Какой металл самый тугоплавкий

Чтобы расплавить металлы этой группы, требуются сверхтемпературы. Самый известный – вольфрам, из которого сделана нить накаливания в лампочках. Другие члены «семейства» тоже востребованы.

  • Какой металл самый тугоплавкий
  • О признаке, по которому металл причисляют к группе, говорит название.
  • Тугоплавкие металлы – это химические элементы с температурой плавления выше большинства остальных:
  • В классическом понимании это более 2200°С. Таким свойством наделены пять металлов.
  • Однако термин «тугоплавкие» применяют и в отношении металлов с температурой плавления выше железа, т.е. от 1850°С. По этому параметру тугоплавкими металлами являются еще девять элементов.

Таким образом, список тугоплавких элементов включает 14 позиций.

Физико-химические характеристики

Главная характеристика группы – тугоплавкость – обеспечивается структурой атомов. Электроны располагаются так близко, что для разрыва межатомных связок требуется температура до двух тысяч градусов.

Вторая общая черта – замедленность деформации ползучести. Чтобы они начали «расползаться», требуется нагрев 1500+°C. В отличие от легкоплавких металлов, которые растекаются при паре сотен градусов.

Однако большинство свойств тугоплавких металлов (плотность, твердость, сопротивляемость сжатию) разнятся из-за принадлежности к разным группам и отличий в структуре кристаллической решетки.

Больше схожести в химических свойствах:

  • Легкость образования соединений с другими элементами, из-за чего обнаружить тугоплавы в чистом виде невозможно.
  • На воздухе покрываются защитной пленкой. Скорость определяется температурой.
  • При нагреве либо взаимодействии с газами (азотом, водородом, углеродом) первоначальные свойства утрачиваются, развивается коррозия, появляется хрупкость.
  • Устойчивость перед воздействием кислот.

Учитывая такие характеристики, с элементами работают в вакууме. Самый распространенный пример – вольфрамовая нить накаливания внутри бытовой лампочки.

Технология получения

Исходник большинства тугоплавов – руда.

Процесс традиционен:

  1. Из нее удаляют примеси.
  2. Рафинируют (восстанавливают нужный элемент). Способ восстановления зависит от требуемой степени чистоты металла. Поэтому задействуют дугообразную, электронно-лучевую либо плазменную плавку.
  3. Лучший продукт дает плазма. Он представляет собой мелкие гранулы, порошок либо заготовки (проволока, фольга, слитки, арматура, прокат).

Технология плавления специфична, поэтому таким сырьем занимаются специальные предприятия. В СССР их было всего два.

Обработка тугоплавких металлов возможна только методами порошковой металлургии.

Сферы применения

Применение тугоплавких металлов не ограничивается бытовыми лампочками.

Их свойства  обеспечивают использование всеми отраслями промышленного комплекса, ВПК, в быту:

  • Металлургия. Компонент-лигатура для сплавов.
  • Судо-, авиа-, космостроение. Детали двигателей.
  • Ядерный сектор. Материал деталей реакторов.
  • Химпром. Катализатор, источник света.
  • Электроника. Конденсаторы.

Материал популярен как база жаропрочных, повышенно устойчивых конструкций (огнеупоров) для указанных отраслей. Особенно если требуются детали сложной конфигурации.

Особняком стоит выращивание рубинов. Для этого в бесцветный кристалл добавляют микродозы хрома.

Почти всегда применяются сплавы. Например, ядерщиками и строителями космических аппаратов востребована молибденово-танталово-вольфрамовая композиция. Она не деформируется при температурах порядка 4000°С, упруга, пластична, невосприимчива к ржавлению.

Классификация

В зависимости от температуры плавления тугоплавкие металлы причисляются к основной либо дополнительной группе.

Основная группа

Данный сегмент включает пять позиций: вольфрам, ниобий, тантал, молибден, рений. Плавятся при 2200°С+.

Свойства четвёртой группы элементов

Название
Ниобий
Молибден
Тантал
Вольфрам
Рений
Температура плавления 2750 K (2477 °C) 2896 K (2623 °C) 3290 K (3017 °C) 3695 K (3422 °C) 3459 K (3186 °C)
Температура кипения 5017 K (4744 °C) 4912 K (4639 °C) 5731 K (5458 °C) 5828 K (5555 °C) 5869 K (5596 °C)
Плотность 8,57 г·см³ 10,28 г·см³ 16,69 г·см³ 19,25 г·см³ 21,02 г·см³
Модуль Юнга 105 ГПа 329 ГПа 186 ГПа 411 ГПа 463 ГПа
Твёрдость по Виккерсу 1320 МПа 1530 МПа 873 МПа 3430 МПа 2450 МПа

Молибден

  1. Самый востребованный из тугоплавких элементов.
  2. Какой металл самый тугоплавкий
  3. Сфера использования номер один – металлургия:
  • Молибденом «усиливают» сталь, чтобы получить твердый сплав.
  • На пару с нержавеющей сталью применяют как материал инфраструктуры трубопроводов, деталей автомобилей, другой продукции машиностроения.
  • Благодаря температуре плавления, износостойкости, малой истираемости используется как легирующая присадка.

Молибдену требуется пара процентов лигатур в составе, чтобы свойства сплава изменились.

  • Например, полпроцента титана плюс 0,08% циркония создают молибденовый сплав, не снижающий прочность до 1060°C.
  • Неординарные параметры по трению обусловили использование молибдена как долговечной смазки с высоким КПД.
  • Какой металл самый тугоплавкий
  • Материал незаменим для ртутных реле, поскольку амальгама с данным металлом ртутью не формируется.

Вольфрам

Открыт в конце 18 века. Самый твердый и самый тугоплавкий (3422°C) металл.

Какой металл самый тугоплавкийТугоплавкий прочный металл, светло-серого цвета – вольфрам

Вместе с медью и железом используется как основа (до 80%) сплавов с рением, торием, никелем. Такие добавки повышают плотность, порог стойкости к ржавлению, надежность.

Востребован как материал систем электроснабжения, приборов, боеприпасов, ядерных боеголовок ракет. Никелевые сплавы как материал клюшек ценят поклонники гольфа.

Какой металл самый тугоплавкийВольфрам в слитках

Вольфрам, его сплавы востребованы там, где нужна повышенная плотность в условиях запредельных температур.

Тантал

Самый стойкий к кислотам, коррозии из сегмента тугоплавких металлов.

Какой металл самый тугоплавкийТяжёлый твёрдый металл серого цвета – тантал

Поэтому используется в конденсаторах смартфонов, планшетов, других гаджетов.

Совместим с биологическими организмами (не меняется под воздействием природных кислот). Благодаря этому применяется медициной.

В природе ниобий и тантал соседи. Не случайно названы по именам отца и дочери – Тантала и Ниобы, персонажей древнегреческих мифов.

Ниобий

Металл с небанальными характеристиками:

  • Самый легкий (малой плотности) в сегменте.
  • Уникален благодаря свойству менять коэффициент твердости и упругости в зависимости от степени отжига.
  • Самый частый в сплавах-суперпроводниках.

Какой металл самый тугоплавкий

Применяется как материал конденсаторов, газовых турбин ракет, самолетов. А также элемент ядерных реакторов и ламп электронных приборов.

Вместе с гафнием и титаном – материал двигателей космических аппаратов (например, американского Аполлона).

Рений

Самый редкий и дорогой из тугоплавких металлов:

  • В сплавах выступает легирующим, никогда – основным компонентом.
  • Как лигатура, повышает утилитарные кондиции сплава: прочность, ковкость (например, с медью и платиной).
  • Обнаружен последним в тугоплавком сегменте.

Какой металл самый тугоплавкий

Оксид рения – самый неустойчивый, плотный поток кислорода способен сорвать оксидный слой.

Сплавы с рением служат катализаторами, начинкой электронного оборудования, гироскопов, реакторов атомных объектов.

Дополнительная группа

Данный сегмент тугоплавких металлов включает девять позиций. Их общий признак – порог плавления от 1850°C.

Сюда зачислены девять элементов из трех групп (четвертый – шестой периоды) таблицы Менделеева.

У каждого своя «изюминка»:

  • Осмий – самое плотное вещество планеты, самый тяжелый тугоплав.
  • Иридий встречается чаще в метеоритах, чем на Земле.
  • Метаморфозы теплоемкости гафния необъяснимы наукой до сих пор.
  • Рутений назван в честь России.
  • Из чистого ванадия вытачивают жетоны и медали для коллекционеров.
  • Титан – единственный тугоплавкий цветной металл. Материал зубных и костных протезов.
  • Без циркония невозможны салюты и фейерверки. Медицинский «дублер» титана.

Тонким слоем хрома и благородного родия покрывают поверхность изделий класса люкс, включая ювелирные. Процессы называются хромированием и родированием.

Какой металл считается самым тугоплавким?

Металл с давних времён используются человеком в различных сферах деятельности. Чтобы получить качественное металлическое изделие, важно подобрать хороший материал, оценивая при этом его характеристики. Важный параметр — тугоплавкость. Для изготовления некоторых изделий подходят только самые тугоплавкие металлы.

Какой металл самый тугоплавкийКольца из вольфрама

Исторические сведения

Прежде чем изучать характеристики самых тугоплавких металлов в мире следует ознакомиться с их историей открытия. Металлообработка известна человеку несколько тысяч лет. Однако активное получение тугоплавких металлов началось только со второй половины 19 века.

Изначально они использовались только в электротехнике. С появлением новых технологий в строении самолётов, машин, поездов и ракет детали с высоким показателем плавления начали использоваться активнее. Пик популярности заготовок, выдерживающих температуры более 1000 градусов, пришёлся на середину 20 века.

Читайте также:  Как отреставрировать самовар своими руками

Определение

Тугоплавкий металл — отдельный класс, к которому относятся металлические заготовки, выдерживающие воздействие критически высоких температур. Обычно у представителей этого класса температура плавления более 1600 градусов, что считается точкой плавления железа. К ним относят благородные сплавы. Их ещё называют представителями платиновой группы.

Виды

Виды металлов и сплавов, обладающие устойчивостью к повышенным температурам:

  1. Вольфрам. Впервые о нем узнали в 1781 году. Чтобы расплавить, его потребовалось разогреть до 3380 градусов. Вольфрам считается самым тугоплавким. Изготавливается он из порошка, который обрабатывается химическим способом. Сначала смесь разогревается, а затем подвергается давлению. На выходе получаются спрессованные заготовки.
  2. Ниобий. Плавится при 2500 градусах. Обладает высокой теплопроводностью, обрабатывается не так сложно, как вольфрам. Изготавливается из порошка, который запекают и обрабатывают с помощью высокого давления. Из ниобия делают проволоку, трубы и ленту.
  3. Молибден. Визуально его можно спутать с вольфрамом. Изготавливается он из порошка при запекании и воздействии давлением. Как и вольфрам обладает парамагнетическими свойствами. Используется в радиоэлектронике, изготовлении промышленного оборудования, печей и электродов.
  4. Тантал. Плавится при 3000 градусах. Чтобы сделать проволоку из тантала или закалить материал, его не нужно нагревать до критических температур. Используется для изготовления элементов в радиоэлектронике (конденсаторы, пленочные резисторы). Популярен в ядерной промышленности.
  5. Рений. Материал, который ученые открыли позже остальных. Найти его можно в медной и платиновой руде. Используется на промышленном производстве, как легирующая добавка.

К материалам с высокими температурами плавления относится и хром. Благодаря своим уникальным характеристикам он применяется в различных сферах промышленности. Обладает повышенной устойчивостью к критическим температурам и коррозийным процессам. Однако стоит учитывать его хрупкость.

Какой металл самый тугоплавкийТантал

Свойства

Чтобы понимать, где лучше использовать материал, нужно знать свойства тугоплавких металлов. Из них изготавливаются детали для промышленного оборудования, техники и электроники. Характеристики тяжелых тугоплавких металлов будут описаны ниже.

Физические свойства

Характеристики:

  1. Плотность — до 10000 кг/м3. У вольфрама этот показатель достигает 19000 кг/м3.
  2. Средняя температура плавления — 2500 градусов по Цельсию. Самая высокая температура плавления металла у вольфрама — 3390 градусов.
  3. Удельная теплоёмкость — 400 Дж.

Тугоплавкие предметы не выдерживают ударов и падений.

Химические свойства

Химические свойства:

  1. Это твердые вещества, обладающие высокой химической активностью.
  2. Прочная межатомная структура.
  3. Сопротивляемость длительному воздействию кислот и щелочей.
  4. Высокий показатель парамагнитности.

Эти материалы имеют некоторые недостатки. Главным из них является трудный процесс обработки и изготовления продукции из него.

Применение

Изначально тугоплавкие металлы использовались при изготовлении конденсаторов и транзисторов для радиоэлектроники. Количество их сфер применения увеличилось только к середине 20 века. Промышленной комплекс расширился до изготовления деталей для станков, автомобилей, самолётов и ракет.

Сплавы, выдерживающие воздействие критических температур, начали использоваться для изготовления посуды. Тугоплавкие металлы применяются в процессе производства строительных и соединительных материалов. Из них делают детали для бытовых приборов и электроники.

Самым тугоплавким считается вольфрам. Его температура плавления в 3390 градусов превышает показатели других материалов. Однако нельзя забывать про то, что при падении вольфрамовой детали с высоты, она треснет или разобьётся на отдельные части.

Остальные материалы с высоким показателем плавления, немногим отличаются от вольфрама. Используются в машиностроении, кораблестроении, ядерной энергетики, изготовлении промышленного оборудования.

Их разработка и исследование продолжается и по сей день.

Какой металл самый тугоплавкий

Тугоплавкие металлы − список и какой металл самый тугоплавкий

Название тугоплавких металлов напрямую говорит об их особенностях. Многие из них стали известны еще в конце 19 века, но не сразу нашли свое применение. Редкое исключение составили некоторые соединения, которые были востребованы в электротехнике.

Ситуация резко изменилась в средине прошлого века по причине активного развития ракетостроения и сверхзвуковой авиации.

Именно в этих отраслях промышленности наиболее востребованы тугоплавкие металлы, способные выдержать высокие нагрузки при температуре рабочей среды выше 1000 градусов по шкале Цельсия.

Характеристики и перечень тугоплавких металлов

Тугоплавкость определяется показателем температуры, до достижения которой металл не плавится. Для группы тугоплавких металлов температура плавления не может быть ниже 1875 градусов.

Хром — один из видов тугоплавких металлов

Список тугоплавких металлов включает:

  • ванадий;
  • хром;
  • родий;
  • гафний;
  • рутений;
  • вольфрам;
  • иридий;
  • тантал;
  • молибден;
  • осмий;
  • рений;
  • ниобий.

Иридий, рутений, родий и осмий встречаются очень редко, в год их производят не более 1,6 тонны. Потребностям современного производства в полной мере отвечает только добыча хрома, молибдена, ванадия и вольфрама.

Наряду с высокой температурой плавления необходимо отметить и характерные недостатки данных материалов. Жаропрочный металл не отличается высокой стойкостью к окислению.

Этим объясняется необходимость нанесения защитных гальванических покрытий на изделия, предназначенные для использования в рабочей среде с температурой выше 1000 градусов.

В плане стойкости к окислению выделяется хром, но он при этом обладает самой низкой температурой плавления.

Кроме того, хром, вольфрам и молибден отличаются повышенной хладноломкостью, что заметно усложняет их обработку методом давления.

Наиболее перспективны для промышленности молибден и ниобий. Они часто встречаются в естественных условиях, что существенно снижает конечную стоимость продукции. Молибден ценится как жаростойкий металл с высокой удельной прочностью. Ниобий обладает низкой степенью плотности, высокой тугоплавкостью и технологичностью.

Вольфрам представляет собой самый тугоплавкий металл и материал, востребованный в качестве легирующего компонента. В чистом виде он применяется редко из-за недостатков, перечисленных выше, и повышенной плотности.

Технологии производства

Высокие температуры плавления предопределяют порошковую металлургию основным способом получения конечной продукции.

Обычно вопрос о том, какие металлы – тугоплавкие, решается тем, к какой из трёх категорий они относятся:

  • Твёрдые сплавы;
  • Оксидные или карбидные дисперсно-упрочненные материалы;
  • Материалы с легированными свойствами.

Так, все продукты на основе вольфрама и большая часть молибденовых продуктов перерабатываются с помощью порошковой металлургии, поскольку из-за высокой температуры плавления, они не могут быть произведены методом распыления. Таким образом, процессы химического восстановления и электролиз — единственные практические методы.

Порошки, полученные электролитическим способом из водных электролитов или в расплавленном состоянии, имеют высокую чистоту и активны во время спекания. Однако у них есть следующие недостатки:

  • Для удаления из электролита остаточных примесей необходима очистка;
  • Процесс часто является дорогостоящим, потребляя много электроэнергии из-за низкого КПД по току;
  • Процесс ограничен производством чистых металлических порошков, так как этим методом невозможно производить порошки сплавов.

Восстановителями, используемыми в большинстве процессов, являются углерод и водород — в их элементарной форме, либо в виде газообразных соединений или смесей (углеводородов, крекинг-аммиака или монооксида углерода).

Ещё недавно для производства молибдена и его сплавы применялось вакуумное литьё, однако в современных производствах и здесь используется порошковая металлургия. Эффективность восстановления металлического порошка зависит от:

  • Требуемой энергии активации;
  • Химического состава и степени дисперсности металлопорошка;
  • Скорости потока восстанавливающего газа – водорода.

Порошковая металлургия — единственный путь производства сплавов, компонентами которых являются тугоплавкие металлы, в том числе, и на уровне нанопорошков.

Среди различных методов, исследуемых для производства тугоплавких наносплавов — традиционный путь реакции газ-твердое тело, реализация которого позволяет производить наноструктурированные порошки в значительных количествах и с широкими возможностями обеспечения качества.

Читайте также:  Крейцмейсель: устройство, особенности, аналоги

Важно подчеркнуть, что высокотемпературные технологии порошковой металлургии позволяют изготавливать материалы по индивидуальному заказу. Правильно подобрав исходный материал, можно соответствующим образом контролировать состав конечного продукта.

Третий способ – использование 3D-печати. Это активно развивающаяся технология, которая идеально подходит для производства легких, высокостабильных компонентов из вольфрама, молибдена, ниобия, тантала и их сплавов со сложной геометрической структурой.

Нанопорошки тугоплавких металлов получают следующими способами:

  1. Селективным лазерным спеканием.
  2. Селективным лазерным плавлением.
  3. Электронно-лучевым плавлением.
  4. Прямым осаждением.
  5. Быстрым прототипированием.

Ключевыми преимуществами металлических порошков, распыленных газом, являются идеально сферическая форма, отличная воспроизводимость, низкое содержание оксидов.

Физические и механические свойства

Тугоплавкие металлы входят в группу переходных элементов. Таблица Менделеева различает две их разновидности:

  • ниобий, тантал, ванадий входят в подгруппу 5А;
  • хром, вольфрам и молибден – в подгруппу 6А.

Самая небольшая плотность у ванадия (6100 кг/м3), а максимальная у вольфрама (19300 кг/м3). Остальные металлы по показателю удельной плотности находятся в пределах этих рамок.

Все они обладают низким коэффициентом линейного расширения, малой теплопроводностью и упругостью. Элементы плохо проводят электроток, но отличаются сверхпроводимостью.

В зависимости от вида элемента температура сверхпроводимости колеблется в пределах от 0,05 до 9 К.

  Цветные металлы: особенности заработка на сдаче лома

Примечательно, что при комнатной температуре тугоплавким металлам присуща высокая пластичность. Кроме того, молибдену и вольфраму свойственна повышенная жаропрочность на фоне остальных элементов. Не все элементы обладают высокой степенью жаростойкости.

Большая часть тугоплавких металлов устойчивы к агрессивному воздействию щелочи или кислоты в обычной среде. Но при нагреве до 400 градусов их активность резко увеличивается. По этой причине материалы нуждаются в создании особых условий эксплуатации.

В высокотемпературной рабочей среде их нередко помещают в особую атмосферу инертных газов или разреженный до состояния вакуума воздух.

Общим для всех элементов показателем является высокая степень химической активности. Именно эта особенность заметно усложняет получение чистых элементов, вызывая необходимость построения многоэтапной технологической цепочки.

Кроме того, определенные сложности с применением жаропрочных металлов в промышленном производстве объясняются их повышенной склонностью к хладноломкости.

Иными словами, при снижении температуры рабочей среды до определенной отметки материал становится хрупким. Ванадий проходит эту отметку на -195 градусах, ниобий на -120, а вольфрам на +330 градусах по шкале Цельсия.

Эта особенность объясняется присутствием некоторых примесей в составе металлов.

Особенности использования

Металлы предложены покупателям в виде слитков или проволоки. Некоторые виды металлов поставляют в виде проката и арматуры, фольги и порошка.

Редкоземельные тугоплавкие металлы необходимы для производства лейкосапфиров. Это качественные монокристаллы, которые называют синтетическими рубинами.

Элементы, созданные из редкоземельных материалов, включены в состав разных промышленных и бытовых приборов, электрооборудования, огнеупорных элементов, которые необходимы для производства космической и авиационной техники.

Фехраль

Сплав, созданный из железа, алюминия, хрома. В составе присутствует и никель, но в небольшом количестве — до 0,6%. Более низкое содержание никеля делает такой металл дешевле нихрома.

Используют фехраль для производства нагревательных приборов, лабораторных и промышленных печей с максимальной рабочей температурой до 1400 градусов. Применяют металл и для изготовления электронных сигарет и электроаппаратов теплового действия.

Используют фехраль и для резисторов электровозов.

Нихром

Материал, необходимый для изготовления нагревательных элементов высокотемпературного оборудования. Температура плавления достигает 1400 градусов, что открывает возможность применять нихром для производства печей обжига, сушильных аппаратов, продукции, которую будут использовать при работе с агрессивными средами.

Молибден

Это парамагнетик, который незаменим для стеклоплавильных печей. Внешне, по свойствам напоминает вольфрам, но имеет меньший удельный вес (разница существенная — в 2 раза). Используется в промышленной отрасли, необходим для производства радиоэлектронных деталей, электроконтактов, испарителей, используемых в вакуумной технике.

Производство тугоплавких металлов

По причине высокой химической активности основной технологией выработки жаропрочных металлов служит порошковая металлургия.

Существует несколько методов получения металлов данной категории в виде порошка.

  • Реакция восстановления с участием триоксида водорода включает в себя несколько этапов, и применяется для выработки молибдена и вольфрама. Процесс осуществляется в многотрубных печах при 750-950 градусах.
  • Схема восстановления при помощи водорода перрината предназначена для получения металлического рения. Средняя температура составляет 500 градусов, а на последнем этапе происходит отделение порошка от щелочи при помощи процедуры вымывания с последовательным использованием воды и раствора соляной кислоты.
  • Для получения молибдена применяют соли разных металлов. Чаще всего в качестве исходного сырья выступает аммонийная соль и металлический порошок металла, который добавляют в смесь в пропорции от 5 до 15% от общего объема. Технология предполагает обработку сырья при температуре от 500 до 800 градусов в потоке инертного газа. Реакция восстановления осуществляется в водородной среде с температурным режимом от 800 до 1000 градусов.

Полученный в виде порошка металл прессуют или запекают.

§4. Вольфрамовый порошок

Чистый вольфрамовый порошок служит исходным сырьем для производства компактного вольфрама (см. Главу 2). Карбид вольфрама WC, котрый по внешнему виду также представляет из себя порошок, используют для изготовления твердых сплавов. В зависимости от назначения порошки вольфрама различают по средней величине частиц, набору зерен и другим параметрам.

  Обращение, обезвреживание и утилизация отходов класса «Д»

Основная примесь в вольфрамовых порошках — кислород (0,05 — 0,3%).

Металлические примеси содержатся в вольфрамовых порошках в очень малых количествах. Часто в порошки вольфрама вводят присадки из других металлов, которые улучшают определенные свойства конечного продукта.

В качестве присадок часто используют алюминий, торий, лантан и другие.

Вольфрамовый порошок ВА, который применяется для изготовления проволоки, содержит равномерно распределенную кремнещелочную и алюминиевую присадки (0,32% K2O; 0,45% SiO2; 0,03% Al2O3), порошок из тугоплавкого металла вольфрам марки ВТ — присадку окиси тория (0,7 — 5%), ВЛ — присадку оскиси лантана (~1% La2O3), ВИ — присадку окиси иттрия (~3% Y2O3), ВМ — кремнещелочную и ториевую присадки (0,32% K2O; 0,45% SiO2; 0,25% ThO2).

Сфера применения

Жаропрочные металлы в чистом виде востребованы в:

  • сверхзвуковой авиации;
  • ракетостроении и создании космических кораблей;
  • производстве ракет и снарядов с радиоуправлением;
  • вакуумной технике и электронике.

К примеру, ниобий без примесей необходим при изготовлении трубок, сеток, электронных деталей для электровакуумных радиоламп, а также электродов-анодов для электровакуумных устройств. Подобное назначение у молибдена и вольфрама.

Их используют для электродов радиоламп, подвесок и крючков электровакуумных установок. Вольфрамовые монокристаллы необходимы для производства катодов, предохранителей, электрических контактов.

Кроме того, металл с самой высокой температурой плавления давно востребован для нитей накаливания в привычных всем электрических лампах.

Труба из ниобия

Ниобий и ванадий в чистом виде предназначены в первую очередь для атомной энергетики. Именно из них делают оболочки тепловыделяющих элементов и трубы ядерных реакторов. Чистый тантал необходим для химической отрасли в силу повышенной устойчивости к коррозии. Из него изготавливают технологические емкости, детали аппаратов и установок, различную посуду.

Тугоплавкие сплавы и металлы применяют в разных промышленных отраслях. Назначение соединений обусловлено их специфическими свойствами, в первую очередь жаропрочностью.

Производство проката включает:

  • трубы и листы;
  • проволоку и пруток;
  • фольгу и полосы (обычного типа или для глубокой вытяжки).
Читайте также:  Тантал что это за металл

В отдельную позицию выделяют тугоплавкий припой. Это обусловлено отсутствием в его составе элементов с высокой температурой плавления. В роли компонентов применяют никель, медь, магний или серебро.

Области применения

До середины 40-х годов тугоплавкие металлы использовались только как легирующие элементы для улучшения механических характеристик стальных цветных сплавов на основе меди и никеля в электропромышленности. Соединения молибдена и вольфрама применялись также в производстве твердых сплавов.

Техническая революция, связанная с активным развитием авиации, ядерной промышленности и ракетостроения, нашла новые способы использования тугоплавких металлов. Вот неполный перечень новых сфер применения:

  • Производство тепловых экранов головного узла и каркасов ракет.
  • Конструкционный материал для сверхзвуковых самолётов.
  • Ниобий служит материалом сотовой панели космических кораблей. А в ракетостроении его используют в качестве теплообменников.
  • Узлы термореактивного и ракетного двигателя: сопла, хвостовые юбки, лопатки турбин, заслонки форсунок.
  • Ванадий является основой для изготовления тонкостенных трубок тепловыделяющих элементов термоядерного реактора в ядерной промышленности.
  • Вольфрам применяется как нить накаливания электроламп.
  • Молибден все шире и шире используется в производстве электродов, применяемых для плавки стекла. Помимо этого, молибден — металл, используемый для производства форм литья под давлением.
  • Производство инструмента для горячей обработки деталей.

Тугоплавкие металлы — характеристики, свойства и применение

Еще с конца 19 века были известны тугоплавкие металлы. Тогда им не нашлось применения. Единственная отрасль, где их использовали, была электротехника и то в очень ограниченных количествах.

Но все резко поменялось с развитием сверхзвуковой авиации и ракетной техники в 50-е года прошлого столетия.

Производству потребовались новые материалы, способные выдерживать значительные нагрузки в условиях температур свыше 1000 ºC. 

Список и характеристики тугоплавких металлов

Тугоплавкость характеризуется повышенным значением температуры перехода из твердого состояния в жидкую фазу. Металлы, плавление которых осуществляется при 1875 ºC и выше, относят к группе тугоплавких металлов. По порядку возрастания температуры плавки сюда входят следующие их виды:

  • Ванадий
  • Хром
  • Родий
  • Гафний
  • Рутений
  • Вольфрам
  • Иридий
  • Тантал
  • Молибден
  • Осмий
  • Рений
  • Ниобий.

Современное производство по количеству месторождений и уровню добычи удовлетворяют только вольфрам, молибден, ванадий и хром. Рутений, иридий, родий и осмий встречаются в естественных условиях довольно редко. Их годовое производство не превышает 1,6 тонны.

Жаропрочные металлы обладают следующими основными недостатками:

  • Повышенная хладноломкость. Особенно она выражена у вольфрама, молибдена и хрома. Температура перехода у металла от вязкого состояния к хрупкому чуть выше 100 ºC, что создает неудобства при их обработке давлением.
  • Неустойчивость к окислению. Из-за этого при температуре свыше 1000 ºC тугоплавкие металлы применяются только с предварительным нанесением на их поверхность гальванических покрытий. Хром наиболее устойчив к процессам окисления, но как тугоплавкий металл он имеет самую низкую температуру плавления.

К наиболее перспективным тугоплавким металлам относят ниобий и молибден. Это связано с их распространённостью в природе, а, следовательно, и низкой стоимостью в сравнении с другими элементами данной группы.

Помимо этого, ниобий зарекомендовал себя как металл с относительно низкой плотностью, повышенной технологичностью и довольно высокой тугоплавкостью. Молибден ценен, в первую очередь, своей удельной прочностью и жаростойкостью.

Самый тугоплавкий металл встречаемый в природе — вольфрам. Его механические характеристики не падают при температуре окружающей среды свыше 1800 ºC. Но перечисленные выше недостатки плюс повышенная плотность ограничивают его область использования в производстве. Как чистый металл он применяется все реже и реже. Зато увеличивается ценность вольфрама как легирующего компонента.

Физико-механические свойства

Металлы с высокой температурой плавления (тугоплавкие) являются переходными элементами. Согласно таблице Менделеева выделяют 2 их разновидности:

  • Подгруппа 5A – тантал, ванадий и ниобий.
  • Подгруппа 6A – вольфрам, хром и молибден.

Наименьшей плотностью обладает ванадий – 6100 кгм3, наибольшей вольфрам – 19300 кгм3. Удельный вес остальных металлов находится в рамках этих значений. Эти металлы отличаются малым коэффициентом линейного расширения, пониженной упругостью и теплопроводностью.

Данные металлы плохо проводят электрический ток, но обладает таким качеством как сверхпроводимость. Температура сверхпроводящего режима составляет 0,05-9 К исходя из вида металла.

Абсолютно все тугоплавкие металлы отличаются повышенной пластичностью в комнатных условиях. Вольфрам и молибден помимо этого выделяются на фоне остальных металлов более высокой жаропрочностью.

Коррозионная стойкость

Жаропрочным металлам свойственна высокая стойкость к большинству видов агрессивных сред. Сопротивление коррозии элементов 5A подгрупп увеличивается от ванадия к танталу. Как пример, при 25 ºC ванадий растворяется в царской водке, между тем как ниобий полностью инертен по отношению к данной кислоте.

Тантал, ванадий и ниобий отличаются устойчивостью к воздействию расплавленных щелочных металлов. При условии отсутствия в их составе кислорода, которые значительно усиливает интенсивность протекания химической реакции.

Молибден, хром и вольфрам имеют большую сопротивляемость к коррозии. Так азотная кислота, которая активно растворяет ванадий, значительно менее воздействует на молибден. При температуре 20 ºC данная реакция вообще полностью останавливается.

Все тугоплавкие металлы охотно вступают в химическую связь с газами. Поглощение водорода из окружающей среды ниобием осуществляется при 250 ºC. Тантал при 500 ºC. Единственный способ остановить эти процессы – проведение вакуумного отжига при 1000 ºC. Стоит заметить, что вольфрам, хром и молибден куда менее склонны к взаимодействию с газами.

Как уже было сказано ранее, лишь хром отличается сопротивляемостью к окислению. Данное свойство обусловлено его способностью образовывать твердую пленку оксида хрома на своей поверхности. Растворение кислорода хромом происходит только при 700 С. У остальных тугоплавких металлов процессы окисления начинаются ориентировочно при 550 ºC.

Хладноломкость

Распространению использования жаропрочных металлов в производстве мешает обладание ими повышенной склонности к хладноломкости. Это означает, что при падении температуры ниже определенного уровня происходит резкое возрастание хрупкости металла. Для ванадия такой температурой служит отметка в -195 ºC, для ниобия -120 ºC, а вольфрама +330 ºC.

Наличие хладноломкости жаропрочными металлами обусловлено содержанием примесями в их составе. Молибден особой чистоты (99,995%) сохраняет повышенные пластические свойства вплоть до температуры жидкого азота. Но внедрение всего 0,1% кислорода сдвигает точку хладноломкости к -20 С.

Области применения

До середины 40-х годов тугоплавкие металлы использовались только как легирующие элементы для улучшения механических характеристик стальных цветных сплавов на основе меди и никеля в электропромышленности. Соединения молибдена и вольфрама применялись также в производстве твердых сплавов.

Техническая революция, связанная с активным развитием авиации, ядерной промышленности и ракетостроения, нашла новые способы использования тугоплавких металлов. Вот неполный перечень новых сфер применения:

  • Производство тепловых экранов головного узла и каркасов ракет.
  • Конструкционный материал для сверхзвуковых самолётов.
  • Ниобий служит материалом сотовой панели космических кораблей. А в ракетостроении его используют в качестве теплообменников.
  • Узлы термореактивного и ракетного двигателя: сопла, хвостовые юбки, лопатки турбин, заслонки форсунок.
  • Ванадий является основой для изготовления тонкостенных трубок тепловыделяющих элементов термоядерного реактора в ядерной промышленности.
  • Вольфрам применяется как нить накаливания электроламп.
  • Молибден все шире и шире используется в производстве электродов, применяемых для плавки стекла. Помимо этого, молибден — металл, используемый для производства форм литья под давлением.
  • Производство инструмента для горячей обработки деталей.
Ссылка на основную публикацию
Adblock
detector