Индукционный нагреватель представляет собой резонансный инвертор, работающий на частоте ниже резонанса. Он состоит из блока питания, платы драйверов, платы управления, согласующего трансформатора и остальных деталей которые расположены на шасси аппарата. Инвертор построен по топологии «резонанса в первичке», это уменьшает габариты, и более технологичен при изготовлении.
Основные узлы. Блок питания , который имеет четыре гальванически развязанных обмотки питания. Две- для питания драйверов, одну- для питания платы управления и силовую, для питания насоса охлаждающей жидкости, вентилятора и пускового реле. Первые три стабилизированы по 12 В, последняя не имеет стабилизации. Драйвера управляют IGBT транзисторами, включенными по два в параллель.
Согласующий трансформатор состоит из трех сложенных вместе Шобразных ферритовых сердечника Е80/38/20. На него намотана обмотка 10 витков многожильного провода 4мм2, и залита эпоксидным клеем.
Особенностью моего инвертора является то, что его рабочая частота ниже резонансной. При работе ниже резонанса, ключи открываются очень жестко, а выключаются в нуле тока. Жесткое включение обусловлено сквозными токами, избавится от которых, нет возможности, но можно значительно снизить. Для этого в цепь питания инвертора (в плюс или минус) включен гасящий дроссель Dr1, со снаббером.
Он имеет очень малую индуктивность всего 0,5 мкГн, но этого хватает, чтобы в разы снизить импульсы сквозного тока. Дроссель намотан многожильным проводом, общим сечением не менее 3мм2 и имеет 6 витков намотанных на оправке 16 мм. Он залит эпоксидным клеем, так как многожильный провод не держит форму. Дроссель и его снабберная цепь, должны располагаться в зоне обдува вентилятора.
Блок управления, в основу которого, положен генератор управляемый напряжением — ГУН, входящий в состав микросхемы CD4046. А также драйвер IR2104, который преобразует однофазный сигнал CD4046 в два противофазных.
Генератор управляется напряжением в ручную, и меняет частоту в диапазоне 25-50 кГц. С изменением частоты меняется мощность в индукторе.
Для простоты работы с инвертором, в плату управления введена схема ограничения тока.
Вторичная обмотка согласующего трансформатора состоит из одного витка медной трубки D 6мм. Она совмещена с радиатором для ключей и имеет конструкцию единого блока, по которому прокачивается вода. Насос – автомобильный от омывателя стекол.
Узлы на фотографиях и видео могут немного не соответствовать, так как было три версии, которые не значительно отличаются схемными решениями, но в общем конструкция у всех похожа. Данная конструкция тщательно отработана, я ее считаю самой компактной и ремонто-способной.
Первая самая простая версия была опубликована на этом форуме https://www.chipmake…ost__p__3268609 С тех пор много воды утекло, менялись схемные решения. Пробовал с ФАПЧ, сама подстройка прекрасно работала, но в целом, мне не понравилось. Поэтому остановился на схеме с «ограничением тока». Все мои изыскания в этом вопросе можно посмотреть здесь http://induction.lis…?p=19278#p19278 .
В чем собственно преимущество, этой версии. Первая версия имела простой задающий генератор, с возможностью управления частотой. Недостаток его в том, что нужно очень точно ( с помощью осциллографа) подгонять индуктор к инвертору, или инвертор к индуктору. А если имеются сменные индукторы, то они должны иметь одинаковую индуктивность.
В принципе не так уж это и сложно, при определенном опыте. Но если на индуктор воздействовать механически, случайно, сжать или растянуть витки, то такой индуктор уже не может дать той мощности, на которую был настроен изначально, а может вообще вывести инвертор из строя.
Вторая версия с ФАПЧ , позволяла менять индукторы, особо не задумываясь о его индуктивности. Но есть один нюанс. Максимальную мощность такой аппарат потреблял с ненагруженным индуктором, а когда индуктор нагружаешь, мощность падает.
В конце концов, конечный результат будет тот же, но для его достижения требуется в два-три раза больше времени. Увеличение времени нагрева всегда плохо, но в двойне- при поверхностной закалке. Точнее она вряд ли возможна. Пришлось искать компромисс. И мне кажется я его нашел. Вот схема.
Эта схема похожа на ранее опубликованную здесь. http://induction.lis…?p=22966#p22966
Но есть небольшие доработки в блоке управления, отказался от некоторых прибамбасов, а главное, что я гасящий дроссель, перенес в минус питания, это позволило разместить его и снаббер (конструктивно), ближе к вентилятору, что улучшило его охлаждение.
Теперь как это все работает. Начнем как всегда с питания. Блок питания на первый взгляд имеет архаичный вид, но у него есть свои преимущества. Во первых простота, второе- стабилизаторы имеют защиту по току, что помогает сохранить драйвера при пробое силовых ключей. Пробовал использовать «Обратноход»,он для такой мощности(50Вт), он получается громоздкий, да и недостатков у него хватает.
Обращаю внимание на систему запуска инвертора. В место традиционного пускового резистора, стоит конденсатор С10 (МБГО), в чем его преимущество? Обычно при пробое ключей пусковой резистор горит, конденсатор же может в таком состоянии находится сколь угодно долго.
В момент включения инвертора в сеть через этот конденсатор начинают заряжаться электролиты фильтра С2, пока напряжение на них не достигнет 200-250В, БП не заработает, а когда заработает притянется пусковое реле, и пуск произойдет очень плавно, с задержкой 1-2 сек.
Так же при пробое ключей в первую очередь выключится БП, отпустит реле, и в таком положении инвертор может находится сколь угодно долго. Даже предохранитель или автомат не успевают сработать. В свою очередь , коль нет питания, то и драйвера остаются целы.
Теперь немного о хитром гасящем дросселе Dr1. Как я уже писал, режим ниже резонанса предполагает сквозные токи. От чего это происходит? Предположим у нас открылся VT1, пошла накачка контура, + пит, VT1,ТР1,Срез, Dr1, минус.
Срез зарядится быстрей, чем закроется ключ VT1, и процесс пойдет в обратную сторону, то есть контур начнет отдавать энергию в источник питания.
Поскольку реакция контура у нас емкостная, напряжение той же полярности, через оппозитный диод VT1 ( к сожалению забыл дорисовать) будет заряжать С2, но через какое то время откроется VT2, и получится короткое замыкание, через еще открытый оппозитный диод VT1 и открывающийся VT2.
КЗ очень короткое, десятки- сотни наносекунд, но токи запредельные. Чтоб их уменьшить и служит Dr1 со снобберной цепочкой. Для рабочего цикла периодом скажем 30мкс, дроссель имеет малое сопротивление, а для сквозного тока в 50нсек- большое. На практике это выглядит так.
Рабочий ток первичной обмотки равен 60А, а сквозной ток всего 80А. Это вполне укладывается в параметры G4PC50UD, да и многих других IGBT. В отсутствии этого дросселя, ток может быть на порядок больше, что тоже во многих случаях позволяет работать ключам. О ключах и драй верах, говорить вроде не чего.
Как работает блок управления. Я покупал СD 4046, за пять рублей «пучок», когда занимался ФАПЧем, они остались неиспользованными, что и натолкнуло на мысль использовать генератор управляемый напряжения. Не буду писать как она работает, в кратце скажу, что если на 9 ногу подавать изменяющееся напряжение то и частота на выходе(3,4) будет меняться пропорционально.
R11 и R6, задается диапазон частот, верхний и нижний соответственно. Частоту как и мощность, можно менять вручную, резистором R2- выше частота- выше мощность.
Компаратор DA1/1, сравнивает напряжение установленное потенциометром R12 и напряжение с ТТ, как только напряжение ТТ превысит опорное, компаратор своим выходным транзистором, через VD1 и R4 начинает разряжать емкость фильтра С2 ГУН, напряжение на нем понижается, частота тоже, и падает ток в первичной обмотке. Образуется отрицательная ОС.
Установив один раз номинальный рабочий ток, настраиваем компаратор под этот ток . Далее поднять мощность не возможно — ее можно только понижать. При замене индуктора с другой индуктивностью, можно одним движением, под него настроить инвертор.
Как это происходит? ГУН всегда начинает работу с нижней частоты диапазона, поэтому, если рабочая частота индуктора входит в заданный диапазон частот, то частота будет упираться в заданный нами номинальный ток, что и соответствует номинальной мощности индуктора. Резистор установки частоты( мощности), крутят пока не сработает компаратор, и в таком положении работают. Индикация ограничения, осуществляется по светодиоду. Для этого используется вторая половинка компаратора DA1/2.
Насос для охлаждения я использовал от омывателя стекол. Питается он через полевик (VT3), что позволяет управлять и им и инвертором одной парой контактов.
Также в цепи насоса стоят баластные резисторы (R18), что позволило снизить потребляемый им ток до 2,5А, а производительности его вполне хватает. Некоторые пишут, что я сделал охлаждение транзисторов водяным, потому , что с воздушным транзисторы просто не выдержат.
На самом деле это не так. Грех не использовать водяное охлаждение, коль без воды не как не обойтись, к тому же это делает аппарат компактным.
Немного о настройке. Каждый модуль БП и БУ нужно проверять и настраивать отдельно желательно на столе от источника питания. Все тщательно выверить, проверить в разных режимах. Когда весь инвертор собран, подают 220В на блок питания, отдельно от инвертора( на силовую часть питание не подают).
Проверяют работу генератора, потом работу драйверов, повесив осциллограф на затворы и эмиттеры транзисторов. Проверяют работу насоса. Если все нормально, включают силовую часть (желательно сначала через ЛАТР ), при этом БП питается отдельно. Проверяют работу пока без индуктора.
На выходе меандр с немного закругленными вершинами напряжением 15В, можно нагрузить какой то лампой, типа от фары. Далее прикручивают индуктор, пробуют с индуктором, все так же через ЛАТР( вольт 80-100). Начинают с нижней частоты. На индукторе сначала рваная синусоида, по мере повышения частоты, синусоида становится чистой, вольт 80-90.
В таком режиме настраивают компаратор. Зазубрины на синусоиде это момент переключения ключей, по ним очень удобно настраивать инвертор. Эти зазубрины должны располагаться в зоне, от нуля синусоиды и до вершины. Самый оптимальный вариант где то по середине. В режиме ограничения инвертор не должен свистеть.
Вот как то так. Наверное что то упустил, но все расписать не хватит десяти страниц. О подробностях можете писать на любой из форумов или прямо сюда. Как минимум трое повторили мой инвертор, у других не хватило или знаний, или терпения. На последок видео.
Схема самодельного индукционного нагревателя
Вот проект индукционного нагревателя металлов простейшей конструкции, он собран по схеме мультивибратора и часто выступает как первый нагреватель, который делают радиолюбители.
Принцип действия ТВЧ установки
Катушка создает высокочастотное магнитное поле, и в металлическом предмете в середине катушки возникают вихревые токи, которые будут его разогревать. Даже маленькие катушки раскачивают ток около 100 A, поэтому параллельно с катушкой, подключена резонансная емкость, которая компенсирует ее индукционный характер. Схема катушка-конденсатор должна работать на их резонансной частоте.
ТВЧ катушка самодельная
Схема принципиальная электрическая
Схема индукционного нагревателя от 12В
Вот оригинальная схема генератора индукционного нагревателя, а ниже неё чуть изменённый вариант, по которому и была собрана конструкция мини ТВЧ установки. Ничего дефицитного тут нет – купить придётся только полевые транзисторы, использовать можно BUZ11, IRFP240, IRFP250 или IRFP460. Конденсаторы специальные высоковольтные, а питание будет от автомобильного аккумулятора 70 А/ч – он будет очень хорошо держать ток.
Проект на удивление оказался успешным – всё заработало, хоть и собрано было “на коленке” за час. Особенно порадовало что не требует сеть 220 В – авто аккумуляторы позволяют питать её хоть в полевых условиях (кстати, может из неё походную микроволновку сделать?).
Можно поэкспериментировать в направлении чтобы снизить напряжение питания до 4-8 В как от литиевых АКБ (для миниатюризации) с сохранением хорошей эффективности нагрева. Массивные металлические предметы конечно плавить не получится, но для мелких работ пойдёт.
Полезное: Электронная токовая нагрузка
Ток потребления от источника питания 11 А, но после прогрева падает до примерно 7 A, потому что сопротивление металла при нагреве заметно увеличивается. И не забудьте сюда использовать толстые провода, способные выдержать более 10 А тока, иначе провода при работе станут горячие.
Нагрев отвертки до синего цвета ТВЧ
Нагрев ножа ТВЧ
Второй вариант схемы – с питанием от сети
Чтоб удобнее настраивать резонанс можно собрать более совершенную схему с драйвером IR2153. Рабочая частота настраивается регулятором 100к в резонанс. Частотами можно управлять в диапазоне примерно 20 – 200 кГц.
Схема управления нуждается в вспомогательном напряжении 12-15 В от сетевого адаптера, а силовая часть через диодный мост может быть подключена напрямую к сети 220 В.
Дроссель имеет около 20 витков 1,5 мм на ферритовом сердечнике 8×10 мм.
Схема индукционного нагревателя от сети 220В
Рабочая катушка ТВЧ должна быть из толстой проволоки или лучше медной трубки, и имеет около 10-30 витков на оправке 3-10 см. Конденсаторы 6 х 330n 250V. И то, и другое через некоторое время сильно нагревается. Резонансная частота около 30 кГц. Эта самодельная установка индукционного нагрева собрана в пластиковом корпусе и работает уже более года.
НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ
Как самому сделать индукционный нагреватель из сварочного инвертора
Индукционный нагреватель из сварочного инвертора представляет собой эффективный прибор с высоким КПД и несложным внутренним устройством. Устройства промышленного производства обойдутся достаточно дорого, поэтому самостоятельная сборка является неплохой альтернативой.
Описание самодельного индукционного нагревателя
Нагревательное оборудование, которое работает по принципу индукции, стремительно набирает популярность. Это обусловлено практически бесшумной работой, эффективным обогревом окружающего пространства и повышенной безопасностью в сравнении с топливными системами.
Индукционные нагреватели из сварочного инвертора отличаются
высоким КПД и несложным внутренним устройством.
Устройство самоделки
Самодельный прибор состоит из таких частей:
- Нагревательного элемента. В его качестве используется трубка из металла или полимерных материалов, которая спрятана в индукторном компоненте и содержит теплоноситель.
- Альтернатора (генератора переменного ТВЧ). Устройство требуется для повышения частот бытовой сети. Оно делает их выше стандарта в 50 Гц.
- Индуктора. Представляет собой цилиндрическую катушку из проволоки, которая генерирует электромагнитное поле.
Сфера применения
Принцип индукции широко применяется в таких сферах человеческой деятельности:
- Металлургия. С помощью технологии производится плавка металлических заготовок.
- В бытовой сфере. С помощью нагревателей выполняется готовка пищи, нагрев воды или обогрев частных сооружений.
- В отдельных направлениях промышленности. Метод используется в работе индукционных печей быстрого разогрева.
Принцип работы индукционного нагревателя для металла
Под индуктором подразумевается катушка, изготовленная из медной проволоки, которая провоцирует магнитное поле.
С помощью генератора переменного тока формируется высокочастотный поток из базового потока бытовой электросети с частотой 50 Гц. Роль нагревателя играет металлический элемент, поглощающий тепло.
При правильном соединении таких составляющих получается эффективный прибор, который может использоваться для нагрева жидкого вещества и обогрева помещения.
Принцип работы нагревателя.
Генератор направляет электрический ток с соответствующими параметрами на катушку (индуктор). Когда сквозь деталь проходит поток заряженных частиц, это вызывает формирование магнитного поля.
Индукционные нагреватели работают по принципу образования электропотоков в проводниках. Магнитное поле может менять направление электромагнитных волн. В случае взаимодействия с металлическими изделиями, оно моментально нагревает их без контакта с индуктором. Этому способствуют вихревые токи.
Действительно ли можно сэкономить на индукционном нагреве
Популярность использования оборудования в быту обусловлена неплохой экономией электроэнергии. При установке на кухне плит, работающих по методу индукции, у владельца исчезает необходимость включения вентиляции, т.к. окружающее пространство практически не прогревается. Нагревательная поверхность не требует сложной очистки, поскольку она выполнена из стекла.
Из-за увеличенной скорости нагрева продолжительность работы системы сокращается, что тоже позволяет сэкономить на электричестве.
Преимущества самодельного устройства
Нагреватели имеют несколько важных достоинств. К ним относят следующие пункты:
- На поверхности агрегата не появляется накипь, поскольку при образовании вихревых токов происходит вибрация. Подобная особенность исключает дополнительные траты на очистку котлов.
- Теплогенератор отличается максимальной герметичностью, даже если он изготовлен своими руками. Вероятность протечек в котлах исключается, поскольку теплоноситель прогревается внутри трубы, а тепловая энергия передается посредством электромагнитного поля. В устройстве системы не предусмотрены разъемные соединения.
- Нагревательный прибор не нуждается в ремонте или обслуживании, поскольку он представляет собой трубку из меди. Для сравнения, спираль ТЭНа часто перегорает и требует замены.
- Во время работы инверторного оборудования отсутствует избыточный шум. При этом агрегат создает вибрации, но их частота настолько низкая, что они практически не ощущаются.
- Сборка и обслуживание системы не сопровождаются большими затратами. Это позволяет без особых сложностей и финансовых вложений соорудить обогревательный прибор в домашних условиях.
Недостатки нагревателя
Помимо положительных качеств, нагреватели индукционного типа имеют и недостатки. При размещении на небольшом расстоянии от оборудования можно получить ожоги, поскольку оно нагревает не только теплоноситель, но и окружающее пространство. В сравнении с газовыми котлами индукционные системы дороже в эксплуатации.
В число недостатков относится риск детонации из-за перегрева теплоносителя.
Проблема исключается путем монтажа датчика давления.
Что потребуется для изготовления своими руками
Для предстоящей сборки нагревателя из инверторного механизма потребуется подготовить:
- Корпус будущего агрегата. Его делают из полимерной трубы диаметром 50 мм, которая устойчива к нагреву.
- Нагревательный элемент. В качестве этой детали можно использовать проволоку из нержавеющего материала.
- Держатель для проволочных отрезков. Это металлическая сетка с небольшим сечением ячеек.
- Индукторная составляющая. Подойдет медная проволока.
- Система подачи жидкости. Для этих целей используется циркуляционный насос.
Кроме того, потребуется подготовить терморегулятор и элементы подключения к отопительному контуру, к которым относятся шаровые краны и переходники.
Схемы для изготовления нагревателя
Существуют готовые чертежи для сборки нагревательного оборудования. В зависимости от технических параметров и назначения устройства они различаются.
Классическая схема нагревателя функционирует по принципу «двойного полумоста», который оснащен 4 силовыми транзисторами и изолированным затвором. Для управления транзисторами используют микросхему IR2153.
Схема индукционного нагревателя.
Инструкция по изготовлению индукционного нагревателя
Чтобы осуществить переделку сварочного оборудования в индукционную печь, необходимо подготовить расходные детали и инструменты. Также важно подготовить чертежи и придерживаться инструкции по сборке.
Простое изделие на основе сварочного инвертора
Для изготовления простого, но эффективного нагревателя, можно использовать сварочный инвертор. Процесс изготовления достаточно простой:
- Для начала нужно взять толстостенную полимерную трубку.
- С торцевой части трубы стоит установить разводку и 2 вентиля, а внутрь засыпать куски стальной проволоки небольшого диаметра и размера (5 мм).
- Закрепить верхний вентиль.
- Выполнить 90 витков медной проволокой для сборки индуктора.
В качестве генератора используется сварочный аппарат, а роль нагревателя играет трубка с проволокой. Аппарат устанавливается в режим переменного тока с повышенной частотой.
Чтобы система работала корректно, останется подключить медную проволоку к плюсовому значению сварки и оценить работоспособность конструкции.
В процессе нагрева происходит излучение магнитного поля и прогревание проволоки вихревыми потоками. Это вызывает закипание жидкости.
Экспериментальная модель нагревателя мощностью 1600 Вт
Для сборки экспериментального оборудования мощностью 1,6 кВт потребуется подготовить металлическую трубу с толстыми стенками. Поскольку катушка без особых сложностей сможет прогреть любой материал, можно усовершенствовать нагреватель.
Корпус можно изготовить из пластиковой трубы, которая обладает большим диаметром, чем элемент системы отопления. Оптимальная длина изделия составляет 1 м, а внутреннее сечение – 50-80 мм.
Чтобы подключить нагреватель к оборудованию, потребуется закрепить переходники сверху и снизу корпуса. Нижняя секция закрывается решеткой, а затем внутрь корпуса помещают наполнитель из небольших металлических частиц.
Длина отрезков регулируется индивидуально без особых ограничений. При этом, чем выше показатель магнитного сопротивления стали, тем быстрее будет осуществляться нагрев.
Для обмотки подходит медный провод с изоляцией сечением 1-1,5 мм. Использование более толстой проволоки неоправданно, поскольку это усложнит плотное расположение витков.
Из-за повышенной пожарной безопасности метод индукции применяется в металлургии. Собрать нагреватель для обработки металлических заготовок можно из подручных средств. Для предстоящих работ потребуется подготовить:
- 12-вольтный аккумулятор.
- Медную обмоточную проволоку.
- Пленочные конденсаторы.
- Транзисторы и диоды.
- Кольца блока питания от персонального компьютера.
Индукционная печь из сварочного инвертора.
Последующая сборка производится по такой инструкции:
- На радиаторы охлаждения устанавливаются транзисторы. Во время использования прибор интенсивно нагревается, поэтому лучше подготовить крупные радиаторы.
- Изготавливаются дроссели. Для их сборки применяют медную проволоку и кольца блока питания ПК. Важно следить, чтобы межвитковое расстояние оставалось идентичным на каждом отрезке.
- Собирается конденсаторная батарея. Емкость элемента питания должна составлять 4,7 мкФ.
- Изготавливается обмотка. Диаметр медной проволоки должен составлять 2 мм. Потребуется выполнить 8 витков, чтобы во внутреннем пространстве поместились все обрабатываемые детали.
На последнем этапе подключается аккумулятор. Ток регулируется во время изготовления печи. Для этого достаточно поменять количество витков.
Если планируется частая и интенсивная эксплуатация оборудования, лучше подготовить блок питания повышенной мощности.
Кроме того, следует предусмотреть систему отвода тепла и вентиляции, т.к. во время работы печь сильно нагревается.
Нагреватель для воды
Использование такого агрегата в частном доме позволит организовать бесперебойную подачу ГВС или обогрев помещения. Система расходует много электрической энергии, но обладает простой схемой сборки и отсутствием сложностей в обслуживании. Предстоящая сборка начинается с подготовки:
- Сварочного инвертора.
- Теплоизолятора (подойдет керамзит).
- Проволоки из меди и стали.
- Отрезка пластиковой трубы с толстыми стенками.
- Трубок разного диаметра.
На первом этапе начинается изготовление котла. Его можно соорудить из 2 трубок разного сечения, которые вставляются друг в друга с выдерживанием зазора 20-25 мм.
Дальше производится приваривание концов колец и подсоединение к общей системе отопления. Во внешнюю стенку нужно вварить выходную и входную трубки.
Затем изготавливается обмотка, которая в точности повторяет форму котла. Всего нужно выполнить 35-40 витков, соблюдая равное межвитковое расстояние.
На последнем этапе собирается защитный корпус, который делается из диэлектрического материала, и подключается инверторный аппарат и теплоноситель.
Правильно собранная конструкция сможет прослужить в течение 20-25 лет без ремонта и замены расходных деталей.
Особенности эксплуатации самоделки
При благополучной сборке индукционного устройства нужно научиться правильно его использовать. Каждая система представляет опасность, т.к. не умеет автоматически регулировать интенсивность нагрева теплоносителя. Проблема решается посредством некоторых доработок, которые сводятся к монтажу и подсоединению дополнительных механизмов.
Индукционная катушка
Рабочая катушка состоит из проволоки диаметром 3.3 мм. Рекомендуется изготавливать ее из медной трубы, в которую можно интегрировать примитивный контур охлаждения. В процессе работы катушка подвергается интенсивного нагреву. Поэтому нужно собирать ее из устойчивых к температурному воздействию материалов.
Индукционная катушка должна быть из материалов, устойчивых к температурному воздействию.
Модуль резонансного конденсатора
Для сборки резонансного конденсатора, который напоминает небольшую батарею, нужно использовать 23 небольших конденсатора. Емкость детали составит 2,3 мкФ. Допускается применение конденсаторов емкостью 100 нФ.
Такие типы не предназначаются для схемы индукционного нагревателя, но они хорошо справляются со своей задачей.
Установка индукционного нагревателя
Чтобы исключить перегрев индукционного нагревателя и деформацию трубы из пластика, нужно предусмотреть термостат и подключить его к системе аварийного отключения.
Специалисты применяют для таких целей терморегуляторы с реле и датчиками. Такие элементы умеют отключать цепь при нагреве теплоносителя до требуемой температуры.
Безопасность устройства
Для повышения безопасности самодельного нагревателя необходимо выполнить такие требования:
- Организовать качественную изоляцию. Все проводники и соединения нужно тщательно заизолировать, чтобы исключить риск получения удара током.
- Правильно выбрать отопительную систему. Индукционные системы не подходят для совместного использования с оборудованием, которое применяет принцип естественной циркуляции воды. Для этих систем нужен водяной насос.
- Выбрать подходящее размещение устройства. Прибор должен находиться на расстоянии от 40 см от стен и предметов интерьера, и на расстоянии от 80 см от потолка или напольного покрытия.
- Установить регулировочные клапаны и манометры. Такие средства безопасности защитят оборудование от скачков давления. Кроме того, нужно предусмотреть систему стравливания воздуха.
Индукционная печь своими руками из микроволновки grsk-omega.ru
Обновлено:
2016-08-14
Индукционная печь хорошо знакома тем, чья профессия или хобби связаны с плавкой, обработкой металла. Их повсеместно используют на металлургических предприятиях. Но при этом такие печки вполне можно использовать для хозяйственных нужд. Скажем больше, данное оборудование при правильном подходе изготавливается своими руками. Однако сперва разберемся в принципе работы и конструкции.
Базовые принципы
Плавильная печь в данном случае работает на базе явления магнитной индукции. И тут имеется несколько компонентов. Индуктор – это важнейшая составляющая этого приспособления. Он представляет собой катушку, проводниками в которой служат не обычные провода, а медные трубки.
Это требование выставляет сама конструкция плавильных печей. Ток, который проходит в индукторе, порождает магнитное поле, оказывающее воздействие на тигель, внутри которого расположен металл.
В этом случае на материал возложена роль вторичной трансформаторной обмотки, то есть сквозь него проходит ток, нагревающий его. Так и осуществляется плавление, даже если сделана индукционная печь своими руками. Как построить такой тип печи и увеличить ее эффективность? Это важный вопрос, на который есть ответ.
Использование токов повышенной частоты позволяет заметно увеличить степень эффективности оборудования. Для этого уместно использовать специальные блоки питания.
Необходимые знания
Электромагнитное поле действует на все живое. В качестве примера можно привести мясо в микроволновке. Поэтому стоит позаботиться о безопасности. И, неважно, вы собираете печь и тестируете ее или работаете на ней. Есть такой показатель, как плотность потока энергии. Так вот он зависит от именно от электромагнитного поля. И чем выше частота излучения, тем хуже человеческому организму.
Во многих странах приняты меры безопасности, в которых учитывается плотность потока энергии. Есть разработанные допустимые пределы. Это 1-30 мВт на 1 м² тела человека. Эти показатели действуют, если облучение происходит не больше одного часа в сутки. Кстати, установленный оцинкованный экран снижает плотность потолка в 50 раз.
Особенности индукционных печей
Этот тип оборудования обладает определенными характерными чертами, которые являются как преимуществами, так и недостатками.
Так как распределение металла должно быть равномерным, полученный материал характеризуется хорошей однородной массой. Этот тип печи работает за счет транспортировки энергии по зонам, при этом представлена и функция фокусировки энергии.
Для использования доступны такие параметры, как емкость, рабочая частота и способ футеровки, а также регуляция температуры, при которой происходит плавление металла, что заметно облегчает рабочий процесс.
Имеющийся технологический потенциал печи создает высокий темп плавки, устройства являются экологически чистыми, совершенно безопасными для человека и готовыми к работе в любой момент.
Самым заметным недостатком такого оборудования является сложность его чистки. Так как нагревание шлака происходит исключительно за счет тепла, выделяемого металлом, этой температуры не хватает для обеспечения его полноценного использования.
Высокая разница в температуре металла и шлака не позволяет делать процесс удаления отходов максимально простым. В качестве еще одного недостатка принято выделять зазор, из-за которого требуется всегда уменьшать толщину футеровки.
Из-за таких действий спустя некоторое время она может оказаться неисправной.
Индукционные печи своими руками
Этой темой часто интересуются любители радио-проектирования и радио-технологий. Сейчас становится понятно, что создавать индукционные печи своими руками – это вполне реально, а сделать это удавалось очень многим.
Однако для создания подобного оборудования требуется воплотить в жизнь действие электрической схемы, которая содержала бы прописанные действия самой печи. Подобные решения требуют привлечения высокочастотных генераторов, способных производить волновые колебания.
Простая индукционная печь своими руками по схеме может быть построена с использованием четырех электронных ламп в комбинации с одной неоновой, подающей сигнал о том, что система готова к работе.
В данном случае ручка конденсатора переменного тока размещается не внутри прибора. Благодаря этому может быть создана индукционная печь своими руками.
Схема прибора подробно описывает расположение каждого отдельного элемента.
Убедиться в том, что устройство получилось достаточно мощным, можно, если воспользоваться отверткой, которая должна доходить до раскаленного состояния буквально за несколько секунд.
Схема универсального генератора
Современные индукционные печи работают на более совершенных элементах – микросхемах и транзисторах. Большим успехом пользуется универсальная схема двухтактного генератора, развивающая мощность до 1 кВт. Принцип работы основан на генераторе независимого возбуждения, при этом индуктор включен в режиме моста (рис. 4).
Достоинства двухтактного генератора, собранного по такой схеме:
- Возможность работать на 2-й и 3-й моде помимо основной.
- Присутствует режим поверхностного нагрева.
- Диапазон регулирования 10-10000 кГц.
- Мягкий спектр излучения во всем диапазоне.
- Не нуждается в дополнительной защите.
Перестройка частоты осуществляется с помощью переменного резистора R2. Рабочий диапазон частот задается конденсаторами C1 и C2. Межкаскадный согласующий трансформатор должен быть с кольцевым ферритовым сердечником сечением не менее 2 кв.см. Намотка трансформатора делается из эмалированного провода сечением 0,8-1,2 мм. Транзисторы нужно усадить на общий радиатор площадью от 400 кв.см.
Особенности
- Если вами создается индукционная печь своими руками, принцип работы и сборка которой изучается и производится по соответствующей схеме, вам стоит знать, что на скорость плавления в данном случае может повлиять один или несколько факторов, перечисленных далее:
- — импульсная частота;
- — гистерезисные потери;
- — генераторная мощность;
- — период выхода тепла наружу;
- — потери, связанные с возникновением вихревых токов.
Если вами собирается печь индукционная своими руками, то при использовании ламп требуется помнить, что их мощность должна распределяться так, чтобы четырех штук было достаточно. При использовании выпрямителя получится сеть примерно в 220 В.
Принцип работы
Начинать сборку надо, разобравшись в принципе работы и устройстве прибора. С этого и начнем. Обратите внимание на рисунок выше, по нему и будем разбираться.
В состав прибора входят:
- Генератор G, который создает переменный ток.
- Конденсатор С вместе с катушкой L создает колебательный контур, который и обеспечивает установку высокой температурой.
Внимание! В некоторых конструкциях используется так называемый автоколебательный генератор. Это дает возможность убрать из схемы конденсатор.
Электромагнитное поле достаточно широкое. И даже многоступенчатость преобразования энергии, которое присутствует в самодельных индукционных печах, обладает максимальным КПД – до 100%.
Тигельная печь
Дырокол для бумаги — новая жизнь всем знакомой вещи
Бытовое применение печей
В быту такие устройства используются достаточно редко, хотя подобные технологии можно встретить в отопительных системах. Их можно увидеть в форме микроволновых печей, электрических духовок и индукционных плит. В среде новых технологий данная разработка нашла широкое применение.
К примеру, использование вихревых индукционных токов в индукционных плитах позволяет готовить огромное разнообразие блюд. Так как для разогрева им требуется очень мало времени, конфорку нельзя включить, если на ней ничего не стоит.
Однако для использования таких особых и полезных плит требуется специальная посуда.
Процесс сборки
Тигельная печь индукционная своими руками состоит из индуктора, который представляет собой соленоид, произведенный из водоохлаждаемой медной трубки и тигля, который может быть изготовлен из керамических материалов, а иногда из стали, графита и прочих.
В таком устройстве можно выплавлять чугун, сталь, драгоценные металлы, алюминий, медь, магний. Индукционные печи своими руками изготавливаются с емкостью тигля от пары килограмм до нескольких тонн. Они могут быть вакуумными, газонаполненными, открытыми и компрессорными.
Питаются печи токами высокой, средней и низкой частоты.
Итак, если вас интересует индукционная печь своими руками, схема предполагает использование таких основных узлов: плавильной ванны и индукционной единицы, в которую включаются подовый камень, индуктор и магнитный сердечник.
Канальная печь отличается от тигельной тем, что электромагнитная энергия преобразуется в тепловую в канале тепловыделения, в котором постоянно должно быть электропроводящее тело.
Чтобы произвести первичный пуск канальной печи, в нее заливают расплавленный металл либо вставляют шаблон из материала, способного расправиться в печи.
Когда плавка завершается, металл сливается не полностью, а остается «болото», предназначенное для заполнения канала тепловыделения для пуска в будущем. Если собирается печь индукционная своими руками, то для облегчения замены подового камня для оборудования он делается отъемным.
Самодельная электропечь для плавки металлов
Если у вас есть необходимость в отжиге металлов, создании керамики, плавке цветных и том числе драгоценных металлов, можете соорудить себе вот такую простую печь.
Большинство подобных печей стоит кучу денег, по словам автора, в его регионе цены находятся в районе 600-12000 $ за печь. В нашем же случае печь обошлась всего в 120 $, не считая регулятора температуры.
Эта небольшая печь может выдавать температуру в районе 1100 o C.
- Собирается самоделка просто, все детали стоят не дорого, а еще их можно быстро заменить при неисправности печи.
- Некоторые умельцы умудряются изготавливать в таких печах обручальные кольца, серьги, различные талисманы, кастеты и многое другое.
- Материалы и инструменты для самоделки: