancer 9, или самостоятельная сборка какой-нибуть любительской конструкции — и таких немало. Поизучав немного тему выяснил, что все предложенные девайсы обладают избыточностью функций — а мне-то всего навсего нужен расходомер. Поэтому и было решено делать самому.
Единственное место на панели куда-бы приборчик вписывался — на место штатных часов, поэтому хочешь-не хочешь он должен и время показывать. Ну и так как при применении 2-х строчного ЖК в этом случае остается незаполненный угол — значит и туда надо что-нибуть более-менее полезное вставить, например индикацию температуры.
Кстати говоря, поначалу задумывалась индикация и некоторых других параметров — зарядка аккумулятора, расход на 100 км, мгновенный расход в цифрах и т.д. уже и не припомню — и почти все задумки были реализованы в первой версии индикатора.
![]() |
Двигатель заглушен, поэтому прогрессбар отсутствует.
Плюсом первой версии считаю то, что при установке на автомобиль не пришлось абсолютно ничего сверлить, точить и т.д. Просто отщелкнуть штатные часы и на их место защелкнуть прибор. Кнопки управления (3 шт.) располагались справа от дисплея.
Но покатавшись некоторое время понял, что из всех функций мне нужны всего 3 (остальными за все это время я ни разу не воспользовался). И тут как раз попался новый дисплей, более симпатичный — решил поставить его ну и заодно переписать все заново — выкинуть ненужные функции.
Просто переставить дисплей не получилось-бы во-первых из-за разных габаритов и во-вторых — новый дисплей негативный, надо менять систему диммирования.
Из-за больших размеров дисплея кнопки сбоку не поместились, пришлось высверливать 2 отверстия в подиуме, но это никак не повлияло на внешний вид а пользоваться стало удобнее. Вот фото нового индикатора
![]() |
И вид сзади
![]() |
Устройство показывает (повторюсь)
- 1. Мгновенный расход в виде прогрессбара
- 2. Время
- 3. Температуру за бортом или в салоне — по выбору (переключается кнопкой)
Схема
Ничего особенного — микроконтроллер PIC16F876 считывает данные с датчиков температуры (DS18B20), с микросхемы часов (DS1307) и с ЭБУ, обрабатывает все это и выводит на дисплей (LCD 2×16). Сигнал с ЭБУ (Fuel) — один из тех, что идут на инжектор, можно использовать любой.
Для формирования (скорее даже согласования) сигнала применен узел на n-p-n транзисторе. Питание устройства — через стабилизатор на 7805. Отдельного питания для микросхемы часов при заглушенном двигателе не предусмотрено т.к. backup батарейки согласно даташиту должно хватить лет на 10.
Управляется устройство 2-мя кнопками, одна из которых — «Mode» — переключает индикацию внутренней и внешней температуры, вторая — «Set» — в зависимости от того какая из температур выбрана устанавливает или часы или минуты.
Дисплей — любой подходящий по размерам двухстрочник, главное чтоб он был с расширенным температурным диапазоном.
Датчики температуры установлены — один в салоне, другой выведен под передний бампер.
Диммер — котакты реле размыкаясь просто подключают добавочный резистор в цепь питания светодиодов подсветки тем самым приглушая их. Реле включается от габаритов.
Диммер, как уже указывалось, для негативного дисплея, разница между негативным и позитивным в том, что в первом случае днем дисплей должен подсвечиваться ярче чем в темноте.
Второй же наоборот — днем подсветка вообще не нужна, включается только с габаритами.
МК кстати можно использовать и другой, послабее. Надо только перекомпиллировать программу под новый. Просто этот остался от предыдующего варианта…
![]() |
Чуток крупней
Конструкция
Все устройство собрано на одной печатной плате, посредсtвом которой оно и крепится в защелки штатных часов. На этой же плате расположены и резервная батарейка часов и разъем для подключения LCD и разъем ICP (внутрисхемного программирования). Разводка — под SMD элементы.
![]() |
- Схема и разводка также выложены в архиве в форматах Splan и SprintLayout соответственно:
schem.rar - Управляющая программа
Прошивка написана на одном из самых простых для изучения и понимания компиляторов — PicBasic Pro. - Состоит из главной программы — mmc.pbp и 3-х подключаемых модулей
- LCD.inc — описание подключения ЖК дисплея к выводам МК
- LCDchar.inc — доп. символы ЖК дисплея
- LCDbar.inc — функция прогрессбара, в этом же модуле содержится переменная, определяющая «чувствительность» прогрессбара BAR_range VAR WORD : BAR_range = 6000
Исходники достаточно подробно прокомментированы, так, что думаю не составит труда разобраться и при необходимости подправить ко-что «под себя». Например, изменить или вообще отключить заставку-анимацию при включении — сейчас пишет «Mitsubishi LANCER IX».
Сама прошивка (hex) и исходники.
Firmware.rar
Доп. информация по компилятору
Программа написана на PicBasic Pro, v2.5b (обязательно пропатчить до 2.5b, версия 2.5 насколько я понял некорректно отрабатывает OneWare команды, я намучился с температурными датчиками пока не поставил соотв. патч)
- Сайт PicBasic
- Сергей — SSh
Надо скачать также Microcode Studio, чтобы не заморачиваться с командной строкой
Расходомер топлива для авто своими руками
В одной из статей первого номера журнала «Радио» за 1986 год был описан вариант устройства, позволяющего осуществлять контроль над количеством жидкости и ее скоростью (в данном случае нас интересует топливо для авто), которая протекает в магистральных трубах.
В связи с высокими требованиями к точности обработки, могут возникнуть определенные сложности при повторении описанного расходомера, а так же в процессе его налаживания.
Электронный блок этого прибора должен быть хорошо защищен от помех, в связи с тем, что в автомобильной бортовой сети уровень помех достаточно высокий. У этого устройства имеется и другой недостаток.
Речь идет об том, что при сокращении скорости топливного потока, погрешность измерения неизбежно увеличивается.
Устройство, описанное ниже, не имеет указанных недостатков, конструкция датчика у него более простая, так же, как и схема электронного блока.
Это устройство не имеет прибора, контролирующего скорость топливного расхода – для данной функции предназначен счетчик суммарного расхода. Водитель на слух воспринимается скорость топливного расходования, которое пропорционально частоте срабатывания.
В городских условиях интенсивного движения это особенно важно, поскольку не отвлекает водителя от управления автомобилем.
Из чего состоит расходомер?
В приборе два узла:
1. Датчик с электрическим клапаном.
2. Электронный блок.
Датчик встроен в топливную магистраль, и располагается между карбюратором и бензонасосом. Электронный блок находится в салоне. На рисунке изображена конструкция датчика. 1 Эластичная диафрагма 4 зажата между поддоном 2 и корпусом 8. Она разделяет внутренний объем на две полости – нижнюю и верхнюю.
Направляющая втулка 7 выполнена из фторопласта. В ней свободно перемещается шток 5. В его нижней части зажата диафрагма с помощью гайки и двух шайб 3. Постоянный магнит 9 установлен на верхнем конце штока.
Параллельно каналу, где расположен шток, вверху корпуса, имеется 2 дополнительных канала. В эти каналы входят два геркона 10.
Один геркон срабатывает при нижнем положении магнита и диафрагмы, другой – при верхнем положении.
Puc.1. 1-Штуцер, 2 – Поддон, 3- Шайбы, 4 – Диафрагма, 5- Шток, 6 – Пружина, 7 – Втулка, 8 – Корпус, 9 – Магнит, 10 – Герконы
Диафрагма переходит в верхнее положение, благодаря действию давления топлива, которое поступает от бензонасоса. В нижнее положение она возвращается с помощью пружины 6. Чтобы датчик включился в топливную магистраль, на корпусе предусмотрено два штуцера, на поддоне – один. Штуцеры 3. На рисунке показана 2 гидравлическая схема расходомера.
Топливо от бензонасоса, через электроклапан и канал 3, начинает поступать в каналы 1, 2, заполняя в датчике нижнюю и верхнюю полости. А в карбюратор оно поступает через канал 4. Клапан переключается под воздействием электронного блока и поступающих от него сигналов (на данной схеме не указан). Эл.
блок управляется герконовым коммутатором, установленным в датчике.
Puc.2 Гидравлическая схема расходомера топлива.
Обмотка электроклапана в исходном состоянии обесточена, каналы 3 и 1 сообщаются между собой, в то время, как канал 2 перекрыт. На схеме показано, что диафрагма располагается в нижнем положении.
В нижней полости 6 возникает избыток давления жидкости с помощью бензонасоса.
Диафрагма начнет постепенно подниматься, по мере выработки топлива двигателем, из верхней полости а датчика, сжимая пружину.
Геркон 1 сработает по достижении верхнего положения, тогда электроклапан откроет канал 2 и закроет канал 3. При этом канал 1 постоянно открыт. Диафрагма немедленно переместится вниз под действием сжатой пружины. Она вернется в свое исходное положение, пропустив топливо из полости б в а, через каналы 1 и 2. Затем наблюдается повтор цикла в работе расходомера.
К электроклапану и датчику подключают электронный блок, с помощью гибкого кабеля, через разъем ХТ1. В датчике установлены горкомы SF1 и SF2. По схеме – ни на один из них не воздействует магнит. Транзистор VT1 закрыт в исходном положении, обмотка электромагнита клапана Y1 обесточена, 2 реле К1 разомкнуты. рРядом с герконом SF2 находится магнит датчика, поэтому геркон не проводит ток.
Puc.3 Электронный блок расходомера топлива.
Магнит постепенно перемещается, по мере расхода топлива, между герконами SF2 и SF1, из полости а датчика. В определенный момент переключается геркон SF2, но изменений в блоке это не вызовет никаких. Магнит, в конце хода переключает геркон SF1, и базовый ток транзистора VT1 потечет резистор R2 и через геркон SF1.
Открывается транзистор, срабатывает реле К1, и включает электромагнит клапана контактами К1.2. При этом цепь питания счетчика импульсов Е1 замкнет контактами К1.1.
В итоге магнит и диафрагма быстро будут перемещаться вниз. В определенный момент, после обратного переключения, геркон SF1 размыкает цепь базового тока транзистора.
При этом он остается открытым, поскольку теперь базовый ток протекает через диод VD2, замкнутые контакты К1.1 и геркон SF2. Это является причиной того, что шток с магнитом и диафрагмой продолжают перемещаться.
Магнит переключает геркон SF2 в конце обратного хода.
После этого выключатся счетчик Е1 и электромагнит Y1 клапана, транзистор закроется и система возвращается в свое исходное состояние, после чего она готова новому циклу работы. Как видим, число циклов фиксирует счетчик Е1.
При этом один цикл соответствует тому или иному объему топлива, равного объему ограниченного диафрагмой пространства, расположенной в нижнем и верхнем положениях.
Умножением объема топлива, использованного в ходе одного цикла, на показания счетчика, и определяют расход топлива, который устанавливают во время тарировки датчика.
Чтобы было удобнее рассчитывать расходуемое топливо за один цикл, его объем приравнен к 0,01 литра. Этот объем можно изменить, увеличив или уменьшив, меняя при этом между герконами расстояние по высоте.
Оптимальный ход диафрагмы, при имеющихся размерах датчика, составляет около 10 мм. Продолжительность цикла датчика – в пределах от 6 до 30 с., и находится в зависимости от режима работы двигателя.
При его тарировке следует отключить от бензобака трубопровод, вставив его в мерный сосуд, наполненный топливом, далее надо запустить двигатель, чтобы выработать то или иное количество топлива – делим его на число циклов (определяем по счетчику), и в итоге получаем число единичного объема топлива, израсходованного за один цикл.
Возможность его отключения предусмотрена в расходомере, тумблером SA1. При этом топливо будет поступать в карбюратор напрямую, через полость а, по каналам 2 и 3, поскольку диафрагма датчика в это время постоянно будет находиться в нижнем положении.
Чтобы отключить в электроклапане устройства, придется снять перекрывающую канал 3 резиновую манжету, однако погрешность расходомера при этом ухудшится. Монтаж электронного блока выполнен на печатной плате, изготовленной из стеклотекстолита – пластина толщиной 1,5 мм. Ее чертеж приведен на рисунке 4.
устанавливаемые на плату детали обведены штрихпунктиром на схеме. Смонтирована плата в металлической коробке. Ее крепление выполнено под щитком приборов в салоне авто.
- Puc.4 Чертеж платы электронного блока расходомера топлива
- Что использовалось в устройстве:
– Реле РЭС9
– Электроклапан – П-РЭ 3/2,5-1112
– Паспорт PC4.529.029.11
– Счетчик СИ-206 или СБ-1М.
– Постоянный магнит.
При этом магнит можно брать любой, где длина 18…20 мм, а полюса имеют торцевое расположение. Важно, чтобы магнит мог свободно перемещаться в пределах своего канала, не затрагивая стенок.
Для этого вполне подойдет магнит от РПС32 дистанционного переключателя, но придется его сточить до нужных размеров.
Вытачивают поддон и корпус датчика из любого материала с немагнитными и бензостойкими качествами.
Между каналами магнита и герконов толщина стенки должна составлять до 1 мм, под магнит глубина отверстия – 45 мм, диаметр – 5,1+0,1 мм. Шток выполнен из стали 45 или латуни, длина резьбовой части – 8 мм, диаметр – 5 мм, общ.длина – 48 мм. На штуцерах датчика резьба – М8; отверстие с диаметром – 5 мм. На штуцерах электроклапана резьба коническая К 1/8″ ГОСТ 6111-52.
Используется пружина диаметром 0,8 мм, из стальной проволоки, ГОСТ 9389-75. Усилие полного сжатия – 300…500 г, диаметр пружины – 15 мм, длина – 70 мм, шаг – 5 мм. В случае, когда шток изготовлен из стали, магнит сам удерживается на нем.
Когда шток сделан из немагнитного металла, необходимо укрепить магнит другим способом. Чтобы давление сжимаемого воздуха, не мешало работе датчика, следует предусмотреть во втулке перепускной канал, сечением порядка 2 кв.мм. Диафрагма выполнена из полиэтилена 0,2 мм. Ее придется отформовать перед установкой в датчик. В этих целях можно использовать поддон датчика.
Из листового дюралюминия 5 мм. следует выполнить прижимное кольцо, которое по форме соответствует фланцу поддона. Шток, в сборе с ее заготовкой, для формовки диафрагмы вставляют в отверстие штуцера поддона с внутренней стороны, и зажимают технологическим кольцом всю заготовку.
Далее нагревают равномерно узел со стороны диафрагмы, удерживая его на расстоянии 60…70 см от пламени горелки. Формуют диафрагму слегка поднимая шток. Чтобы он, в дальнейшем, не теряла эластичности, надо чтобы она находилась в топливе постоянно. Поэтому придется пережимать шланг к карбюратору при длительной стоянке машины. Это исключит испарение бензина.
В моторном отсеке устанавливают электроклапан и датчик. Крепят их около топливного насоса и карбюратора на кронштейне, соединяя кабелем с электронным блоком. С помощью насоса с манометром можно проверить работоспособность расходомера, без его установки на автомобиль.
При этом манометр подключают вместо бензонасоса. Датчик срабатывает при давлении 0,1 …0,15 кг/см2. Расходомер был испытан на автомобилях Жигули и Москвич. В ходе проверки было установлено, что режим работы двигателя никак не влияет на точность показаний расхода топлива. Точный расход определяется расчетом погрешности установки разового объема при тарировке до 1,5…2 %.
Расходомер топлива для автомобиля своими руками
Puc.3 Электронный блок расходомера топлива.
По мере расхода топлива из полости а датчика магнит медленно перемещается от геркона SF2 к геркону SF1. В некоторый момент геркон SF2 переключится, но это не вызовет никаких изменений в блоке. В конце хода магнит переключит геркон SF1 и через него и резистор R2 потечет базовый ток транзистора VT1.
Транзистор откроется, сработает реле К1 и контактами К1.2 включит электромагнит клапана, а контактами К1.1 замкнет цепь питания счетчика импульсов Е1. В результате диафрагма вместе с магнитом начнут быстро перемещаться вниз.
В некоторый момент геркон SF1 после обратного переключения разорвет цепь базового тока транзистора, но он останется открытым, так как базовый ток теперь протекает через замкнутые контакты К1.1, диод VD2 и геркон SF2. Поэтому шток с диафрагмой и магнитом продолжат движение.
В конце обратного хода магнит переключит геркон SF2, транзистор закроется, электромагнит Y1 клапана и счетчик Е1 выключатся. Система вернется в исходное состояние, и начнется новый цикл ее работы.
Таким образом, счетчик Е1 фиксирует число циклов срабатывания датчика. Каждый цикл соответствует определенному объему израсходованного топлива, который равен объему пространства, ограниченного диафрагмой в верхнем и нижнем положениях. Суммарный расход топлива определяют умножением показаний счетчика на объем топлива, израсходованного за один цикл.
Этот объем устанавливают при тарировке датчика. Для удобства отсчета расходуемого топлива объем за один цикл выбран равным 0,01 литра. При желании этот объем можно несколько уменьшить или увеличить. Для этого необходимо изменить расстояние между герконами по высоте. При указанных размерах датчика оптимальный ход диафрагмы равен примерно 10 мм.
Длительность цикла датчика зависит от режима работы двигателя и находится в пределах от 6 до 30 с. При тарировке датчика необходимо отключить трубопровод от бензобака автомобиля и вставить его в мерный сосуд с топливом, а затем запустить двигатель и выработать некоторое количество топлива.
Разделив это количество на число циклов по счетчику, получают значение единичного объема топлива за один цикл.
В расходомере предусмотрена возможность его отключения тумблером SA1. В этом случае диафрагма датчика постоянно находится в нижнем положении и топливо по каналам 2 и 3 через полость а будет напрямую поступать в карбюратор.
Для реализации возможности отключения устройства в электроклапане необходимо снять резиновую манжету, перекрывающую канал 3, но при этом ухудшится погрешность расходомера. Электронный блок смонтирован на печатной плате из стеклотекстолита толщиной 1,5 мм. Чертеж платы показан на рис. 4.
Детали, устанавливаемые на плату, обведены на схеме штрихпунктирной линией. Плата смонтирована в металлической коробке и укреплена в салоне автомобиля под щитком приборов.
Puc.4 Чертеж платы электронного блока расходомера топлива