Скорость коррозии – многофакторный параметр, который зависит как от внешних условий среды, так и от внутренних свойств материала.
В нормативно-технической документации существуют определенные ограничения по допустимым значениям разрушения металла при эксплуатации оборудования и строительных конструкций для обеспечения их безаварийной работы.
В проектировании не существует универсального метода определения скорости коррозии. Это связано со сложностью учета всех факторов. Наиболее надежным методом является изучение истории эксплуатации объекта.
Критерии
В настоящее время в проектировании техники используют несколько показателей скорости коррозии:
- По прямому способу оценки: уменьшение массы металлической детали на единицу поверхности – весовой показатель (измеряется в граммах на 1 м2 за 1 час); глубина повреждений (или проницаемость коррозионного процесса), мм/год; количество выделяющейся газовой фазы продуктов коррозии; продолжительность времени, в течение которого появляется первое коррозионное повреждение; число центров коррозии на единицу площади поверхности, появившихся за определенный срок.
- По косвенной оценке: сила тока электрохимической коррозии; электрическое сопротивление; изменение физико-механических характеристик.
Первый показатель по прямому методу оценки является наиболее распространенным.
Расчетные формулы
- В общем случае весовые потери, определяющие скорость коррозии металла, находят по следующей формуле:
- где q – уменьшение массы металла, г;
- S – площадь поверхности, с которой произошел перенос материала, м2;
- t – период времени, ч.
- Для листового проката и изготовленных из него обечаек определяют глубинный показатель (мм/год):
- m – глубина проникновения коррозии в металл.
- Между первым и вторым показателями, описанными выше, существует следующая зависимость:
- где ρ – плотность материала.
Основные факторы, влияющие на скорость коррозии
На скорость разрушения металла влияют следующие группы факторов:
- внутренние, связанные с физико-химической природой материала (фазовая структура, химический состав, шероховатость поверхности детали, остаточные и рабочие напряжения в материале и другие);
- внешние (окружающие условия, скорость движения коррозионно-активной среды, температура, состав атмосферы, наличие ингибиторов или стимуляторов и другие);
- механические (развитие коррозионных трещин, разрушение металла под действием циклических нагрузок, кавитационная и фреттинг-коррозия);
- конструктивные особенности (выбор марки металла, наличие зазоров между деталями, требования к шероховатости).
Физико-химические свойства
Наибольшее значение среди внутренних факторов коррозии имеют следующие:
- Термодинамическая устойчивость. Для ее определения в водных растворах применяют справочные диаграммы Пурбе, по оси абсцисс которых откладывается pH среды, а по оси ординат – окислительно-восстановительный потенциал. Сдвиг потенциала в положительную сторону означает большую устойчивость материала. Ориентировочно она определяется как нормальный равновесный потенциал металла. В реальности материалы корродируют с различной скоростью.
- Положение атома в периодической таблице химических элементов. Металлы, наиболее подверженные коррозии, – это щелочные и щелочноземельные. Скорость коррозии снижается при увеличении атомного номера.
- Кристаллическая структура. Она оказывает неоднозначное влияние на разрушение. Крупнозернистая структура сама по себе не приводит к росту коррозии, но благоприятна для развития межкристаллитного избирательного разрушения границ зерна. Металлы и сплавы с однородным распределением фаз корродируют равномерно, а с неоднородным – по очаговому механизму. Взаимное расположение фаз выполняет функцию анода и катода в агрессивной среде.
- Энергетическая неоднородность атомов в кристаллической решетке. Атомы с наибольшей энергией расположены в углах граней микронеровностей и являются активными центрами растворения при химической коррозии. Поэтому тщательная механическая обработка металлических деталей (шлифовка, полировка, доводка) повышает коррозионностойкость. Данный эффект объясняется также формированием более плотных и сплошных оксидных пленок на гладких поверхностях.
Влияние кислотности среды
В процессе химической коррозии концентрация ионов водорода оказывает влияние на следующие моменты:
- растворимость продуктов коррозии;
- формирование защитных оксидных пленок;
- скорость разрушения металла.
При рН в интервале значений 4-10 единиц (кислый раствор) коррозия железа зависит от интенсивности проникновения кислорода к поверхности объекта. В щелочных растворах скорость коррозии сначала уменьшается из-за пассивации поверхности, а затем, при рН>13 увеличивается в результате растворения защитной оксидной пленки.
Для каждого вида металла существует своя зависимость интенсивности разрушения от кислотности раствора. Благородные металлы (Pt, Ag, Au) устойчивы к коррозии в кислой среде. Zn, Al быстро разрушаются как в кислотах, так и в щелочах. Ni и Cd устойчивы к щелочам, но легко корродируют в кислотах.
Состав и концентрация нейтральных растворов
Скорость коррозии в нейтральных растворах зависит в большей степени от свойств соли и ее концентрации:
- При гидролизе солей в коррозионной среде образуются ионы, которые действуют как активаторы или замедлители (ингибиторы) разрушения металла.
- Те соединения, которые увеличивают pH, повышают также скорость деструктивного процесса (например, кальцинированная сода), а те, которые снижают кислотность, – уменьшают ее (хлористый аммоний).
- При наличии хлоридов и сульфатов в растворе разрушение активизируется до достижения некоторой концентрации солей (что объясняется усилением анодного процесса под влиянием ионов хлора и серы), а затем постепенно снижается из-за уменьшения растворимости кислорода.
Некоторые виды солей способны образовывать труднорастворимую пленку (например, фосфорнокислое железо). Это способствует защите металла от дальнейшего разрушения. Данное свойство используется при применении нейтрализаторов ржавчины.
Замедлители коррозии
Замедлители (или ингибиторы) коррозии различаются по механизму действия на окислительно-восстановительный процесс:
- Анодные. Благодаря им образуется пассивная пленка. К данной группе относятся соединения на основе хроматов и бихроматов, нитратов и нитритов. Последний тип ингибиторов применяется для межоперационной защиты деталей. При использовании анодных замедлителей коррозии необходимо предварительно определить их минимальную защитную концентрацию, так как добавление в небольших количествах может привести к увеличению скорости разрушения.
- Катодные. Механизм их действия основан на снижении концентрации кислорода и соответственно, замедлении катодного процесса.
- Экранирующие. Данные ингибиторы изолируют поверхность металла с помощью образования нерастворимых соединений, отлагающихся в виде защитного слоя.
К последней группе относятся нейтрализаторы ржавчины, которые используются также для очистки от окислов. В их состав, как правило, входит ортофосфорная кислота.
Под ее влиянием происходит фосфатирование металла – образование прочного защитного слоя нерастворимых фосфатов. Нейтрализаторы наносят пульверизатором или валиком. Через 25-30 минут поверхность приобретает бело-серый цвет.
После высыхания состава наносят лакокрасочные материалы.
Механическое воздействие
Повышению коррозии в агрессивной среде способствуют такие типы механического воздействия, как:
- Внутренние (при формовании или термообработке) и внешние (под воздействием приложенной извне нагрузки) напряжения. В результате возникает электрохимическая неоднородность, происходит снижение термодинамической устойчивости материала и формируется коррозионное растрескивание. Особенно быстро происходит разрушение при растягивающих нагрузках (трещины образуются в перпендикулярных плоскостях) в присутствии анионов окислителей, например, NaCl. Типичным примером устройств, подверженных такому типу разрушения, являются детали паровых котлов.
- Знакопеременное динамическое воздействие, вибрации (коррозионная усталость). Происходит интенсивное снижение предела усталости, образуются множественные микротрещины, которые затем сливаются в одну крупную. Число циклов до разрушения в большей степени зависит от химического и фазового состава металлов и сплавов. Такой коррозии подвержены оси насосов, рессоры, лопатки турбин и другие элементы оборудования.
- Трение деталей. Быстрое корродирование обусловлено механическим износом защитных пленок на поверхности детали и химическим взаимодействием со средой. В жидкости скорость разрушения ниже, чем на воздухе.
- Кавитационное ударное воздействие. Кавитация возникает при нарушении сплошности потока жидкости в результате образования вакуумных пузырей, которые схлопываются и создают пульсирующее воздействие. В результате возникают глубокие повреждения локального характера. Данный тип коррозии часто наблюдается в химических аппаратах.
Конструктивные факторы
При конструировании элементов, работающих в агрессивных условиях, необходимо учитывать, что скорость коррозии возрастает в следующих случаях:
- при контакте разнородных металлов (чем больше разница электродного потенциала между ними, тем выше сила тока электрохимического процесса разрушения);
- при наличии концентраторов механических напряжений (канавки, пазы, отверстия и другие);
- при низкой чистоте обработанной поверхности, так как при этом возникают локальные короткозамкнутые гальванические пары;
- при значительной разнице температуры отдельных частей аппарата (образуются термогальванические элементы);
- при наличии застойных зон (щели, зазоры);
- при формировании остаточных напряжений, особенно в сварных соединениях (для их устранения необходимо предусмотреть термическую обработку – отжиг).
Методы оценки
Существует несколько способов оценки скорости разрушения металлов в агрессивных средах:
- Лабораторные – испытания образцов в искусственно смоделированных условиях, близких к реальным. Их преимуществом является то, что они позволяют сократить сроки исследования.
- Полевые – проводятся в естественных условиях. Занимают длительное время. Преимуществом такого метода является получение информации о свойствах металла в условиях дальнейшей эксплуатации.
- Натурные – испытания готовых металлических объектов в естественной среде.
К вопросу о прогнозировании развития коррозионных процессов в конструкциях стальных свай, работающих в контакте с грунтом
АННОТАЦИЯ
Предметом обсуждения в данной статье является прогнозирование коррозионных процессов в конструкциях стальных свай, работающих в контакте с грунтом. Проблема, с которой пришлось столкнуться на практике — несоблюдение требований проекта по антикоррозийной обработке наружной поверхности свай, выполненных из стальных труб.
Объём погруженных свай и степень реализации надземных частей эстакад и проложенных по ним трубопроводов заставили озадачиться поиском ответа на вопрос — возможна ли эксплуатация свай в такой реализации в течение расчётного срока службы 25 лет? При прочих равных условиях определяющим фактором для нахождения ответа на поставленный вопрос является показатель скорости коррозии металла стенок свай.
Целью статьи является нахождение ответа на вопрос, прозвучавший выше.
ABSTRACT
The article is focused on prediction of corrosion processes in steel piles contacting with the ground. The practice revealed that the project requirements for anticorrosion treatment of the outer surface of steel piles are often not fulfilled.
The amount of piles in position and the degree of readiness of the aboveground parts of the rack with the pipelines caused the search for the answer whether such operation of piles during the estimated service life of 25 years is possible.
All other conditions being equal, the key factor is the corrosion rate of pile walls. The article searched for the answer to the given question.
Ключевые слова: сваи, коррозия, фундамент, прогнозирование, расчётный срок службы.
Keywords: piles, corrosion, foundation, prediction, estimated service life.
Основные требования действующих норм, в частности СП 28.13330.2017, однозначно предписывают выполнение изоляционного покрытия поверхности стальных конструкций, эксплуатирующихся в грунтовой среде.
Данное требование распространяется и на сваи-оболочки из труб стальных, широко использующихся в качестве фундаментов под объекты нефтегазодобычи.
Очевидно, что с точки зрения ГОСТ 17467-79*, отсутствие защитного покрытия на поверхности стальных свай-оболочек является неустранимым дефектом.
Однако вопрос отнесения данного дефекта к значительному или критическому представляется открытым, так как, с одной стороны, действующие российские нормы не допускают данный дефект, но, с другой стороны, имеется опыт зарубежного проектирования, допускающий использование стальных свай без дополнительной защиты металла.
Как отличить цинк от других металлов
Причиной проведения настоящего исследования является факт выявления вышеописанного дефекта на свайном поле фундаментов эстакад обустройства одной из промышленных площадок Иркутской области. Сочетание значительного количества свай (около 500 шт.
) с высокой степенью готовности надземной части эстакад и размещённых на них трубопроводов предопределило вопрос о возможности использования объекта с выявленным дефектом в пределах расчётного срока службы 25 лет, назначенного проектной документацией.
Целью исследования являлось прогнозирование величины коррозионного износа свай из стальных труб без антикоррозионного покрытия и несущей способности свай по материалу на расчётный срок службы сооружения 25 лет, предоставление прогнозных данных генеральному проектировщику для принятия решений по долговечности конструкций свай. Работы по обследованию проводились в июле-сентябре 2018 г., в т.ч. полевые работы – в июле 2018 г.
Для достижения данной цели было предложено выполнять исследование по следующей укрупнённой методике:
- Выполняется разделение грунтовых условий нахождения ствола сваи по следующим критериям: вид грунта, наличие грунтовой воды, в т.ч. верховодки, наличие уплотнения насыпной части, наличие мерзлоты;
- По Еврокоду 3, Р625-87, иным публикационным официальным источникам подбираются (и обосновываются при подборе) соответствующие значения скорости односторонней коррозии трубной стали с параллельной идентификацией применённой стали по химическому составу фотоэлектрическим и спектрографическим методами по ГОСТ 18895-97 и ГОСТ 27809-95;
- Методом средневзвешенных значений производится назначение расчётной скорости коррозии для выделенных участков сваи по длине её ствола;
- Проверка назначенных параметров полевыми испытаниями ультразвуковой толщинометрией по ГОСТ Р ИСО 16809-2015 оголенных шурфами стенок свай в пределах высоты шурфа и над уровнем земли прилегающей территории. При этом к толщинометрии предлагалось добавить испытания образцов-свидетелей, погруженных в грунтовые условия на 2, 5 лет, с целью проверки достоверности расчётного обоснования. Получение аппроксимирующей функции скорости коррозии в зависимости от времени для обследованных свай и расчётный прогноз коррозионного износа свай при сохранении условий эксплуатации;
Фундаменты
- Одним из наиболее существенных вопросов, возникающих при применении металлических конструкций в строительстве, является вопрос сопротивления таких конструкций процессам коррозии и связанная с ним долговечность зданий и сооружений.
- В настоящее время существует комплекс взаимоувязанных межгосударственных стандартов, устанавливающих общие требования, правила, нормы и методы защиты изделий, конструкций и материалов от коррозии, старения и биоповреждений на всех стадиях жизненного цикла изделий и конструкций исследование и обоснование разработки (Стандарты ЕСЗКС – Единая система защиты от коррозии и старения материалов и изделий) [1, 2, 3, 4].
- Назначение ЕСЗКС – обеспечение и сохранение заданного уровня качества изделий, конструкций и материалов средствами и методами защиты от коррозии, старения и биоповреждений с учетом требований безопасности, экологии, совместимости и взаимозаменяемости, а также конкурентной способности изделий и конструкций на мировом рынке.
- Помимо стандартов ЕСЗКС, требования к коррозионной стойкости устанавливаются также нормативами на отдельные виды конструкций и их частей в зависимости от действующих коррозионных факторов.
Для подземных сооружений (в т.ч. фундаментов), критериями опасности коррозии являются:
- коррозионная агрессивность среды ( грунтов , грунтовых и других вод) по отношению к металлу сооружения (включая биокоррозионную агрессивность грунтов );
- опасное действие блуждающего постоянного и переменного токов.
Исходя из этих критериев, следует, что скорость коррозии металла в грунте зависит от:
- pH грунта. Чем ниже pH (кислая среда), тем скорость коррозии выше.
- электрического сопротивления грунта. Чем выше сопротивление грунта, тем скорость коррозии медленнее.
Также необходимо учитывать наличие антикоррозионного покрытия, препятствующего коррозии.
Исследования по определению электрического сопротивления грунта с учетом возможного повышения влажности и изменения температуры проводились Федеральным дорожным агентством и отражены в руководстве для инженеров транспорта (табл.1).
Электрические сопротивления грунтов
Таблица 1
Тип грунта | Сопротивление, Ом |
Глина | 100 |
Суглинок | 250 |
Супесь | 500 |
Песок | 1500 |
Обломочный грунт | 5000 |
Скальный грунт | >5000 |
Определение pH грунтов возможно на основе исследований института стали и сплавов, согласно которым значение pH грунтов составляет от 6,5 до 8.
Таким образом, зная показатели электрического сопротивления и pH грунта, возможно прогнозирование срока службы металлической винтовой сваи для заданных грунтовых условий.
Ориентировочные данные по скорости коррозии металлов в различных типах грунтов также имеются в зарубежных нормах проектирования (табл. 2).
Скорость коррозии стали в грунте
Таблица 2
Скорость коррозии, мм/год (10-6 м/год) | Тип грунта (с наличием или отсутствием грунтовых вод) |
0.012 мм/год (12∙10-6 м/год) | Сланцевые глина, отложения, илистые (песок, структуры ненарушенной> |
0.030 мм/год (30∙10-6 м/год) | Грунт ненарушенной структуры (песок, илистые отложения, глина, сланцевые отложения) |
0.030 мм/год (30∙10-6 м/год ) | Агрессивные грунты (торф, болото) |
0.020 мм/год (20∙10-6 м/год) | Песок, илистые отложения, глина, сланцевые отложения |
0.050 мм/год (50∙10-6 м/год) | Зола, шлаки |
В качестве примера определения срока службы металлической винтовой сваи рассмотрим свайный фундамент, устраиваемый под конструкцию пола Грановитой Палаты Московского Кремля компанией ФУНДЭКС.
Свая имеет защитное антикоррозионное покрытие на основе эпоксидных композиций. Покрытие сваи обладает повышенной стойкостью к почвенной коррозии. Срок службы данного покрытия согласно ЕСЗКС составляет 50 лет.
Произведем расчет стали при действии коррозионных процессов.
Скорость коррозии для техногенных грунтов составляет ок. 0.030 мм/год. При условии толщины стали лопасти 5 мм срок коррозии составит от 5/0.030 = 166, 66 лет.
С учетом сроков разрушения защитного покрытия расчетный срок службы сваи по скорости коррозии лопасти составляет для данного типа грунтовой обстановки не менее 200 лет.
Библиографический указатель
Почвенная коррозия
Почвенная коррозия – разрушение металла в почве. Ежегодные потери металла вследствии протекания почвенной коррозии достигают 4%.
Почвенной коррозии подвергаются различного назначения трубопроводы, резервуары, сваи, опоры, кабеля, обсадные трубы скважин, всякого рода металлоконструкции, эксплуатируемые в почве.
Почва – очень агрессивная среда. Она состоит из множества химических соединений и элементов, многие из них только ускоряют коррозионный процесс. Агрессивность почвы (грунта) зависит от некоторых факторов: влажность, аэрация, пористость, рН, наличие растворенных солей, электропроводность.
- Классификация грунтов по коррозионной активности:
- — высококоррозионные грунты (тяжелые глинистые, которые длительное время удерживают влагу);
- — среднекоррозионные грунты;
- — практически инертные грунты в коррозионном отношении (песчаные почвы).
Влияние различных факторов на почвенную коррозию
Влияние влажности грунта на почвенную коррозию металла
Влага в почве присутствует почти везде. Где-то ее больше, а где-то меньше. Именно влажность грунта очень сильно влияет на скорость почвенной коррозии, превращая почву в электролит.
Она же вызывает электрохимическую коррозию находящихся в грунте металлоконструкций. Вода в грунте может быть: капиллярной, гравитационной, связанной. Капиллярная влага собирается в порах грунта. Высота подъема ее по капилляру зависит от диаметра пор.
Капиллярная влага сильно влияет на скорость почвенной коррозии. Связанная влага на скорость почвенной коррозии не влияет, т.к. находится в виде гидратированных химических соединений.
Под действием силы тяжести в грунтах и почвах постоянно перемещается вода, которая оказывает, как и капиллярная, значительное влияние на скорость почвенной коррозии.
Максимальная скорость почвенной коррозии наблюдается при влажности грунта 15 – 25%. Это объясняется уменьшением омического сопротивления коррозионных элементов.
С повышением влажности почвы анодный процесс проходит легче (за счет затруднения пассивации поверхности металла), а катодный – труднее (грунт насыщается влагой, затрудняется его аэрация).
Влажность, при которой наблюдается наибольшая скорость коррозии, называют критическим показателем влаги для грунта. Для глинистых грунтов он составляет около 12 – 25%, для песчаных 10 – 20%.
Пористость (воздухопроницаемость) грунта
Пористость (воздухопроницаемость) грунта влияет на способность длительное время сохранять влагу и аэрацию. Воздухопроницаемость зависит от состава грунта, его плотности, влажности.
Грунты, хорошо пропускающие воздух (песчаные), более агрессивны. В песчаных грунтах катодный процесс протекает с облегчением.
На практике бывают случаи, когда подземный трубопровод большой протяженности проходит через разного вида грунты.
Если он проходит последовательно в песчаной, а потом глинистой почве, где условия аэрации металлической поверхности очень различаются, то возникают аэрационные микрогальванические коррозионные зоны.
Поверхность трубопровода в песчаной зоне будет играть роль катода, а глинистой – анода. Разрушение металла будет происходить на анодных участках, где затруднен доступ кислорода к поверхности. Интересно, что катодная и анодная зоны могут находится на расстоянии больше сотни метров.
При этом коррозионный процесс будет отличаться омическим торможением.
Кислотность грунта
Для большинства грунтов значение рН составляет 6,0 – 7,5. Высококоррозионными являются почвы, рН которых сильно отличается от данного значения.
К ним относятся торфяные, болотистые грунты, значение рН которых составляет 3 – 6. А также щелочные солончаки и суглинки, с рН почвы 7,5 – 9,5.
Очень агрессивной средой по отношению к сталям, свинцу, меди, цинку является чернозем, содержащий органические кислоты.
Одна из самых агрессивных почв – подзол. Сталь в подзоле корродирует в 5 раз быстрее, чем в других грунтах.
Кислотность грунтов ускоряет почвенную коррозию, т.к. вторичные продукты коррозии становятся более растворимы, существует возможность дополнительной катодной деполяризации ионами водорода.
Электропроводность грунта
Электропроводность грунта зависит от его минералогического состава, количества влаги и солей в почве. Каждый вид грунта имеет свое определенное значение электропроводности, оно может колебаться от нескольких единиц до нескольких сотен Ом на метр.
Соленость грунта оказывает огромное влияние на его электропроводность. С увеличением содержания солей легче протекают анодный и катодный электродные процессы, что снижает электросопротивление.
Почти всегда определив электропроводность грунта можно судить о его степени коррозионной агрессивности (для стали, чугуна). Исключение составляют водонасыщенные почвы.
Минералогический состав и неоднородность грунта
Минералогический состав и неоднородность грунта оказывают большое влияние (как и влажность) на омическое сопротивление. В глинисто-песчаном влажном грунте удельное сопротивление почвы составляет около 900 Ом•см, а в таком же грунте, только сухом – 240000 Ом•см. С уменьшением удельного сопротивления грунта его агрессивность увеличивается.
Минерализация почвы может колебаться в пределах 10 – 300 мг/л.
Неоднородность грунта приводит к возникновению гальванопар, которые только усиливают почвенную коррозию, делают разрушение неравномерным.
Влияние температуры грунта на почвенную коррозию металлов. Температура может колебаться в очень больших пределах. Зимой, когда свободная вода, заполняющая капилляры в почве замерзает — скорость почвенной коррозии немного уменьшается. Это также связано с плохой аэрацией поверхности металла.
В летнее время, когда на улице стоит жара, скорость почвенной коррозии может замедлятся также, что объясняется высыханием почвы. Самый большой ущерб почвенная коррозия наносит в межсезонье, когда грунт достаточно влажный, созданы оптимальные условия для протекания коррозионного процесса.
Температура грунта зависит от времени года, географической широты, времени суток, погоды.
Значительное различие температур на конструкции, имеющей большую протяженность (подземный трубопровод) может быть причиной образования термогальванических коррозионных пар, которые обеспечивают усиление местной почвенной коррозии.
Влияние микроорганизмов на почвенную коррозию металлов
В почве живут и развиваются два вида микроорганизмов: аэробные (могут существовать только при наличии кислорода), анаэробные (для обеспечения их жизнедеятельности кислород не требуется).
Они оказывают огромное влияние на почвенную коррозию металлов.
Почвенная коррозия металлических сооружений, вызванная жизнедеятельностью живых микроорганизмов носит название биологическая (биокоррозия) либо биохимическая.
Аэробные микроорганизмы (почвенные) существуют двух видов: одни принимают непосредственное участие в осаждении железа, другие – окисляют серу. Оптимальными условиями для существования анаэробных серобактерий является кислая среда (3 – 6 рН). Серобактерии окисляют сероводород в серу, а потом — серную кислоту по следующим уравнениям:
2H2S + O2 = 2H2O + S2;
S2 + 2H2O + 3O2 = 2H2SO4.
В местах наибольшего количества серобактерий концентрация серной кислоты может достигать 10%. Это очень сильно ускоряет почвенную коррозию, особенно стали.
При рН грунта около 4 – 10 развиваются бактерии, перерабатывающие железо. Эти бактерии в процессе своей жизнедеятельности поглощают ионы железа, а выделяют нерастворимые соединения, содержащие Fe.
В местах скопления железобактерий наблюдается большое количество нерастворимых железистых соединений, которые увеличивают гетерогенность поверхности.
Это явление также оказывает большое влияние на скорость почвенной коррозии.
Анаэробные микроорганизмы могут вырабатывать углеводороды, сероводород, угольную кислоту и множество других химических соединений. Они могут разрушать защитные покрытия, воздействовать на ход анодной и катодной реакции, менять характеристики почвы.
Среди анаэробных микроорганизмов самыми опасными можно считать сульфатредуцирующие бактерии. Оптимальные условия для их существования, почва со значением рН 5,5 – 8 (болотные, глинистые, илистые грунты). Бактерии восстанавливают сульфаты, содержащиеся в почве. Этот процесс можно описать следующим уравнением:
MgSO4 + 4H = Mg(OH)2 + H2S + O2.
Выделившийся кислород обеспечивает протекание реакции на катоде. Сероводород и сульфиды в почве являются причиной появления на поверхности эксплуатируемой конструкции рыхлого слоя сульфида железа.
Коррозия носит питтинговый характер.
Механизм и особенности почвенной коррозии металлов
Почвенная коррозия почти всегда протекает по электрохимическому механизму (исключения составляют лишь очень сухие грунты).
Анодный процесс при почвенной коррозии – разрушение металла. На катоде же проходит кислородная деполяризация.
Чаще всего кислородная деполяризация проходит с затрудненным доступом кислорода к поверхности корродирующего изделия.
Подвод кислорода может осуществятся несколькими способами: диффузией в жидкой или газообразной среде или направленным течением этих фаз, перемешиванием фаз при помощи конвекции.
Во влажном грунте процесс проходит с преимущественно катодным контролем, а сухих рыхлых почвах — анодным. Иногда, при работе протяженных микропар может наблюдаться катодно-омический контроль.
На катоде также может проходить и водородная деполяризация (только в условиях кислых грунтов). Существенно изменить ход коррозионного процесса могут и микроорганизмы.
Подземную коррозию делят на грунтовую коррозию и электрокоррозию (коррозию блуждающими токами). Подземная коррозия менее опасна, чем разрушение под воздействием блуждающих токов.
Особенности почвенной коррозии металлов:
- — значительное влияние омического сопротивления грунта;
- — возникновение коррозионных микро и макропар;
- — язвенный характер разрушения.
Методы защиты от почвенной коррозии
Защиту от почвенной коррозии можно разделить на активную (электрохимическую) и пассивную (изоляция изделия от воздействия окружающей среды, специальные способы укладки и т.д.).
Для защиты металлоизделий от почвенной коррозии применяются самые разнообразные методы. Очень часто, особенно в высококоррозионых грунтах, применяют комплексную защиту от подземной коррозии.
Основные методы защиты металлоконструкций от почвенной коррозии: нанесение защитных покрытий и изоляция изделий, создание искусственной среды, электрохимическая защита, применение специальных методов укладки.
Нанесение защитных покрытий. Изоляция
Для защиты от почвенной (грунтовой) коррозии наиболее эффективным и широко используемым является нанесение защитных изоляционных покрытий.
К таким покрытиям предъявляются следующие требования: оно должно быть сплошным, без трещин, царапин; иметь хорошую адгезию с металлоподложкой; быть химически стойким; отличаться высокими диэлектрическими свойствами; сохранять свои защитные свойства при воздействии положительных и отрицательных температур (от -50 до +50 °С); не содержать коррозионно-активных по отношению к основному металлу агентов; обладать высокой биостойкостью, механической прочностью.
Защитные покрытия могут быть полимерными и мастичные. К мастичным относятся каменноугольное, битумное. К полимерным – покрытия из липких изоляционных лент, расплавы, накатываемые эмали и т.д.
Покрытие, применяемое для защиты от почвенной коррозии, должно полностью изолировать готовую конструкцию от воздействия окружающей среды. Для изоляции подземных трубопроводов очень часто используют битумные покрытия различной толщины (6 мм – усиленное, 3 мм – обычное, 9 мм – очень усиленное).
Широкое распространение получили петролатумные, цементные, каменноугольно-пековые, полиэтиленовые, поливинилхлоридные защитные покрытия. Последние отличаются отличными защитными и изолирующими способностями, долгим сроком службы, но не из самых дешевых.
Самыми слабыми защитными свойствами обладает цементное покрытие.
Создание искусственной атмосферы
Этот метод применяют достаточно редко, в основном для трубопроводов большой протяженности. Это связано с большими транспортными затратами, трудностью его реализации (необходимо большое количество работников, техники, достаточно много времени).
Протяженные подземные сооружения могут проходит через разные виды почв, что интенсифицирует коррозионный процесс. Суть метода заключается в том, чтоб создать однородный грунт по всей протяженности конструкции (засыпая, например, весь трубопровод песчаным грунтом) либо уменьшить агрессивность почвы на определенных участках. Для этого кислые грунты могут известковать.
Электрохимическая защита металла от почвенной коррозии
Электрохимическая защита заключается в принудительном создании катодной либо анодной поляризации. При совместном применении электрохимический защиты и защитных покрытий, затраты на первую весьма невелики.
В практике защиты металлов от почвенной коррозии очень часто применяется катодная защита. Металлоконструкции сообщают определенный отрицательный электрический потенциал, который затрудняет термодинамику окисления металла. Это существенно снижает (сводит к минимуму) скорость почвенной коррозии. Осуществить катодную поляризацию можно используя специальные установки: протекторные, катодные.
Протекторная защита заключается в подсоединении к изделию электродов из металла, который в данной среде более электроотрицателен. Для защиты стали от подземной коррозии протекторами могут служить алюминий, его сплавы, цинк, магний.
Катодная защита – создание катодной поляризации при помощи внешнего источника тока (генераторы постоянного тока, батареи, выпрямители). По всей протяженности трубопровода ставят специальные станции катодной защиты.
Специальные методы укладки
Очень часто при прокладке трубопровода, а также других сооружений для защиты их от воздействия грунтовых вод, самого грунта используют специальные способы укладки. Трубопровод или кабель может быть помещен в специальный коллектор (при этом кабель укладывают на неметаллическую подкладку), защитный кожух (часто из железобетонных плит или металла).
Вышеописанные методы применимы только для защиты изделий от влияния грунта и подземных вод.
Скорость коррозии стали в грунте мм год справочник
Когда металл помещается в почву, он оказывается во враждебной среде, способной спровоцировать появление коррозии.
Если не защитить металл, столкнетесь с проблемой разрушения, потерей целостности стальных опор и другими сложностями.
В этой статье мы подробно расскажем, что такое почвенная коррозия металла, как появляется и какие факторы способны усугубить положение. Также мы затронем и вопросы защиты, позволяющей свести к минимуму негативное воздействие агрессивной среды.
Долговечность металлической винтовой сваи с учетом коррозионных процессов в грунте
Одним из наиболее существенных вопросов, возникающих при применении металлических конструкций в строительстве, является вопрос сопротивления таких конструкций процессам коррозии и связанная с ним долговечность зданий и сооружений.
В настоящее время существует комплекс взаимоувязанных межгосударственных стандартов, устанавливающих общие требования, правила, нормы и методы защиты изделий, конструкций и материалов от коррозии, старения и биоповреждений на всех стадиях жизненного цикла изделий и конструкций исследование и обоснование разработки (Стандарты ЕСЗКС – Единая система защиты от коррозии и старения материалов и изделий) [1, 2, 3, 4].
Назначение ЕСЗКС – обеспечение и сохранение заданного уровня качества изделий, конструкций и материалов средствами и методами защиты от коррозии, старения и биоповреждений с учетом требований безопасности, экологии, совместимости и взаимозаменяемости, а также конкурентной способности изделий и конструкций на мировом рынке.
Сварочный выпрямитель – как из синусоиды сделать прямую?
Помимо стандартов ЕСЗКС, требования к коррозионной стойкости устанавливаются также нормативами на отдельные виды конструкций и их частей в зависимости от действующих коррозионных факторов.
Для подземных сооружений (в т.ч. фундаментов), критериями опасности коррозии являются:
- коррозионная агрессивность среды ( грунтов , грунтовых и других вод) по отношению к металлу сооружения (включая биокоррозионную агрессивность грунтов );
- опасное действие блуждающего постоянного и переменного токов.
- Исходя из этих критериев, следует, что скорость коррозии металла в грунте зависит от:
pH грунта. Чем ниже pH (кислая среда), тем скорость коррозии выше.
электрического сопротивления грунта. Чем выше сопротивление грунта, тем скорость коррозии медленнее.
Также необходимо учитывать наличие антикоррозионного покрытия, препятствующего коррозии.
Исследования по определению электрического сопротивления грунта с учетом возможного повышения влажности и изменения температуры проводились Федеральным дорожным агентством и отражены в руководстве для инженеров транспорта (табл.1).
Источник
4.2. Подземная коррозия
Подземная коррозия металлических конструкций протекает в почвенных или грунтовых условиях и имеет обычно электрохимический механизм.
Подземной коррозии подвержены, главным образом, металлические трубопроводы, подземные резервуары, силовые электрические кабели и др.
Особенно сильное разрушение наблюдается в условиях совместного воздействия грунта и блуждающих токов. Различают следующие виды почвенной коррозии:
– Подземная коррозия – коррозия в почве, вызываемая коррозионными элементами, возникающими на металле в местах соприкосновения его с коррозионной средой вследствие неоднородности металла сооружения, неодинакового состава почвы, различия температур, влажности и воздухопроводности почвы на различных участках сооружения.
– Подземная биокоррозия – это коррозия, вызываемая жизнедеятельностью микроорганизмов, воздействующих на металл, обычно процесс завершается электрохимической коррозией.
– Электрокоррозия – коррозия металлических подземных сооружений под действием токов утечки с рельсов электрифицированных железных дорог и других промышленных установок. Она подразделяется на коррозию блуждающими токами и коррозию внешним током.
В почве содержатся влага и различные химические реагенты, поэтому она обладает ионной проводимостью и в большинстве случаев, за исключением очень сухих грунтов, механизм подземной коррозии – электрохимический.
Наиболее характерным катодным процессом в подземных условиях является кислородная деполяризация. В кислых грунтах (болотистый) может проходить коррозия и с водородной деполяризацией.
Рассмотрим пример работы коррозионного элемента в почве.
- На аноде протекает реакция окисления железа с образованием гидратированных ионов:
- На катоде протекает реакция ионизации кислорода:
- В электролите почвы ионы
- и
- взаимодействуют друг с другом, образуя нерастворимый осадок гидроксида железа, который затем может перейти в оксид железа:
- ,
- .
Анодные и катодные процессы, в большинстве случаев, протекают на различных участках, т.е. поверхность корродирующего металла состоит из некоторого числа коррозионных микроэлементов и общая скорость коррозии зависит от числа таких элементов и интенсивности их работы. Такой механизм коррозии называют гетерогенно-электрохимическим.
Общая скорость коррозии определяется скоростью процесса, протекающего медленнее других. Процесс, кинетика которого определяет общую скорость коррозии, называется контролирующим.
- В зависимости от условий возможны следующие виды контроля подземной коррозии металлов: преимущественно катодный контроль – во влажных грунтах; преимущественно анодный контроль – в рыхлых и сухих грунтах; смешанный катодно-омический контроль – при грунтовой коррозии металлических конструкций, вследствие работы протяженных макропар (трубопроводы).
- В большинстве случаев коррозия подземных сооружений протекает с преимущественным катодным контролем, обусловленным торможением доставки кислорода к поверхности металла.
- Критериями опасности коррозии подземных металлических сооружений, согласно ГОСТ 9.602 – 89, являются:
- – Коррозионная агрессивность среды по отношению к металлу конструкции;
- – Опасные действия постоянного и переменного блуждающих токов.
- Скорость коррозии металла в почве зависит от коррозионной активности почвы, то есть от некоторых ее свойств: структуры, пористости, влажности, минерализации грунтовых вод, кислотности, воздухопроводности, удельного электрического сопротивления и температуры среды.
– Влажность почвы. Наличие влаги делает грунт электролитом и вызывает электрохимическую коррозию металлов.
Увеличение влажности грунта ускоряет протекание анодного процесса, снижает сопротивление электролита и затрудняет протекание катодного процесса при значительном содержании воды в почве.
Максимальная скорость подземной коррозии наблюдается в почвах, содержащих 15—25% влаги. Для каждой почвы существует определенный интервал влажности, соответствующий максимальной скорости коррозии.
— Воздухопроводность грунтов. Пористые грунты могут сохранять влагу в течение длительного времени и создавать благоприятные условия для аэрации (диффузии кислорода). Повышение воздухопроводности грунтов ускоряет коррозионный процесс вследствие облегчения протекания катодного процесса.
— Электропроводность грунтов. Наличие в почве водорастворимых солей способствует увеличению ее электропроводности. Наиболее сильно влияют на коррозионный процесс ионы
- ,
- ,
- ,
- ,
- ,
- ,
и др. Увеличение засоленности грунта, кроме того, облегчает протекание анодного (депассивация анодных участков поверхности) и катодного процессов.
— Кислотность грунта. Она колеблется в широких пределах (рН 3—9). Очень кислые грунты ускоряют коррозию металлов в результате повышения растворимости вторичных продуктов коррозии и возможной дополнительной водородной деполяризации. По величине рН различают кислые (рН 3—5), нейтральные (рН 6—8) и щелочные (рН 9—10) почвы.
— Наличие микроорганизмов. Микроорганизмы, находящиеся в грунтах, могут вызывать значительное местное ускорение коррозии металлов.
Наибольшую опасность представляют анаэробные сульфат-редуцирующие бактерии, которые развиваются в илистых, глинистых и болотистых грунтах.
Эти бактерии в процессе жизнедеятельности восстанавливают содержащиеся в грунте сульфаты, потребляя образующийся при катодном процессе водород, до сульфид-ионов с выделением кислорода:
Выделяющийся кислород принимает участие в катодной деполяризации коррозионного процесса. Сульфид-ион является депассиватором, а также связывает ионы железа, образуя малозащитные пленки сульфида, и тем самым облегчает анодный процесс.
— Температура грунта. Температура грунта влияет на кинетику электродных процессов и диффузию, определяющие скорость коррозии.
Обычно с увеличением температуры наблюдается экспоненциальное возрастание скорости подземной коррозии металла.
Различие температур на отдельных участках протяженных подземных сооружений может привести к возникновению термогальванических коррозионных элементов, усиливающих коррозию.
Удельное электрическое сопротивление почвы является функцией всех рассмотренных свойств почвы и представляет один из наиболее характерных показателей коррозионной активности почв по отношению к стали.
В определенных границах существует прямая зависимость: чем меньше удельное электрическое сопротивление, тем больше скорость коррозии.
Эта зависимость позволяет приближенно оценить коррозионную активность почв.
- Согласно ГОСТ 9.602 – 89, коррозионную активность почв по отношению к стали оценивают:
- – по удельному электросопротивлению почвы;
- – по средней катодной плотности тока при смещении потенциала катода на 100 мВ отрицательнее потенциала коррозии стали.
В табл. 4.2 приведены удельное электрическое сопротивление грунта и величина средней плотности катодного тока, характеризующие коррозионную активность грунтов по отношению к стали.
Удельное электросопротивление грунта, Ом∙м
Средняя плотность катодного тока,А/м2
Долговечность металлической винтовой сваи с учетом коррозионных процессов в грунте
Скорость коррозии – многофакторный параметр, который зависит как от внешних условий среды, так и от внутренних свойств материала.
В нормативно-технической документации существуют определенные ограничения по допустимым значениям разрушения металла при эксплуатации оборудования и строительных конструкций для обеспечения их безаварийной работы.
В проектировании не существует универсального метода определения скорости коррозии. Это связано со сложностью учета всех факторов. Наиболее надежным методом является изучение истории эксплуатации объекта.