Основные физические свойства алюминия и алюминиевых сплавов, которые являются полезными для применения:
Эти свойства алюминия представлены ниже в таблицах [1]. Они могут рассматриваться только как основание для сравнения сплавов и их состояний и не должны применяться для инженерных расчетов.
Они не являются гарантированными величинами, поскольку в большинстве случаев являются осредненными значениями для изделий с различными размерами, формами и методами изготовления.
Поэтому они не могут быть в точности репрезентативными для изделий любых размеров и форм.
Номинальные величины плотности популярных алюминиевых сплавов представлены для отожженного состояния (О). Различия в плотности связаны с тем, что сплавы имеют различные легирующие элементы и в разных количествах: кремний и магний легче алюминия (2,33 и 1,74 г/см3), а железо, марганец, медь и цинк – тяжелее (7,87; 7,40; 8,96 и 7,13 г/см3).
О влиянии физических свойств алюминия и, в частности, его плотности, на конструкционные характеристики алюминиевых сплавов см. здесь.
Алюминий как химический элемент
- Алюминий является третьим по распространенности – после кислорода и кремния – среди около 90 химических элементов, который обнаружены в земной коре.
- Среди элементов-металлов – он первый.
- Этот металл обладает многими полезными свойствами, физическими, механическими, технологическими – благодаря которым он широко применяется во всех сферах человеческой деятельности.
- Алюминий – это ковкий металл, который имеет серебристо-белый цвет и легко обрабатывается большинством методов обработки металлов давлением: прокаткой, волочением, экструзией (прессованием), ковкой.
- Его плотность – удельный вес – составляет около 2,70 граммов на кубический сантиметр.
- Чистый алюминий плавится при температуре 660 градусов Цельсия.
- Алюминий имеет относительно высокие коэффициенты теплопроводности и электропроводности.
- В присутствии кислорода всегда покрыт тонкой, невидимой пленкой оксида. Эта пленка является в значительной степени непроницаемой и имеет довольно высокие защитные свойства. Поэтому алюминий обычно демонстрирует стабильность и длительный срок службы при нормальных атмосферных условиях.
Комбинация свойств алюминия и его сплавов
Алюминий и его сплавы обладают уникальными комбинациями физических и других свойств. Это сделало алюминий одним из наиболее разносторонних, экономически выгодных и привлекательных конструкционных и потребительских материалов.
Алюминий находит применение в очень широком диапазоне – от мягкой, очень пластичной упаковочной фольги до самых ответственных космических проектов.
Алюминий по праву является вторым после стали среди многочисленных конструкционных материалов.
Низкая плотность
Алюминий – это один из самых легких промышленных конструкционных. Плотность алюминия приблизительно в три раза ниже, чем у стали или меди. Это физическое свойство обеспечивает ему высокую удельную прочность – прочность на единицу массы. Поэтому алюминиевые сплавы широко применяют в транспортном машиностроении для увеличения грузоподъемности транспортных средств и экономии топлива.
- Паромные катамараны,
- нефтяные танкеры и
- самолеты –
вот лучшие примеры применения алюминия в транспорте.
Рисунок 1 – Плотность алюминия в зависимости от его чистоты и температуры [2]
Коррозионная стойкость
Алюминий имеет высокую коррозионную стойкость благодаря тонкому слою оксида алюминия на его поверхности. Эта оксидная пленка мгновенно образуется, как только свежая поверхность алюминия входит в контакт с воздухом (рисунок 2).
Во многих случаях это свойство позволяет применение алюминия без какой-либо специальной обработки поверхности. Если требуется дополнительное защитное или декоративное покрытие, то применяют анодирование или окраску его поверхности.
Рисунок 2
а – естественное оксидное покрытие на сверхчистом алюминии;
б – коррозия алюминия чистотой 99,5 % с естественным оксидным покрытием
в коорозионно агрессивной среде [2]
Прочность
Прочностные свойства чистого алюминия являются довольно низкими (рисунок 3). Однако эти механические свойства могут возрастать очень сильно, если в алюминий добавляют легирующие элементы и, кроме того, его подвергают термическому (рисунок 4) или деформационному (рисунок 5) упрочнению.
Типичными легирующими элементами являются:
- марганец,
- кремний,
- медь,
- магний
- и цинк.
Рисунок 3 – Влияние чистоты алюминия на его прочность и твердость [2]
Рисунок 4 – Прочностные свойства высокочистых деформируемых
алюминиево-медных сплавов в различных состояниях [2]- (О – отожженный, W – сразу после закалки, Т4 – естественно состаренный, Т6 – искусственно состаренный)
Рисунок 5 – Механические свойства алюминия 99,50 %
в зависимости от степени полученной холодной деформации [2]
Прочность при низких температурах
Известно, что сталь становится хрупкой при низких температурах. Алюминий же, напротив, при низких температурах повышает свою прочность и сохраняет высокую вязкость. Именно это физическое свойство дало возможность его применения в космических аппаратах, которые работают в условиях космического холода.
Рисунок – Изменение механические свойства алюминиевого сплава 6061
с понижением температуры
Теплопроводность
Алюминий проводит тепло в три раза быстрее, чем сталь. Это физическое свойство является очень важным в теплообменных аппаратах для нагрева или охлаждения рабочей среды. Отсюда – широкое применение алюминия и его сплавов в кухонной посуде, кондиционерах воздуха, примышленных и автомобильных теплообменниках.
Отражательная способность
Алюминий является отличным отражателем лучистой энергии во всем интервале длин волн. Это физическое свойство позволяет применять его в приборах, которые работают от ультрафиолетового спектра через видимый спектр до инфракрасного спектра и тепловых волн, а также таких электромагнитных волн, как радиоволны и радарные волны [1].
Алюминий имеет способность отражать более 80 % световых волн, что обеспечивает ему широкое применение в осветительных приборах (рисунок 6).
Благодаря этому физическому свойству он находит применение в теплоизоляционных материалах.
Например, алюминиевая кровля отражает большую долю солнечного излучения, что обеспечивает в помещениях прохладную атмосферу летом и, в то же время, сохраняет тепло помещения зимой.
Рисунок 6 – Отражательные свойства алюминия [2]
Электрические свойства
- Алюминий является одним из двух доступных металлов, которые имеют достаточно высокую электрическую проводимость, чтобы применять их в качестве электрических проводников.
- Электрическая проводимость «электрической» марки алюминия 1350 составляет около 62 % от международного стандарта IACS – электрической проводимости отожженной меди.
- Однако удельный вес алюминия составляет только треть от удельного веса меди. Это означает, что он проводит в два раза больше электричества, чем медь того же веса. Это физическое свойство обеспечивает алюминию широкое применение в высоковольтных линиях электропередачи (ЛЭП), трансформаторах, электрических шинах и цоколях электрических лампочек.
Магнитные свойства
Алюминий обладает свойством не намагничиваться в электромагнитных полях. Это делает его полезным при защите оборудования от воздействия электромагнитных полей. Другим применением этого свойства является компьютерные диски и параболические антенны.
Токсические свойства
Это свойство алюминия – отсутствие токсичности – было обнаружено еще в начале его промышленного освоения.
Именно это свойство алюминия дало возможность его применения для изготовления кухонной посуды и приборов без какого-либо вредного воздействия для тела человека.
Алюминий со своей гладкой поверхностью легко поддается чистке, что важно для обеспечения высокой гигиены при приготовлении пищи. Алюминиевая фольга и контейнеры широко и безопасно применяются при упаковке с прямым контактом с продуктами.
Звукоизоляционные свойства
Это свойство алюминия дает ему применение при выполнении звукоизоляции потолков.
Способность поглощать энергию удара
Алюминий имеет модуль упругости в три раза меньший, чем у стали. Это физическое свойство дает большое преимущество для изготовления автомобильных бамперов и других средств безопасности автомобилей.
Рисунок 7 – Автомобильные алюминиевые профили
для поглощения энергии удара при аварии
Пожаробезопасные свойства
Алюминиевые детали не образует искр при ударе друг о друга, а также другие цветные металлы. Это физическое свойство находит применение при повышенных мерах пожарной безопасности конструкций, например, на морских нефтяных вышках.
Технологические свойства
Легкость, с которой алюминий может быть переработан в любую форму – технологичность, является одним из наиболее важных его достоинств. Очень часто он может успешно конкурировать с более дешевыми материалами, которые намного труднее обрабатывать:
- Этот металл может быть отлит любым методом, который известен металлургам-литейщикам.
- Он может прокатан до любой толщины вплоть до фольги, которая тоньше листа бумаги.
- Алюминиевые листы можно штамповать, вытягивать, высаживать и формовать всем известными методами обработки металлов давлением.
- Алюминий можно ковать всеми методами ковки
- Алюминиевая проволока, которую волочат из круглого прутка, может затем сплетаться в электрические кабели любого размера и типа.
- Почти не существует ограничений формы профилей, в которые получают из этого металла методом экструзии (прессования).
Источники:
- Aluminium and Aluminium Alloys. – ASM International, 1993.
- A. Sverdlin Properties of Pure Aluminum // Handbook of Aluminum, Vol. 1 /ed. G.E. Totten, D.S. MacKenzie, 2003
- Technical Brochures
- Применение алюминия и его сплавов
Источник: https://aluminium-guide.ru/fizicheskie-xarakteristik-deformiruemyx-alyuminievyx-splavov/
Химические и физические свойства алюминия. Физические свойства гидроксида алюминия :
Этот легкий металл с серебристо-белым оттенком в современной жизни встречается почти повсеместно. Физические и химические свойства алюминия позволяют широко использовать его в промышленности.
Самые известные месторождения – в Африке, Южной Америке, в Карибском регионе. В России места добычи бокситов имеются на Урале. Мировыми лидерами по производству алюминия являются Китай, РФ, Канада, США.
Добыча Al
В природе этот серебристый металл в силу своей высокой химической активности встречается лишь в виде соединений. Наиболее известные геологические породы, содержащие алюминий, – это бокситы, глиноземы, корунды, полевые шпаты. Промышленное значение имеют бокситы и глиноземы, именно месторождения этих руд позволяют добывать алюминий в чистом виде.
Свойства
Физические свойства алюминия позволяют легко вытягивать заготовки этого металла в проволоку и прокатывать в тонкие листы. Этот металл не является прочным, для повышения данного показателя при выплавке его легируют различными добавками: медью, кремнием, магнием, марганцем, цинком.
Для промышленного назначения важно еще одно физическое свойство вещества алюминия – это его способность быстро окисляться на воздухе. Поверхность изделия из алюминия в естественных условиях обычно покрыта тонкой оксидной пленкой, которая эффективно защищает металл и препятствует его коррозии.
При уничтожении этой пленки серебристый металл быстро окисляется, при этом его температура заметно повышается.
Внутреннее строение алюминия
Физические и химические свойства алюминия во многом зависят от его внутреннего строения. Кристаллическая решетка этого элемента является разновидностью гранецентрированного куба.
Данный тип решетки присущ многим металлам, таким, как медь, бром, серебро, золото, кобальт и другие. Высокая теплопроводность и способность проводить электричество сделали этот металл одним из самых востребованных в мире. Остальные физические свойства алюминия, таблица которых представлена ниже, раскрывают полностью его свойства и показывают сферы их применения.
Легирование алюминия
Физические свойства меди и алюминия таковы, что при добавлении к алюминиевому сплаву некоторого количества меди его кристаллическая решетка искривляется, и прочность самого сплава повышается. На этом свойстве Al основано легирование легких сплавов для повышения их прочности и стойкости к воздействию агрессивной среды.
Объяснение процесса упрочнения лежит в поведении атомов меди в кристаллической решетке алюминия. Частицы Cu стремятся выпасть из кристаллической решетки Al, группируются на ее особых участках.
Там, где атомы меди образуют скопления, образуется кристаллическая решетка смешанного типа CuAl2 , в которой частицы серебристого металла одновременно входят в состав и общей кристаллической решетки алюминия, и в состав решетки смешанного типа CuAl2. Силы внутренних связей в искаженной решетке гораздо больше, чем в обычной. А значит, и прочность новообразованного вещества гораздо выше.
Химические свойства
Известно взаимодействие алюминия с разбавленными серной и соляной кислотой. При нагревании этот металл в них легко растворяется. Холодная концентрированная или сильно разбавленная азотная кислота не растворяет этот элемент. Водные растворы щелочей активно воздействуют на вещество, в процессе реакции образуя алюминаты – соли, в составе которых имеются ионы алюминия. Например:
Al2O3 +3H2O+2NaOH=2Na[Al(OH)4]
Получившееся в результате реакции соединение носит название тетрагидроксоалюминат натрия.
Тонкая пленка на поверхности алюминиевых изделий защищает этот металл не только от воздуха, но и от воды. Если эту тонкую преграду убрать, элемент станет бурно взаимодействовать с водой, выделяя из нее водород.
- 2AL+6H2O= 2 AL (OH)3+3Н2↑
- Образовавшееся вещество называется гидроксидом алюминия.
- AL (OH)3 реагирует с щелочью, образуя кристаллы гидроксоалюмината:
- Al(OH)2+NaOH=2Na[Al(OH)4]
- Если это химическое уравнение сложить с предыдущим, получим формулу растворения элемента в щелочном растворе.
- Al(OH)3+2NaOH+6H2O=2Na [Al(OH)4]+3H2↑
Горение алюминия
Физические свойства алюминия позволяют ему вступать в реакцию с кислородом. Если порошок этого металла или алюминиевую фольгу нагреть, то она вспыхивает и горит белым ослепительным пламенем. В конце реакции образуется оксид алюминия Al2O3.
Глинозем
Полученный оксид алюминия имеет геологическое название глинозем. В естественных условиях он встречается в виде корунда – твердых прозрачных кристаллов.
Корунд отличается высокой твердостью, в шкале твердых веществ его показатель составляет 9.
Сам корунд бесцветен, но различные примеси могут окрасить его в красный и синий цвет, так получаются драгоценные камни, которые в ювелирном деле называются рубинами и сапфирами.
Физические свойства оксида алюминия позволяют выращивать эти драгоценные камни в искусственных условиях. Технические драгоценные камни используются не только для ювелирных украшений, они применяются в точном приборостроении, для изготовления часов и прочего. Широко используются искусственные кристаллы рубина и в лазерных устройствах.
Мелкозернистая разновидность корунда с большим количеством примесей, нанесенная на специальную поверхность, известна всем как наждак. Физические свойства оксида алюминия объясняют высокие абразивные свойства корунда, а также его твердость и устойчивость к трению.
Гидроксид алюминия
Al2 (OH)3 является типичным амфотерным гидроксидом. В соединении с кислотой это вещество образует соль, содержащую положительно заряженные ионы алюминия, в щелочах образует алюминаты. Амфотерность вещества проявляется в том, что он может вести себя и как кислота, и как щелочь. Это соединение может существовать и в желеобразном, и в твердом виде.
В воде практически не растворяется, но вступает в реакцию с большинством активных кислот и щелочей. Физические свойства гидроксида алюминия используются в медицине, это популярное и безопасное средство снижения кислотности в организме, его применяют при гастритах, дуоденитах, язвах. В промышленности Al2 (OH)3 используется в качестве адсорбента, он прекрасно очищает воду и осаждает растворенные в ней вредные элементы.
Промышленное использование
Алюминий был открыт в 1825 году. Поначалу данный металл ценился выше золота и серебра. Это объяснялось сложностью его извлечения из руды.
Физические свойства алюминия и его способность быстро образовывать защитную пленку на своей поверхности затрудняли исследование этого элемента.
Лишь в конце 19 века был открыт удобный способ плавки чистого элемента, пригодный для использования в промышленных масштабах.
Легкость и способность сопротивляться коррозии – уникальные физические свойства алюминия. Сплавы этого серебристого металла применяются в ракетной технике, в авто-, судо-, авиа- и приборостроении, в производстве столовых приборов и посуды.
Как чистый металл Al используется при изготовлении деталей для химической аппаратуры, электропроводов и конденсаторов.
Физические свойства алюминия таковы, что его электропроводность не так высока, как у меди, но этот недостаток компенсируется легкостью рассматриваемого металла, что позволяет делать провода из алюминия более толстыми. Так, при одинаковой электропроводности алюминиевый провод весит в два раза меньше медного.
Не менее важным является применение Al в процессе алитирования. Так называется реакция насыщения поверхности чугунного или стального изделия алюминием с целью защиты основного металла от коррозии при нагревании.
В настоящее время изведанные запасы алюминиевых руд вполне сопоставимы с потребностями людей в этом серебристом металле. Физические свойства алюминия могут преподнести еще немало сюрпризов его исследователям, а сферы применения этого металла гораздо шире, чем можно представить.
Источник: https://www.syl.ru/article/187993/new_himicheskie-i-fizicheskie-svoystva-alyuminiya-fizicheskie-svoystva-gidroksida-alyuminiya
№13 Алюминий
Около 1807 г. Дэви, пытавшийся осуществить электролиз глинозема, дал название предполагаемому в нем металлу алюмиум (Alumium).
Впервые алюминий был получен Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути. В 1827 г.
Велер выделил металлический алюминий более эффективным способом — нагреванием безводного хлористого алюминия с металлическим калием.
Нахождение в природе, получение:
По распространенности в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Содержание алюминия в земной коре по данным различных исследователей составляет от 7,45% до 8,14% от массы земной коры.
В природе алюминий встречается только в соединениях (минералах). Корунд: Al2O3 — относится к классу простых оксидов, и иногда образует прозрачные драгоценные кристаллы — сапфира, и, с добавлением хрома, рубина. Накапливается в россыпях.
Бокситы: Al2O3*nH2O — осадочные алюминиевые руды.
Содержат вредную примесь — SiO2. Бокситы служат важным сырьем для получения алюминия, а также красок, абразивов. Каолинит: Al2O3*2SiO2*2H2O — минерал подкласса слоистых силикатов, главная составная часть белой, огнеупорной, и фарфоровой глины.
Современный метод получения алюминия был разработан независимо американцем Чарльзом Холлом и французом Полем Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF3 с последующим электролизом с использованием графитовых электродов.
Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке. Для производства 1 т алюминия требуется 1,9 т глинозёма и 18 тыс. кВт·ч электроэнергии.
Физические свойства:
Металл серебристо-белого цвета, легкий, плотность 2,7 г/см3, температура плавления 660°C, температура кипения 2500°C. Высокая пластичность, прокатывается в тонкий лист и даже фольгу. Алюминий обладает высокой электропроводностью и теплопроводностью, обладает высокой светоотражательной способностью. Алюминий образует сплавы почти со всеми металлами.
Химические свойства:
При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°);O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией.
Однако, при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель.
Легко реагирует с простыми веществами: кислородом, галогенами: 2Al + 3Br2 = 2AlBr3
С другими неметаллами алюминий реагирует при нагревании:
- 2Al + 3S = Al2S3 2Al + N2 = 2AlN
- 2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2
- 2Al + 3H2SO4(разб) = Al2(SO4)3 + 3H2 2Al + 6H2SO4(конц) = Al2(SO4)3 + 3SO2 + 6H2O
Алюминий способен только растворять водород, но не вступает с ним в реакцию.
Со сложными веществами: алюминий реагирует со щелочами (с образованием тетрагидроксоалюминатов):
Легко растворяется в разбавленной и концентрированной серной кислотах:
Алюминий восстанавливает металлы из их оксидов (алюминотермия): 8Al + 3Fe3O4 = 4Al2O3 + 9Fe
Важнейшие соединения:
Оксид алюминия, Al2O3: твердое, тугоплавкое вещество белого цвета. Кристаллический Al2O3 химически пассивен, аморфный — более активен. Медленно реагирует с кислотами и щелочами в растворе, проявляя амфотерные свойства:
Al2O3 + 6НСl(конц.) = 2АlСl3 + ЗН2О
Al2O3 + 2NаОН(конц.
) + 3Н2О = 2Na[Al(OH)4] (в расплаве щелочи образуется NaAlO2). Гидроксид алюминия, Al(OH)3: белый аморфный (гелеобразный) или кристаллический. Практически не растворим в воде. При нагревании ступенчато разлагается. Проявляет амфотерные, равно выраженные кислотные и основные свойства.
При сплавлении с NaOH образуется NaAlO2.
Для получения осадка Аl(ОН)3 щелочь обычно не используют (из-за легкости перехода осадка в раствор), а действуют на соли алюминия раствором аммиака — при комнатной температуре образуется Аl(ОН)3 Соли алюминия.
Соли алюминия и сильных кислот хорошо растворимы в воде и подвергаются в значительной степени гидролизу по катиону, создавая сильнокислотную среду, в которой растворяются такие металлы, как магний и цинк:
Al3+ + H2O =AlOH2+ + H+ Нерастворимы в воде фторид AlF3 и ортофосфат АlРO4, а соли очень слабых кислот, например Н2СО3, вообще не образуются осаждением из водного раствора.
Известны двойные соли алюминия — квасцы состава MAl(SO4)2*12H2O (M=Na+, K+, Rb+, Cs+, ТI+, NH4+), самые распространенные из них алюмокалиевые квасцы KAl(SO4)2*12Н2O.
Растворение амфотерных гидроксидов в щелочных растворах рассматривается как процесс образования гидроксосолей (гидроксокомплексов). Экспериментально доказано существование гидроксомплексов [Аl(ОН)4(Н2О)2] -, [Аl(ОН)6]3-, [Аl(ОН)5(Н2O)]2-; из них первый — наиболее прочный. Координационное число алюминия в этих комплексах равно 6, т.е. алюминий является шестикоординированным. Бинарные соединения алюминия Соединения с преимущественно ковалентными связями, например сульфид Al2S3 и карбид Аl4С3 полностью разлагаются водой:
Al2S3 + 6Н2О = 2Аl(ОН)3 + 3Н2S Аl4С3 + 12H2O = 4Аl(ОН)3 + 3СН4
Применение:
Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость, высокая теплопроводность. Алюминий является важным компонентом многих сплавов (медные — алюминиевые бронзы, магниевые и др.) Применяется в электротехнике для изготовления проводов, их экранирования.
Алюминий широко используется и в тепловом оборудовании и в криогенной технике.
Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал.
Алюминий и его соединения используются в ракетной технике в качестве ракетного горючего.
В производстве строительных материалов как газообразующий агент.
Аллаяров Дамир
ХФ ТюмГУ, 561 группа.
Источник: http://www.kontren.narod.ru/x_el/info13.htm
2.2.3. Характерные химические свойства алюминия
Алюминий — амфотерный металл. Электронная конфигурация атома алюминия 1s22s22p63s23p1. Таким образом, на внешнем электронном слое у него находятся три валентных электрона: 2 — на 3s- и 1 — на 3p-подуровне.
В связи с таким строением для него характерны реакции, в результате которых атом алюминия теряет три электрона с внешнего уровня и приобретает степень окисления +3.
Алюминий является высокоактивным металлом и проявляет очень сильные восстановительные свойства.
Взаимодействие алюминия с простыми веществами
с кислородом
При контакте абсолютно чистого алюминия с воздухом атомы алюминия, находящиеся в поверхностном слое, мгновенно взаимодействуют с кислородом воздуха и образуют тончайшую, толщиной в несколько десятков атомарных слоев, прочную оксидную пленку состава Al2O3, которая защищает алюминий от дальнейшего окисления. Невозможно и окисление крупных образцов алюминия даже при очень высоких температурах. Тем не менее, мелкодисперсный порошок алюминия довольно легко сгорает в пламени горелки:
4Аl + 3О2 = 2Аl2О3
с галогенами
Алюминий очень энергично реагирует со всеми галогенами. Так, реакция между перемешанными порошками алюминия и йода протекает уже при комнатной температуре после добавления капли воды в качестве катализатора. Уравнение взаимодействия йода с алюминием:
- 2Al + 3I2 =2AlI3
- С бромом, представляющим собой тёмно-бурую жидкость, алюминий также реагирует без нагревания. Образец алюминия достаточно просто внести в жидкий бром: тут же начинается бурная реакция с выделением большого количества тепла и света:
- 2Al + 3Br2 = 2AlBr3
- Реакция между алюминием и хлором протекает при внесении нагретой алюминиевой фольги или мелкодисперсного порошка алюминия в заполненную хлором колбу. Алюминий эффектно сгорает в хлоре в соответствии с уравнением:
- 2Al + 3Cl2 = 2AlCl3
с серой
При нагревании до 150-200 оС или после поджигания смеси порошкообразных алюминия и серы между ними начинается интенсивная экзотермическая реакция с выделением света:
— сульфид алюминия
с азотом
При взаимодействии алюминия с азотом при температуре около 800 oC образуется нитрид алюминия:
с углеродом
При температуре около 2000oC алюминий взаимодействует с углеродом и образует карбид (метанид) алюминия, содержащий углерод в степени окисления -4, как в метане.
Взаимодействие алюминия со сложными веществами
с водой
Как уже было сказано выше, стойкая и прочная оксидная пленка из Al2O3 не дает алюминию окисляться на воздухе. Эта же защитная оксидная пленка делает алюминий инертным и по отношению к воде.
При снятии защитной оксидной пленки с поверхности такими методами, как обработка водными растворами щелочи, хлорида аммония или солей ртути (амальгирование), алюминий начинает энергично реагировать с водой с образованием гидроксида алюминия и газообразного водорода:
2Al + 6H2O = 2Al(OH)3 + 3H2↑
с оксидами металлов
После поджигания смеси алюминия с оксидами менее активных металлов (правее алюминия в ряду активности) начинается крайне бурная сильно-экзотермическая реакция. Так, в случае взаимодействия алюминия с оксидом железа (III) развивается температура 2500-3000оС. В результате этой реакции образуется высокочистое расплавленное железо:
2AI + Fe2O3 = 2Fe + Аl2О3
Данный метод получения металлов из их оксидов путем восстановления алюминием называется алюмотермией или алюминотермией.
с кислотами-неокислителями
Взаимодействие алюминия с кислотами-неокислителями, т.е. практически всеми кислотами, кроме концентрированной серной и азотной кислот, приводит к образованию соли алюминия соответствующей кислоты и газообразного водорода:
- а) 2Аl + 3Н2SO4(разб.) = Аl2(SO4)3 + 3H2↑
- 2Аl0 + 6Н+ = 2Аl3+ + 3H20;
- б) 2AI + 6HCl = 2AICl3 + 3H2↑
с кислотами-окислителями
-концентрированной серной кислотой
Взаимодействие алюминия с концентрированной серной кислотой в обычных условиях, а также низких температурах не происходит вследствие эффекта, называемого пассивацией. При нагревании реакция возможна и приводит к образованию сульфата алюминия, воды и сероводорода, который образуется в результате восстановления серы, входящей в состав серной кислоты:
Такое глубокое восстановление серы со степени окисления +6 (в H2SO4) до степени окисления -2 (в H2S) происходит благодаря очень высокой восстановительной способности алюминия.
— концентрированной азотной кислотой
Концентрированная азотная кислота в обычных условиях также пассивирует алюминий, что делает возможным ее хранение в алюминиевых емкостях. Так же, как и в случае с концентрированной серной, взаимодействие алюминия с концентрированной азотной кислотой становится возможным при сильном нагревании, при этом преимущественно протекает реакция:
— разбавленной азотной кислотой
- Взаимодействие алюминия с разбавленной по сравнению с концентрированной азотной кислотой приводит к продуктам более глубокого восстановления азота. Вместо NO в зависимости от степени разбавления могут образовываться N2O и NH4NO3:
- 8Al + 30HNO3(разб.) = 8Al(NO3)3 +3N2O↑ + 15H2O
- 8Al + 30HNO3(оч. разб) = 8Al(NO3)3 + 3NH4NO3 + 9H2O
со щелочами
- Алюминий реагирует как с водными растворами щелочей:
- 2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2↑
- так и с чистыми щелочами при сплавлении:
- В обоих случаях реакция начинается с растворения защитной пленки оксида алюминия:
- Аl2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4]
- Аl2О3 + 2NaOH = 2NaAlO2 + Н2О
- В случае водного раствора алюминий, очищенный от защитной оксидной пленки, начинает реагировать с водой по уравнению:
- 2Al + 6H2O = 2Al(OH)3 + 3H2↑
- Образующийся гидроксид алюминия, будучи амфотерным, реагирует с водным раствором гидроксида натрия с образованием растворимого тетрагидроксоалюмината натрия:
- Al(OH)3 + NaOH = Na[Al(OH)4]
Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/himicheskie-svojstva-aljuminija
Статьи
Свойства алюминия
Алюминий — серебристо-белый легкий металл. Расположен в III группе Периодической системы элементов Д.И.Менделеева под номером 13; атомная масса алюминия — 26,98.
Конфигурация внешней электронной оболочки 3s23р; атомный радиус — 0,143 мм, ионный радиус А1 3+ (в скобках указаны координационные числа) 0,053 нм (4); 0,062 нм (5); 0,067 нм (6); энергия ионизации А1 -» А1 + -> А1 2+ —> А1 3+ — соответственно 5,984; 18,828; 28,44 эВ; сродство к электрону 0,5 эВ; электроотрицательность по Поллингу — 1,5; поперечное сечение захвата тепловых нейтронов — 215*10-25 м2 [3]. Алюминий имеет кубическую гранецентрированную кристаллическую решетку с параметрами: а = 0,40403 нм, z = 4, пространственная группа Fm3m. В природе существует один стабильный изотоп 27А1.
Отличительные особенности алюминия — высокая электропроводимость, теплопроводность, коррозионная стойкость, малая плотность и отличная обрабатываемость давлением в холодном состоянии.
Физические свойства алюминия [2-6]
Плотность (99,996% А1), г/см3, при температуре: | |
20 °С | 2,6989 |
1000 °С | 2,289 |
плавления | 660 |
кипения | ~2452 |
плавления | 10,55 |
испарения | 291,4 |
Давление пара, Па, при температуре: | |
660 °С | 0,266 |
1123 °С | 13 3 |
1279 °С | 133 |
Удельная теплоемкость, Дж/(кг*К), при температуре: | |
20 °С | 929,46 |
100 °С | 931,98 |
Коэффициент линейного расширения при температуре 20-100 °С, К-1 | 24,58*10-6 |
Теплопроводность, Вт/( м*К), при температуре: | |
20 °С | 217 |
190 °С | 343 |
Электропроводность по отношению к меди при температуре 20 °С | 65,5% |
Удельное электросопротивление, мк*Ом*м | 0.0265 |
Температурный коэффициент электросопротивления | 0,042 |
Динамическая вязкость (99,85% А1), Н*с/м2, при температуре: | |
800 °С | 2*10-3 |
1123 °С | 1,540-3 |
1279 °С | 1,3*10-3 |
Модуль нормальной упругости Е, МПа, при температуре: | |
180 °С | 7,8*104 |
20 °С | 7,1*104 |
100 °С | 7,0*104 |
200 °С | 6,6*104 |
400 °С | 5,6*104 |
500 °С | 5,0*104 |
600 °С | 4,4*104 |
Модуль сдвига при температуре 20 °С | 2,7*104 МПа |
Магнитная характеристика алюминия | Слабо парамагнитен |
Механические свойства алюминия [4-6]
Временное сопротивление разрыву σв,МПА: | |
в отожженном состоянии | 50 |
в деформированном (холоднокатаном) состоянии | 115 |
в отожженном состоянии | 50-80 |
в деформированном состоянии | 120 |
Предел усталости (500*10 6 циклов),σ -1: | |
в отожженном состоянии | 40 |
в деформированном состоянии | 50 |
Предел ползучести, при температуре: | |
15 °С | 50 |
100 °С | 27 |
200 °С | 7 |
Предел прочности при срезе,σ ср: | |
в отожженном состоянии | 60 |
в деформированном состоянии | 100 |
Относительное удлинение,δ: | |
в отожженном состоянии | 30-40% |
в деформированном состоянии | 5-10% |
Относительное сужение, ψ: | |
в отожженном состоянии | 70-90% |
в деформированном состоянии | 50-60% |
Ударная вязкость при температуре 20 °С aм | 140 |
Твердость по Бринеллю, НВ: | |
в отожженном состоянии | 25 |
в литом состоянии | 20 |
в деформированном состоянии | 30-35 |
При охлаждении алюминия до температуры ниже 120 К его прочностные свойства в отличии от большинства металлов возрастают, а пластичность не изменяется (табл. 1.7).
Таблица 1.7.
Механические свойства алюминия различной чистоты
Состояние | Содержание Аl, % | Предел прочности при растяжении σв2МПа | Предел текучести при растяжении σ.00,2, МПа | Относительное удлинение δ, % | Твердость по Бринеллю, НВ |
Литой в землю | 99,996 | 50 | — | 45 | 13-15 |
Литой в землю | 99,5 | 75 | — | 29 | 20 |
Литой в землю | 99.0 | 85 | — | 20 | 25 |
Литой в кокиль | 99,0 | 90 | — | 25 | 25 |
Деформированный и отожженный | 99.0 | 90 | 30 | 30 | 25 |
Деформированный | 99,0 | 140 | 100 | 12 | 32 |
Литой в землю | 98,0 | 90 | 35 | 12,5 | 28 |
Технологические свойства алюминия [6]
Температура | |
литья горячей обработки отжига отпуска Линейная усадка, % Допускаемая деформация (холодная и горячая), % Начало рекристаллизации, °СЖидкотекучесть, мм. | 690-710 350-450 370-400 150 2,7 75-90 150 317 |
Коррозионные свойства алюминия [6].
Алюминий и его сплавы характеризуются высокой коррозионной стойкостью в атмосферных условиях как сельской местности, так и городских промышленных районов.
Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия и его сплавов. Алюминий практически не корродирует в дистиллированной и чистой пресной (естественной) воде даже при высоких температурах (до 180 °С). Действие пара на алюминий и его сплавы также незначительно.
Вода, содержащая примеси щелочей, резко повышает скорость коррозии алюминия. При комнатной температуре скорость коррозии алюминия в аэрированной воде содержащей 0,1% едкого натрия — 16 мм/год; 0,1% соляной кислоты — 1 мм/год и 1% соды — 4 мм/год.
Алюминий и его сплавы, не содержащие меди, достаточно стойки в естественной (не загрязненной) морской воде. Сернокислые соли магния, натрия, алюминия, а также гипосульфит практически не действуют на технический алюминий. Скорость коррозии алюминия возрастает в присутствии в воде солей ртути, меди или ионов хлора, разрушающих защитную оксидную пленку на алюминии.
В концентрированной азотной кислоте при комнатной температуре алюминий и его сплавы устойчивы, но быстро разрушаются в разбавленных кислотах.
Слабые растворы серной кислоты, концентрацией до 10%, при комнатной температуре незначительно влияют на технический алюминий, но с повышением концентрации и температуры скорость коррозии резко возрастает. В концентрированной серной кислоте алюминий практически устойчив.
Соляная кислота быстро разрушает алюминий и его сплавы, особенно с повышением температуры. Такое же действие на алюминий оказывают растворы плавиковой и бромистоводородной кислот. Слабые растворы фосфорной (менее 1%), хромовой (до 10%) и борной (при всех концентрациях) кислот на алюминий и его сплавы действуют незначительно.
Органические кислоты — уксусная, масляная, лимонная, винная, а также кислые (незагрязненные) фруктовые соки, вино оказывают слабое действие на алюминий и его сплавы, за исключением щавелевой и муравьиной кислот.
Алюминий и его сплавы быстро разрушаются в растворах едких щелочей, однако в растворах аммиака они довольно стойки, особенно сплавы, содержащие магний. Амины на них действуют также незначительно.
Следует отметить, что алюминий и однофазные сплавы на алюминиевой основе более стойки в коррозионном отношении, чем сплавы двухфазные и многофазные.
Влияние примесей на свойства алюминия. На коррозионные, физические, механические и технологические свойства алюминия оказывают значительное влияние примеси различных элементов. Так, например, большинство примесей снижают электропроводность алюминия (рис. 1.1).
Основные примеси в алюминии — железо и кремний. Железо снижает коррозионную стойкость, электропроводность и пластичность алюминия, но несколько повышает его прочность. Диаграмма состояния системы Al-Fe, приведенная на рис. 1.
2, показывает, что железо незначительно растворяется в алюминии в твердом состоянии. При температуре эвтектики (655°С) растворимость железа достигает 0,052% и с понижением температуры граница твердого раствора а резко сдвигается в сторону алюминия.
Железо в алюминии присутствует в виде самостоятельной фазы Al3Fe.
Железо — вредная примесь не только в алюминии, но и в сплавах алюминия с кремнием и магнием. Однако в жаропрочных алюминиевых сплавах железо (в сочетании с никелм) является полезной примесью.
Обычная примесь в алюминии — кремний. В сплавах на алюминиевой основе кремний наряду с медью, магнием, цинком, а также марганцем, никелем и хромом вводится в качестве основного компонента. Образующиеся при этом соединения CuAl2, Mg2Si, CuMgAl2 и др. являются эффективными упрочнителями алюминиевых сплавов.
Из диаграммы состояния алюминий-кремний (рис. 1.3) видно, что при температуре эвтектики 577°С в алюминии растворяется до 1,65% кремния. С понижением температуры область твердого раствора α резко уменьшается.
Примеси кальция и других элементов, присутствующих в стандартных марках алюминия в незначительном количестве, не имеют практического значения. Небольшие добавки церия, натрия и титана оказывают существенное влияние на структуру и свойства определенных алюминиевых сплавов.
Водород хорошо растворяется в алюминии и оказывает отрицательное влияние на его свойства, вызывая при литье пористость. Азот при высоких температурах вступает в реакцию с алюминием с образованием тугоплавкого соединения.
Токсикологические свойства алюминия [7]. В соответствии с ГОСТом по степени воздействия на организм человека алюминиевую пыль относят к III классу опасности. Предельно-допустимая концентрация (ПДК) в воздухе пыли металлического алюминия и его оксидов составляет 2 мг/м3.
При постоянном вдыхании пыли металлического алюминия и его оксида может возникнуть алюминоз легких. Рабочие, подвергшиеся воздействию пыли, должны проходить периодически флюорографическое обследование. У рабочих, занятых в производстве алюминия, часты катары верхних дыхательных путей (рипиты, фарингиты).
Наибольшую опасность для здоровья представляет процесс электролиза глинозема, протекающий в расплавленном криолите (Na3AlF6) при температуре 950 °С. Электролиз расплавленных солей может сопровождаться выбросами большого количества фторидной пыли, фторсодержащих газов, а также паров и частиц битума-компонента анодной массы.
Рабочим, занятым на этой операции, также грозят ожоги кожи и глаз при попадании на них расплавленного металла. Во избежании несчастных случаев электролизные ванны необходимо надежно изолировать, рабочие должны иметь средства индивидуальной защиты:, противопылевые маски, очки„, перчатки, фартуки, сапоги и т.д.
В электролизных цехах должен регулярно проводиться контроль за содержанием пыли в воздухе.
ПДК алюминия и его оксида по ГОСТу и нормативам США приведены ниже:
Стандарт | Вещество | Агрегатное состояние | ПДК, мг/м 1 (в пересчете на металл) |
ГОСТ 12. 1.005 | Алюминий | Пыль | 2 |
STEL ACGIH* | Алюминий, оксид алюминия | Пыль | 20 |
TLV ACGIII** | То же | То же | 10 |
TLV ACGIH | Алюминий | Порошок (от 00,2 до 0,04 мкм) | 5 |
TLV ACGIH | Алюминий | Пары | 5 |
* Предел кратковременного влияния, т.е. максимальная концентрация, воздействию которой человек может подвергаться не более 15 минут подряд при условии, что в течении дня допускается не более 4-х таких воздействий с промежутками не менее 60 минут. ** Величина порогового предела концентрации вещества, устанавливаемая американской конференцией государственных гигиенистов и определенная для 8-часового рабочего дня и 40-часовой рабочей недели. |
Источник: https://tdsm.ru/article/view/svojstva-aluminia-2