Министерство образования Российской Федерации
Таганрогский Государственный Радиотехнический Университет
Кафедра Механики
Реферат
Выполнил:
Студент гр. Р-99
Андриевский В. А.
Проверил:
доцент кафедры механики
Шаповалов Р. Г.
Таганрог 2001
Методы определения твердости металлов
Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и при различных условиях работы, является твердость. Испытания на твердость производятся чаще, чем определение других механических характеристик металлов: прочности, относительного удлинения и др.
Твёрдостью материала
называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твёрдого тела. Для определения твёрдости в поверхность материала с определённой силой вдавливается тело (индентор), выполненное в виде стального шарика, алмазного конуса, пирамиды или иглы. По размерам получаемого на поверхности отпечатка судят о твёрдости материала. В зависимости от способа измерения твёрдости материала, количественно её характеризуют числом твёрдости по Бринелю (НВ), Роквеллу (HRC) или Виккерсу (HV)
. Указанные механические характеристики связаны между собой, поэтому их конкретные значения могут быть найдены расчётным путём на основе данных о твёрдости с помощью формул, полученных для конкретного материала с определённой термообработкой. Так, например, предел выносливости на изгиб сталей с твёрдостью 180-350 НВ равен примерно 1,8 НВ, с твёрдостью 45-55 HRC — 18 HRC+150, связь предела выносливости с пределом прочности стали описывается соотношениями: Конкретным образцам конструкционных материалов, а также выполненным из них изделиям, присуща индивидуальность прочностных и упругих характеристик. Разброс их значений для различных образцов, выполненных из одного и того же материала, обусловлен статистической природой прочности твёрдых тел, различием структур внешне одинаковых образцов. Из-за неопределённости реальных механических характеристик материала, неопределённости некоторых внешних нагрузок, действующих на технический объект, погрешности расчётов для обеспечения безопасной работы проектируемых конструкций должны быть приняты соответствующие проектному этапу обеспечения надёжности меры предосторожности. В качестве такой меры используется понижение в n
раз относительно опасного напряжения материала (предела прочности, предела текучести, предела выносливости или предела пропорциональности) величины максимально допускаемых напряжений, используемых в условии прочности. Величина n получила название нормативного коэффициента запаса прочности
, который выбирается по таблице или рассчитывается как произведениеn = n1 * n2 * n3
, где n1
-учитывает среднюю точность определения напряжений, n2
-учитывает неопределённость механических характеристик материала, n3
-учитывает среднююстепень ответственности проектируемой детали.
Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника. Твердость можно измерять вдавливанием индентора (способ вдавливания), ударом или же по отскоку наконечника – шарика.
Твердость, определенная царапаньем, характеризует сопротивление разрушению, по отскоку – упругие свойства, вдавливанием сопротивление пластической деформации.
В зависимости от скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом).
- Широкое распространение испытаний на твердость объясняется рядом их преимуществ перед другими видами испытаний:
- — простота измерений, которые не требуют специального образца и могут быть выполнены непосредственно на проверяемых деталях;
- — высокая производительность;
- — измерение твердости обычно не влечет за собой разрушения детали, и после измерения ее можно использовать по своему назначению;
- — возможность ориентировочно оценить по твердости другие характеристики металла, в первую очередь предел прочности.
- Так, например, зная твердость по Бринеллю (HB), можно определить предел прочности на растяжение (временное сопротивление).
- ,
- где k – коэффициент, зависящий от материала;
- k = 0,34 – сталь HB 120 … 175;
- k = 0,35 – сталь HB 175 … 450;
- k = 0,55 – медь, латунь и бронза отоженные;
- k = 0,33 … 0,36 – алюминий и его сплавы.
Наибольшее применение получило измерение твердости вдавливанием в испытываемый металл индентора в виде шарика, конуса и пирамиды (соответственно методы Бринелля, Роквелла и Виккерса).
В результате вдавливания достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток.
Величина внедрения наконечника в поверхность металла будет тем меньше, чем тверже испытываемый материал.
Таким образом под твердостью
понимают сопротивление материала местной пластической деформации, возникающей при внедрении в него более твердого тела – индентора.
Измерение твердости по Бринеллю
Твердость по методу Бринелля (ГОСТ 9012-59) измеряют вдавливанием в испытываемый образец стального шарика определенного диаметра D под действием заданной нагрузки P в течение определенного времени (Рис. 1). В результате вдавливания шарика на поверхности образца получается отпечаток (лунка). Число твердости по Бринеллю, обозначаемое HB, представляет собой отношение нагрузки P к площади поверхности сферического отпечатка F и измеряется в кгс/мм2 или МПа:
- (2)
- Площадь шарового сегмента составит:
- , мм2 (3)
- где D –диаметр шарика, (мм);
- h – глубина отпечатка, (мм).
- Так как глубину отпечатка измерить трудно, а проще измерить диаметр отпечатка d, выражают h через диаметр шарика D и отпечатка d:
- Тогда
, (мм2
) (5) - Число твердости по Бринеллю определяется по формуле:
-
, (кгс/мм2
) (6)
Для перевода твердости по Бринеллю в единицы СИ необходимо умножить число твердости в кгс/мм2 на 9,81, т.е. HB=9,81*HB (МПа).
Для получения сопоставимых результатов при определении твердости HB шариками различного диаметра необходимо соблюдать условие подобия.
Подобие отпечатков при разных D и P будет обеспечено, если угол j остается постоянным (Рис. 1.1). Подставив в формулу (6) , получим следующее выражение:
В практике при определении твердости не делают вычислений по формуле (6), а пользуются таблицами, составленными для установленных диаметров шариков, отпечатков и нагрузок. Шарики применяют диаметром 10,5 и 2,5 мм. Диаметр шарика и нагрузка выбираются в соответствии с толщиной и твердостью образца (табл. 1).
При этом для получения одинаковых чисел твердости одного материала при испытании шариками разных диаметров необходимо соблюдать закон подобия между получаемыми диаметрами отпечатков. Поэтому твердость измеряют при постоянном соотношении между величиной нагрузки P и квадратом диаметра шарика D2
.
Это соотношение должно быть различным для металлов разной твердости.
- Метод Бринелля не рекомендуется применять для материалов с твердостью более 450 HB, так, как стальной шарик может заметно деформироваться, что внесет погрешность в результаты испытаний.
- Таблица 1
- Условия испытания металлов на твердость по Бринеллю
Число твердости по Бринеллю, измеренное при стандартном испытании (D = 10 мм, P = 3000 кгс), записывается так: HB 350. Если испытания проведены при других условиях, то запись будет иметь следующий вид: HB 5/250/30-200, что означает – число твердости 200 получено при испытании шариком диаметром 5 мм под нагрузкой 250 кгс и длительности нагрузки 30 с.
При измерении твердости по методу бринелля необходимо выполнять следующие условия:
— образцы с твердостью выше HB 450 кгс/мм2 (4500 МПа) испытывать запрещается;
Источник: https://mirznanii.com/a/270927/metody-izmereniya-tverdosti-materialov-po-vikkersu-brinellyu-rokvellu
Метод определения твердости (Бринелль, Роквелл, Викерс)
Простейшим механическим свойством является твердость. Методы определения твердости в зависимости от скорости приложения нагрузки делятся на статические и динамические, а по способу ее приложения — на методы вдавливания и царапания. Методы определения твердости по Бринеллю, Роквеллу, Виккерсу относятся к статическим методам испытания.
Твердость— это способность материала сопротивляться вдавливанию в него более твердого тела (индентора) под действием внешних сил.
При испытании на твердость в поверхность материалов вдавливают пирамиду, конус или шарик (индентор), в связи с чем различают методы испытаний, соответственно, по Виккерсу, Роквеллу и Бринеллю. Кроме того, существуют менее распространенные методы испытания твердости: метод упругого отскока (по Шору), метод сравнительной твердости (Польди) и некоторые другие.
При испытании материалов на твердость не изготавливают стандартных специальных образцов, однако к размерам и поверхности образцов и изделий предъявляются определенные требования.
О твердости судят либо по площади полученного отпечатка, либо по глубине вдавливания индентора. В результате вдавливания с достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, получают пластическую деформацию.
После снятия нагрузки на образце (детали) остаётся отпечаток.
Малый объём деформируемого металла, возможость проведения испытаний на поверхностях тел различной формы и размеров на деталях небольшой толщины и в очень тонких слоях металла, не пользуясь специально изготовленными образцами, быстрота и простота испытания, а также возможность без разрушения изделия судить о его свойствах вследствие существования количественной зависимости между твёрдостью пластичных металлов и другими механическими свойствами (пределом прочности) делают испытания на твёрдость незаменимым производственным методом массового контроля металла.
Поверхность образца или испытуемого изделия для измерения твёрдости должна быть ровной, гладкой, свободной отокисной плёнки и представлять горизонтальную шлифованную площадку. Образцы должны быть устойчивыми, при испытании образцов неправильной формы необходимо использовать подставки клинообразной формы.
Измерение твердости методом Бринелля Измерение твёрдости по Бринеллю регаментируется ГОСТ 9012-59 « Металлы. Метод измерения твёрдости по Бринеллю»
Испытания проводят на специальных прессах – твердомерах, развивающих строго определенное усилие вдавливания, являющееся стандартным с нагрузкой 3000, 1000, 750 и 250 кгс
В качестве индентора используется стальной закаленный шарик диаметра 2,5; 5 или 10 мм. На поверхности шарика не должно быть царапин, коррозии, вмятин.
Испытания проводят при комнатной температуре. При измерении твёрдости прибор должен быть защищён от ударов и вибраций.
Диаметр отпечатка d измеряют с помощью отсчётного микроскопа (лупа Бринелля) МПБ-2 и переводят в единицы твёрдости по переводным таблицам.
Диаметры отпечатка d1 и d2 измеряются в двух взаимно перпендикулярных направлениях. За диаметр отпечатка принимается среднее арифметическое значение результатов измерений.
Расстояние между центром отпечатка и краем образца должен быть не менее 2,5 диаметров отпечатка, расстояние между центрами двух смежных отпечатков должно быть не менее 4 диаметров отпечатка.
Число твёрдости по Бринеллю определяется делением нагрузки Р кгс (Н) на площадь поверхности сферического отпечатка Fмм2 (м2) и может быть вычислена по формуле:
P – усилие вдавливания, D – диаметр шарика, d – диаметр полученного отпечатка, измеряемый после удаления индентора.
Получаемое число твёрдости НВ зависит от диаметра отпечатка d.
При измерении твёрдости шариком диаметром D =10мм, под нагрузкой Р=3000кгс с выдержкой t=10с число твёрдости по Бринеллю обозначается символом НВ, например НВ 398. Если испытание проводилось шариком диаметром D =5мм, под нагрузкой Р=750кгс с выдержкой t=30с, то число твёрдости по Бринеллю 200будет обозначено НВ 5/750/30-200.
Достоинства метода: высокая универсальность, то есть способность к измерению материалов с разной структурой. За счет изменения диаметра индентора, можно измерять твердость материалов в широком диапазоне. Недостатки метода: можно измерять твердость только относительно мягких материалов, не высокая оперативность.
Измерение твердости методом Роквелла Измерение твёрдости по Роквеллу регаментируется ГОСТ 9013-59 « Металлы. Метод измрения твёрдости по Роквеллу»
В методе Роквелла твердость определяется по глубине вдавливания индентора. В качестве индентора используется алмазный конус с углом при вершине 1200. Метод предназначен для определения твердости:
— закаленной и отпущенной стали (HRC);
— очень твердых материалов (HRА);
— твердость мягких материалов (HRВ). Нагружение в три этапа: а) предварительное малое усилие P0 для обеспечения контакта с образцом; б) основное нагружение усилием P = P0 + Pраб; в) снятие рабочего усилия Pраб. Остается P0 для обеспечения контакта с образцом.
О твердости материала судят по глубине вдавливания h, измеряемого на 3-м этапе нагружения. Для метода Роквелла характерна высокая оперативность. Для повышения универсальности существуют три шкалы:
шкала | обозначение | Нагрузка, кг |
А | HRA | 150 |
В | HRB | 100 |
С | HRC | 60 |
Разным шкалам соответствуют разные рабочие усилия, что позволяет измерять материалы с разными характеристиками твердости.
Измерение твердости методом Виккерса
Методы Бринеля и Роквелла малопроигодны для измерения твердости тонких образцов из-за высоких усилий 9,8 Н< Pраб < 1200 Н. Твердость по Виккерсу измеряют в соответствии сГОСТ 2999-75 « Металлы и сплавы. Метод измерения твёрдости по Викерсу.» При измерении твердости по Виккерсу в качестве индентора используется четырехгранная пирамида с углом при вершине 1360. Нагрузка составляет : 1; 2; 2,5; 3; 5, 10, 20, 30, 50, 100 кг. Для определения твердости черных металлов и сплавов используют нагрузки от 5 до 100 кгс, медных сплавов — от 2,5 до 50 кгс, алюминиевых сплавов — от 1 до 100 кгс. После снятия нагрузки с помощью микроскопа прибора находят длину диагонали отпечатка, а твердость HVрассчитывают по формуле:
D – диагональ отпечатка, k – размерный коэффициент.
Имеется таблица зависимости твердости от величины нагрузки и длины диагонали. Поэтому на практике вычислений не производят, а пользуются готовой расчетной таблицей. Твердость по Виккерсу HVизмеряется в кгс/мм2, Н/мм2 или МПа.
Значение твердости по Виккерсу может изменяться от HV2060 до HV5 при нагрузке 1 кгс. Достоинстваметода: возможность измерять тонкие образцы. Недостатки метода: дополнительные измерения и расчеты.
- Лекция 4 Метод испытания на ударный изгиб при комнатной и пониженной температурах и после механического старения.
- Вязкость – способность материалов поглощать энергию развиваемых в нем трещин.
- Ударная вязкость – способность металлов оказывать сопротивление действию ударных нагрузок.
Ударная вязкость характеризует удельную работу, затрачиваемую на разрушение при ударе образца с надрезом. Ударная вязкость испытывается на маятниковом копре с постоянным запасом работы маятника по ГОСТ 9454-78 «Металлы. Метод испытания на ударный изгиб при пониженной, комнатной и повышенной температурах».
Стандарт распространяется на черные и цветные металлы и сплавы и устанавливает метод испытания при температурах от -100 до +1000 °С.
Метод основан на разрушении ударом маятникового копра образца с концентратором напряжений. В результате испытания определяют полную работу, затраченную при ударе К, или ударную вязкость КС.
Используют образцы прямоугольной формы с концентратором типа U, V, Т (усталостная трещина). Наиболее распространенными образцами являются образцы размерами 55x10x10 мм с U-концентратом 2×2 мм (рис. 6).Образец должен быть строго прямоугольным. Не допускаются к испытаниям образцы со следами обработки на поверхности надреза, с искревлениями, с трещинами и с заусенцами
Рис. 6. Стандартный образец с U-образным надрезом для испытаний на ударный изгиб
Испытания проводят на образцах разного типа с разными надрезами. КС при испытаниях на разных образцах различно. Это необходимо для определения значения КС материала. Используются три вида образца, чтобы зафиксировать место разрушения. На разрушение ударом образца затрачивается только часть энергии маятника, в связи с чем маятник после разрушения образца продолжает двигаться, отклоняясь на определенный угол. Чем больше величина работы, затрачиваемой на разрушение образца, тем на меньший угол он отклоняется от вертикали после разрушения.
- По величине этого угла и определяют работу удара К или работу, затраченную на разрушение образца. Работу разрушения К относят к площади поперечного сечения образца So в месте излома и тем самым находят КС — ударную вязкость:
- KC = K/S0,
- где Kизмеряется в Дж (кгс*м), S0— в м2 (см2).
- В зависимости от вида концентратора ударная вязкость обозначается
- KCU, KCV, КСТ и имеет размерность МДж/м2 (МДж/см2) или кгс*м/см2.
Значение КС сильно зависит от температуры. Для большинства конструкционных материалов существует пороговое значение температуры, при которой характер разрушения скачкообразно меняется: ниже – хрупкое разрушение, малая энергия поглощения; выше – вязкое разрушение, трещины распространяются с трудом.
Tхл – порог хладноломкости. Рабочие температуры выбирают выше значения Tхл
Склонность к механическому старению проводят по ГОСТ 7268-82 «Сталь. Метод определения склонности к механическому старению по испытанию на ударный изгиб.»
Старением называют изменение свойств металлов с течением времени. В результате старения изменяются физико-механические свойства. Прочность и твёрдость повышается, а пластичность и вязкость понижаются. Старение бывает естественное и искуственное.
- Процесс изменения свойств, происходящие во времени при комнатной температуре или при атмосферной называется естественным старением.
- Процесс изменения свойств с течением времени при нагреве до невысоких температур называется искуственным старением.
- Вырезанную из пробы заготовку, с нанесённой на ней длиной 120мм подвергают дефомации растяжения из расчёта получения 10±0,5% остаточного удлинения -12мм.
- Из деформированной заготовки вырезают образцы для испытаний на ударный изгиб и подвергают нагреву (искусственное старение) при температуре 250±100С с выдержкой 1час с последующим охлаждением на воздухе и проводят испытание на ударный изгиб на маятниковом копре при необходимой температуре.
- Факторы влияющие на ударную вязкость:
- 1. Структура металла (крупнозернистый и мелкозернистый излом)
2. Размах маятника.
Дата добавления: 2018-11-26; просмотров: 2834; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник: https://poznayka.org/s1633t2.html
Методы измерения твердости металлов
Существует довольно большое количество различных механических характеристик металла, которые учитываются при производстве различных деталей.
Многие из них зависят от химического состава материала, другие от особенностей эксплуатации.
Измерение твердости металла проводится чаще других испытаний, так как это качество во многом определяет особенности эксплуатации материала. Рассмотрим особенности определения твердости подробнее.
Измерение твердости
Понятие твердости
Твердость – свойство материалов, характеризующее способность проникновения одного, более твердого, тела в другое. Также эта характеристика определяет устойчивость к пластической деформации или разрушению поверхностных слоев при оказании сильного давления.
Измеряется показатель в самых различных единицах в зависимости от применяемого метода.
Все методы определения твердости материалов можно разделить на несколько основных групп:
- Статические. Подобные методы характеризуются тем, что нагрузка постепенно возрастает. Время выдержки может быть разным — все зависит от особенностей применяемого метода.
- Динамические характеризуются тем, что нагрузка на образец подается с определенной кинетической энергией. При этом показатель твердости является менее точным, так как при динамической нагрузке возникает определенная отдача из-за упругости материала. Результаты подобных испытаний зачастую называют твердостью материалов при ударе.
- Кинетические основаны на непрерывной регистрации показателей во время проведения испытаний, что позволяет получить не только конечный, но и промежуточный результат. Для этого применяется специальное оборудование.
Измерение твердости инструмента
Кроме этого, классификация методов определения твердости проводится по принципу приложенной нагрузки. Выделяют следующие способы испытания образца:
- Вдавливание является на сегодняшний день наиболее распространенным способом определения рассматриваемого показателя.
- При отскоке проводится замер того, как высоко боек отлетит от поверхности испытуемого образца. В данном случае просчет твердости проводится по показателю сопротивления упругой деформации. Методы подобного типа довольно часто применяются для контроля качества прокатных валиков и изделий с большими размерами.
- Методы, основанные на царапании и резании, сегодня применяются крайне редко. Были они разработаны два столетия назад.
Как правило, в твердомерах есть деталь, которая оказывает воздействие на испытываемую заготовку. Примером можно назвать стальные шарики различного диаметра и алмазные наконечники с формой пирамиды. Некоторые из применяемых на сегодняшний день методов рассмотрим подробнее.
Измерение твердости по Бринеллю
Чаще всего проводится измерение твердости по Бринеллю. Этот метод регламентирован ГОСТ 9012. К особенностям испытания металлов и сплавов подобным методом можно отнести следующие моменты:
- В качестве тела, которое будет оказывать воздействие на испытуемый образец, используется стальной шарик.
- Для тестирования применяется шарик с определенным диаметром, который изготавливается из закаленной стали. К нему прилагается постоянно нарастающая нагрузка.
- Главным условие применения этого метода тестирования металлов и сплавов является то, что шарик должен изготавливается из более твердого материала, чем испытуемый образец.
- После завершения теста проводится измерение полученного отпечатка на поверхности.
- Данный способ позволяет получить данные, которые указываются в HB. Именно это обозначение сегодня встречается чаще других в различной справочной документации.
- Для удобства применения данного способа были созданы специальные таблицы, которые основаны на зависимости диаметрального размера шарика, твердости и полученного отпечатка.
Измерение по методу Бринеллю
Стоит учитывать, что по Бринеллю не рекомендуется тестировать стали и сплавы, твердость которых превышает значение 450HB. Цветные металлы должны обладать показателем ниже 200 HB.
Измерение твердости по Виккерсу
Также выделяют метод измерения твердости по Виккерсу, который регламентирован ГОСТ 2999. Получил он распространение при определении твердости деталей и заготовок, который имеют небольшую толщину. Кроме этого, он может применяться для измерения твердости деталей, имеющих поверхностный твердый слой.
К особенностям этого способа тестирования образца можно отнести нижеприведенные моменты:
- Применяется так называемый алмазный наконечник, который имеет форму пирамиды с четырьмя гранями и равными сторонами.
- Выбирается определенное время выдержки.
- После того, как снимается нагрузка, проводится измерение размеров диагоналей получившегося отпечатка и вычисляется среднее арифметическое значение.
- Величина прилагаемой нагрузки регламентирована, может выбираться в зависимости от типа тестируемого материала.
- Полученные результаты в ходе проведения исследований обозначаются HV.
Метод Виккерса
В некоторых случаях после полученного значения указывается время выдержки и величина прилагаемой нагрузки, что позволяет с большей точностью определить значение твердости.
Измерение твердости по Роквеллу
Данный метод регламентируется ГОСТ 9013. Для его проведения используется специальный прибор для измерения твердости, который позволяет создать две последовательные нагрузки, прилагаемые к поверхности образца. К особенностям проведения подобного теста можно отнести:
- Сначала оказывается предварительная нагрузка, после чего добавляется вторая.
- После выдержки под общей нагрузкой в течении 3-5 секунд вторая снимается, проводится замер глубины отпечатка, затем снимается предварительная нагрузка.
- Измерение полученных данных проводится в условных единицах, которые равны осевому смещению индикатора на 0,002.
- Определяется число твердости по Роквеллу по специальной шкале прибора.
- Форма применяемого индикатора может существенно отличаться. Именно поэтому было введено несколько типов измерительных шкал, которые соответствуют определенной форме индикатора.
- Для обозначения полученной величины могут применяться обозначения HIRA, HRC, HRB. Они соответствуют форме применяемого индикатора и шкалы обозначения.
Принцип измерения твердости по Роквеллу
В качестве индикатора могут использоваться стальной шарик и два алмазных конуса различного размера.
Этот метод измерения твердости закаленных деталей проводится только при применении алмазного конуса меньшего размера, предварительная оказываемая нагрузка составляет 10 кгс, основная 50 кгс.
За счет предварительной нагрузки исключается вероятность того, что из-за упругости материала полученные значения будут менее точными. Кроме этого, предварительная нагрузка позволяет проводить измерение твердости металлов и сплавов, которые прошли предварительную термическую обработку.
Метод определения твердости по Шору применяется для тестирования прокатных валиков на момент их изготовления. Кроме этого, проверка рассматриваемого показателя может проводиться при эксплуатации валиков на прокатных станках, так как из-за оказываемого воздействия структура металла может изменяться, ухудшая эксплуатационные качества. Регламентирован метод Шора ГОСТ 23273.
Шкала твердости по Шору
Рассматривая измерение твердости по Шору, следует отметить следующие моменты:
- В отличие от предыдущих способов, рассматриваемый основан на свободном падении алмазного индикатора на тестируемую поверхность с определенной высоты. Для тестирования применяется специальное оборудование, которое позволяет фиксировать точно высоту отскока.
- Масса применяемого бойка с алмазным наконечником составляет 36 грамм. Этот показатель важен, так как учитывается при проводимых расчетах.
- Твердость определяется по высоте отскока, измерение проводится в условных единицах. Падение образца на поверхность происходит с образованием небольшого углубления, а упругость приводит к обратному отскоку. Этот метод хорош тем, что позволяет проводить тестирование образцов, которые прошли предварительную термическую обработку. При постепенном вдавливании возникающая нагрузка может стать причиной деформирования используемого наконечника или шарика. В этом случае вероятность их деформации весьма мала.
- За 100 единиц твердости в этом случае принято считать высоту отскока 13,6 мм с возможностью небольшого отклонения в большую или меньшую сторону. Этот показатель можно получить при тестировании углеродистой стали, прошедшей процесс закалки. В качестве обозначения применяется аббревиатура HSD.
Сегодня этот способ измерения твердости применяется довольно редко из-за высокой погрешности и сложности замера высоты отскока байка от тестируемой поверхности.
Как ранее было отмечено, существует довольно большое количество методов измерения рассматриваемого показателя. Однако из-за сложности проведения тестов и большой погрешности многие уже не применяются.
В некоторых случаях проводится тестирование на микротвердость. Для измерения этого показателя прилагается статическая нагрузка к телу с формой пирамиды, и оно входит в испытуемые образец. Время выдержки может варьироваться в большом диапазоне. Показатель вычисляется примерно так же, как при методе Виккерса.
Соотношение значений твердости
При выборе метода измерения твердости поверхности следует учитывать, что между полученными данными нет никакой связи. Другими словами, выполнить точный перевод одной единицы измерения в другую нельзя.
Применяемые таблицы зависимости не имеют физического смысла, так как они эмпирические.
Отсутствие зависимости также можно связать с тем, что при тестировании применяется разная нагрузка, различные формы наконечников.
Существующие таблицы следует применять с большой осторожностью, так как они дают только приблизительные результаты. В некоторых случаях рассматриваемый перевод может оказаться весьма точным, что связано с близкими физико-механическими свойствами испытуемых металлов.
В заключение отметим, что значение твердости связано со многими другими механическими свойствами, к примеру, прочностью, упругостью и пластичностью. Поэтому для определения основных свойств металла довольно часто проводят измерение именно твердости. Однако прямой зависимости между всеми механическими свойствами металлов и сплавов нет, что следует учитывать при проведении измерений.
Источник: https://stankiexpert.ru/tehnologii/izmerenie-tverdosti.html
Твердость. Измерение твердости по Роквеллу, Бринеллю, Виккерсу — ООО "ТЕХИНТЕСТ"
Опубликовано 19.09.2016 13:08
Твердость – сопротивление твердого тела изменению формы (деформированию) либо разрушению в поверхностном слое при местных силовых контактных воздействиях. Проецируя это определение на методы неразрушающего контроля, можем получить следующее определение твердости: это свойство материала сопротивляться пластической деформации.
Наибольшее распространение для определения твердости металлов получили методы, основанные на вдавливании индентора в виде стального шарика (методы Бринелля и Роквелла), алмаза в форме пирамиды (метод Виккерса) или алмаза с округлой вершиной (также метод Роквелла) в испытуемый образец.
Давайте рассмотрим отдельной каждый из указанных методов.
Метод Роквелла – метод определения твердости материалов, преимущественно металлов, основанный на вдавливании под заданной нагрузкой в поверхность испытуемого образца специального индентора – алмаза в форме конуса либо стального закаленного шарика.
Метод назван по имени разработавшего его в 1919 году американского металлурга Стенли Роквелла.
Отличием данного метода является применение небольших испытательных нагрузок (60, 100 и 150 кгс), что позволяет применять его для испытания тонких образцов и окончательно обработанных изделий, а также применение специальных шкал твердости, связанных только с глубиной отпечатка.
Шкалы твердости по Роквеллу.
Существует 11 основных шкал для определения твердости по методу Роквелла. Это шкалы A; B; C; D; E; F; G; H; K; N; T, при этом, как упоминалось ранее, наиболее часто используемые среди них – это шкалы А, В и С с испытательной нагрузкой 60, 100 и 150 кгс соответственно.
Таблица 1. Наиболее широко используемые шкалы твёрдости по Роквеллу.
Шкала | Индентор | Нагрузка, кгс |
А | Алмазный конус с углом 120° при вершине | 60 |
В | Шарик диаметром 1/16 дюйма из карбида вольфрама (или закалённой стали) | 100 |
С | Алмазный конус с углом 120° при вершине | 150 |
Важно отметить, что чем твёрже материал, тем меньше будет глубина проникновения наконечника в него.
Чтобы при большей твёрдости материала не получалось меньшее число твёрдости по Роквеллу, вводят условную шкалу глубин, принимая за одно её деление глубину, равную 0,002 мм.
При испытании алмазным конусом предельная глубина внедрения составляет 0,2 мм, или 0,2/0,002 = 100 делений, при испытании шариком — 0,26 мм, или 0,26/0,002 = 130 делений.
Нормативные документы для метода Роквелла.
- ГОСТ 9013-59. Металлы. Метод измерения твердости по Роквеллу;
- ISO 6508-1: Metallic Materials — Rockwell Hardness Test. Part 1: Test Method (Scales A, B, C, D, E, F, G, H, K, N, T);
- ASTM E-18 Standard Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials;
- ASTM E-140 Standard Hardness Conversion Tables for Metals. Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness.
Метод Виккерса – метод измерения твердости металлов и сплавов, основанный на вдавливании в испытуемый материал правильной четырёхгранной алмазной пирамиды с углом 136° между противоположными гранями. При этом само значение твердости вычисляется путем деления приложенной нагрузки на площадь поверхности полученного пирамидального отпечатка.
Данный метод измерения подходит для определения значений твердости деталей малой толщины из черных и цветных металлов и сплавов; деталей, закаленных на малую глубину, а также деталей, имеющих тонкие слои гальванических покрытий. Основным недостатком метода Виккерса является зависимость измеряемой твёрдости от приложенной нагрузки или глубины внедрения индентора (явление размерного эффекта).
Нормативные документы для метода Виккерса.
- ГОСТ 2999-75 (СТ СЭВ 470-77) – Металлы и сплавы. Метод измерения твердости по Виккерсу;
- ISO 6507-1:2005 Metallic materials. Vickers hardness test. Part 1: Test method.
Метод Бринелля – один из основных методов определения твердости материалов, основанный на вдавливании в поверхность испытуемого материала металлического шарика из твёрдого сплава с определенным диаметром и дальнейшем измерении диаметра полученного отпечатка. В качестве инденторов используются шарики из твёрдого сплава диаметром 1; 2; 2.5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала. При этом сами исследуемые материалы делят на 5 основных групп:
- сталь, никелевые и титановые сплавы;
- чугун;
- медь и сплавы меди;
- лёгкие металлы и их сплавы;
- свинец, олово.
Кроме этого, вышеприведенные группы могут разделяться на подгруппы в зависимости от твёрдости образцов.
Нормативные документы для метода Бринелля.
- ISO 6506-1:2014 «Metallic materials — Brinell hardness test — Part 1: Test method»;
- ДСТУ ISO 6506-1:2007 «Визначення твердості за Брінеллем. Частина 1. Метод випробування»;
- ASTM E-10 «Standard Test Method for Brinell Hardness of Metallic Materials»;
- ASTM E140-07 «Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness».
Важно, также, отметить, что по ISO 6506-1:2005 (ГОСТ 9012-59) регламентированы следующие основные нагрузки для метода Бринелля: 9.807 Н; 24.52 Н; 49.03 Н; 61.29 Н; 98.07 Н; 153.2 Н; 245.2 Н; 294.2 Н; 306.5 Н; 612.9 Н; 980.7 Н; 1226 Н; 2452 Н; 4903 Н; 7355 Н; 9807 Н; 14 710 Н; 29 420 Н.
Среди недостатков метода можно отметить следующие: применим для материалов с твердостью не более 450 HB; измеряемые значения твердости напрямую зависят от приложенной нагрузки (обратный размерный эффект); по краям отпечатка от индентора образуются навалы и наплывы, что затрудняет измерение как диаметра, так и глубины отпечатка; из-за относительно большого диаметра используемых шариков данный метод неприменим для тонких образцов.
Для измерения твердости материалов по указанным методам используются специальные приборы: портативные и стационарные твердомеры. Подробнее о каждом из видов мы расскажем в следующих статьях.
Источник: https://www.techintest.ru/statyi/91-tverdost-izmerenie-po-rockvellu-branellyu%20vikkersu.html
Лабораторные работы по курсу
Тульский
государственный педагогический
университет
им.
Л.Н. Толстого
- Кафедра технологии
- «Материаловедение»
-
для студентов
физического факультета и -
факультета
«Технология, предпринимательство,
экономика»
Тула,
2002
Лабораторные
работы по курсу «Материаловедение» для
студентов физического факультета и
факультета «Технология предпринимательство,
экономика» разработаны проф., к.т.н.
Ростовцевым Н.М., проф., д.т.н. Сергеевым
Н.Н., доц., к.т.н. Абрамовой В.И.
ЛАБОРАТОРНАЯ
РАБОТА №1
Измерение твердости металлов по Бринеллю, Роквеллу и Виккерсу
Цель работы:
ознакомиться с методикой определения
твердости металлов по Бринеллю, Роквеллу
и Виккерсу
Твердость
– это свойство металлов оказывать
сопротивление пластической деформации
или хрупкому разрушению в поверхностном
слое при местных контактных воздействиях
в определенных условиях испытания. Эта
формулировка пригодна для методов
внедрения и для методов царапания.
Разнообразие
методов измерения твердости и разный
физический смысл чисел твердости
затрудняет выработку общего определения
твердости как механического свойства.
В разных методах и при различных условиях
проведения испытаний числа твердости
могут характеризовать упругие свойства,
сопротивление малым или большим
пластическим деформациям, сопротивление
материала разрушению.
Измерение
твердости отличается простотой и высокой
производительностью, отсутствием
разрушения образца, возможностью оценки
свойств отдельных структурных составляющих
и тонких слоев на малой площади.
Существующие
методы измерения твердости отличаются
друг от друга по форме применяемого
индентора, условиям приложения нагрузки
и способу расчета чисел твердости. Выбор
метода определения твердости зависит
от различных факторов: твердости образца
(детали), его размеров, толщины слоя,
твердость которого надо измерить.
Во всех методах
испытания на твердость очень важно
правильно подготовить поверхностный
слой образца. Он должен наиболее полно
характеризовать материал, твердость
которого необходимо определить. Все
поверхностные дефекты (окалина, выбоины,
вмятины, грубые риски) должны быть
удалены.
Требования к качеству испытуемой
поверхности зависят от применяемого
индентора и величины прилагаемой
нагрузки.
Чем меньше глубина вдавливаемости
индентора, тем меньше должна быть
шероховатость поверхности и тем более
строго нужно следить за тем, чтобы
свойства поверхностного слоя не
изменялись вследствие наклепа или
разогрева при шлифовании и полировке.
Нагрузка должна
прилагаться по оси вдавливаемого
индентора перпендикулярно к испытуемой
поверхности. Для соблюдения этого
условия плоскость испытуемой поверхности
образца должна быть строго параллельна
опорной поверхности.
При
определении твердости всеми методами
(кроме микротвердости) измеряют
сопротивление металла внедрению в него
индентора, усредняющее твердость всех
имеющихся структурных составляющих.
Твердость по Бринеллю
При
стандартном (ГОСТ 9012-59) измерении
твердости по Бринеллю стальной шарик
диаметром D
вдавливается в испытуемый образец под
нагрузкой Р, приложенной в течение
определенного времени.
После
снятия нагрузки измеряют диаметр d
оставшегося на поверхности образца
отпечатка (рис.1).
В поверхностном слое
под инден-тором идет интенсивная
пластическая деформация, а диаметр
отпечатка получается тем меньше, чем
выше сопротивление металла образца
деформации, производимой индентором.
Число твердости по Бринеллю (НВ) есть
отношение нагрузки Р, действующей на
шаровой индентор диаметром D
и площади F
шаровой поверхности отпечатка:
-
Размерность
H/мм2;1H/мм2=1МПа0,1кгс/мм2 -
Площадь
отпечатка определяется по глубине
вдавливаемого индентора: - F
= Dh (2)
Число
твердости имеет размерность напряжения
(кгс/мм2,
Н/ мм2),
но в соответствии со стандартом оно не
пишется. При определении твердости НВ
шариком с D=10мм
под нагрузкой Р=3 000 кгс и времени выдержки
=10
сек число твердости записывают так: НВ
400, НВ 250, НВ 230 и так далее.
При использовании
других условий испытания индекс НВ
дополняют цифрами, указывающими диаметр
использованного шарика (мм), нагрузку
(кгс) и продолжительность выдержки (с).
Например, НВ 5(750)30=350 – означает: число
твердости по Бринеллю 350, полученное
при выдавливании шарика D=5мм,
нагрузкой Р=750кгс в течение =30
сек.
При
определении твердости по Бринеллю
используют инденторы с завальцованными
в них шариками следующих диаметров –
2,5; 5 или 10 мм. Шарики имеют твердость не
менее 850 кгс/мм2.
С
помощью метода Бринелля можно испытывать
металлы с твердостью от НВ 8 до НВ 450, при
большой твердости образца шарик индентора
претерпевает остаточную деформацию на
величину, превышающую стандартный
допуск.
Минимальная
толщина испытуемого образца должна
быть не меньше 10-кратной глубины
отпечатка. При известной величине НВ
глубина отпечатка:
Поверхность
образца должна быть тщательно отшлифована,
чтобы края отпечатка были достаточно
отчетливы для измерения его диаметра
с требуемой точностью (0,01-0,05 мм).
Эти
измерения проводят на инструментальных
микроскопах или с помощью измерительной
лупы.
Величина отпечатка d
весьма велика по сравнению с размерами
отпечатка при других методах определения
твердости, что позволяет получать
достоверные средние значения НВ по 3-5
отпечаткам.
Расстояния
от центра отпечатки до края образца
должно быть не менее 2,5d,
а расстояние между центрами двух соседних
отпечатков – не менее 4d
(для металлов НВ 35 соответственно 3d
и 6d).
Из
формулы (1) следует, что для получения
одинаковых значений одного и того же
образца при использовании шарика разного
диаметра необходимо постоянство
отношений P/D2
и d/D.
Это условие геометрического подобия
отпечатков при использовании шарового
индентора.
На практике такого постоянства
добиться невозможно. Отношение d/D
поддерживается в пределах 0,2-0,6. Для
получения отпечатков оптимальных
размеров необходимо правильно подобрать
соотношение между нагрузкой и диаметром
шарика.
В зависимости от твердости
материала величина P/D2
должна быть равной 30 (при НВ>130), 10(HB
35-130) и 2,5 (НВ
Источник: https://studfile.net/preview/2378422/
Соотношения между числами твердости
Твердостью металла называют его свойство оказывать сопротивление пластической деформации при контактном воздействии стандартного тела-наконечника на поверхностные слои материала.
Испытание на твердость — основной метод оценки качества термообработки изделия.
Определение твердости по методу Бринелля. Метод основан на том, что в плоскую поверхность под нагрузкой внедряют стальной шарик. Число твердости НВ определяется отношением нагрузки к сферической поверхности отпечатка.
Метод Роквелла (HR) основан на статическом вдавливании в испытываемую поверхность наконечника под определенной нагрузкой. В качестве наконечников для материалов с твердостью до 450 HR используют стальной шарик. В этом случае твердость обозначают как HRB. При использовании алмазного конуса твердость обозначают как HRA или HRC (в зависимости от нагрузки).
Твердость по методу Виккерса (HV) определяют путем статического вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды. При испытании измеряют отпечаток с точностью до 0,001 мм при помощи микроскопа, который является составной частью прибора Виккерса.
Метод Шора. Сущность данного метода состоит в определении твердости материала образца по высоте отскакивания бойка, падающего на поверхность испытуемого тела с определенной высоты. Твердость оценивается в условных единицах, пропорциональных высоте отскакивания бойка.
Числа твердости HRC для некоторых деталей и инструментов
Головки откидных болтов, гайки шестигранные, рукоятки зажимные | 33…38 |
Головки шарнирных винтов, концы и головки установочных винтов, оси шарниров, планки прижимные и съемные, головки винтов с внутренними шестигранными отверстиями, палец поводкового патрона | 35…40 |
Шлицы круглых гаек | 36…42 |
Зубчатые колеса, шпонки, прихваты, сухари к станочным пазам | 40…45 |
Пружинные и стопорные кольца, клинья натяжные | 45…50 |
Винты самонарезающие, центры токарные, эксцентрики, опоры грибковые и опорные платики, пальцы установочные, цанги | 50…60 |
Гайки установочные, контргайки, сухари к станочным пазам, эксцентрики круговые, кулачки эксцентриковые, фиксаторы делительных устройств, губки сменные к тискам и патронам, зубчатые колеса | 56…60 |
Рабочие поверхности калибров — пробок и скоб | 56…64 |
Копиры, ролики копирные | 58…63 |
Втулки кондукторные, втулки вращающиеся для расточных борштанг | 60…64 |
Таблица соотношений между числами твердости по Бринеллю, Роквеллу, Виккерсу, Шору
65 | 84,5 | — | 2,34 | 688 | 940 | 96 |
64 | 83,5 | — | 2,37 | 670 | 912 | 94 |
63 | 83 | — | 2,39 | 659 | 867 | 93 |
62 | 82,5 | — | 2,42 | 643 | 846 | 92 |
61 | 82 | — | 2,45 | 627 | 818 | 91 |
60 | 81,5 | — | 2,47 | 616 | — | — |
59 | 81 | — | 2,5 | 601 | 756 | 86 |
58 | 80,5 | — | 2,54 | 582 | 704 | 83 |
57 | 80 | — | 2,56 | 573 | 693 | — |
56 | 79 | — | 2,6 | 555 | 653 | 79,5 |
55 | 79 | — | 2,61 | 551 | 644 | — |
54 | 78,5 | — | 2,65 | 534 | 618 | 76,5 |
53 | 78 | — | 2,68 | 522 | 594 | — |
52 | 77,5 | — | 2,71 | 510 | 578 | — |
51 | 76 | — | 2,75 | 495 | 56 | 71 |
50 | 76 | — | 2,76 | 492 | 549 | — |
49 | 76 | — | 2,81 | 474 | 528 | — |
48 | 75 | — | 2,85 | 461 | 509 | 65,5 |
47 | 74 | — | 2,9 | 444 | 484 | 63,5 |
46 | 73,5 | — | 2,93 | 435 | 469 | — |
45 | 73 | — | 2,95 | 429 | 461 | 61,5 |
44 | 73 | — | 3 | 415 | 442 | 59,5 |
42 | 72 | — | 3,06 | 398 | 419 | — |
40 | 71 | — | 3,14 | 378 | 395 | 54 |
38 | 69 | — | 3,24 | 354 | 366 | 50 |
36 | 68 | — | 3,34 | 333 | 342 | — |
34 | 67 | — | 3,44 | 313 | 319 | 44 |
32 | 67 | — | 3,52 | 298 | 302 | — |
30 | 66 | — | 3,6 | 285 | 288 | 40,5 |
28 | 65 | — | 3,7 | 269 | 271 | 38,5 |
26 | 64 | — | 3,8 | 255 | 256 | 36,5 |
24 | 63 | 100 | 3,9 | 241 | 242 | 34,5 |
22 | 62 | 98 | 4 | 229 | 229 | 32,5 |
20 | 61 | 97 | 4,1 | 217 | 217 | 31 |
18 | 60 | 95 | 4,2 | 207 | 206 | 29,5 |
— | 59 | 93 | 4,26 | 200 | 199 | — |
— | 58 | — | 4,34 | 193 | 192 | 27,5 |
— | 57 | 91 | 4,4 | 187 | 186 | 27 |
— | 56 | 89 | 4,48 | 180 | 179 | 25 |
Источник: http://tekhnar.ru/materialy/tverdost.html