Меднение в домашних условиях: химическое, гальваническое

Современная техника выдвигает жесткие требования к характеристикам конструктивных элементов, во многих случаях эти задачи решает химическое меднение. Использование специальных покрытий поверхностей деталей выгодно экономически, так как гальваническое меднение позволяет понизить металлоемкость изделий из дорогостоящих металлов.

Физико-механические характеристики меди и сферы использования меднения

Плотность меди 8,96 г/см3, атомная масса 693,54, удельное электрическое сопротивление 1,68×10-8 Ом×м, температура плавления +1083°С.

На открытом воздухе в присутствии агрессивных химических соединении медь окисляется, при контакте с сернистыми соединениями покрывается пленкой сульфида меди темно-коричневого или серого оттенков.

Под влиянием углекислоты и влаги пленка приобретает зеленый цвет, верхний слой состоит из гидрокарбонатов. Медь легко растворяется в растворе азотной кислоты, разбавленная серная кислота на химическое меднение негативного влияния почти не оказывает.

Но наличие кислорода увеличивает скорость протекания химических реакций. При наличии открытых пор в покрытии образуется гальванопара, что нужно учитывать при меднении. Железо в этом случае является анодом, коррозионные процессы протекают очень интенсивно.

В связи с такими особенностями, процесс меднения в большинстве случаев должен завершаться дополнительной обработкой поверхностей. Покрытия шлифуются или полируются до зеркального блеска. Медь имеет высокую адгезию с различными металлами: алюминий, серебро, цинк, никель, свинец, хром и т. д.

В связи с этими особенностями химическое меднение часто используется для создания подслоя при серебрении, никелировании, хромировании поверхностей деталей. Меднение получило широкое распространение в качестве метода эффективной защиты отдельных участков деталей от появления эффекта науглероживании при процессе цементации.

В зависимости от назначения деталей или изделий гальваническое нанесение меди может иметь следующую толщину:

Меднение в домашних условиях: химическое, гальваническое

Толщина слоя меди на поверхности обрабатываемых деталей

Сравнительные показатели растворов

В процессе меднения используется большое количество специальных технологических растворов, разделяемых на две большие группы:

  • Простой кислый электролит. Из простых применяется фторборатный, кремнефторидный, сульфатный, хлоридный и сульфамидный раствор.
  • Комплексный электролит. Преимущественно щелочные, медь присутствует как положительно или отрицательно заряженные комплексные ионы.

Меднение в домашних условиях: химическое, гальваническое

График поляризационных кривых осаждения меди из различных типов электролитов

Процесс осаждения в кислых электролитах происходит при высокой плотности по току, они устойчивы, просты по химическому составу.

Главными составляющими являются соответствующие кислоты и соли, осадки меди из них достаточно плотны и имеют крупнокристаллическую структуру.

Недостатки – непосредственное меднение стали, цинковых сплавов и иных металлов происходит с более низким отрицательным потенциалом, чем медь.

Обработка деталей в комплексных электролитах выполняется за счет комплексных ионов, для них требуется высокая катодная поляризация. Выход по току меньше, что способствует более равномерному осаждению, структура мелкокристаллическая. Используются пирофосфатные, цианидные, аммонийные, триполифосфатные, цитратные и другие растворы.

Меднение в домашних условиях: химическое, гальваническое

Способность рассеивания электролитов для меднения

Простые кислые составы

  1. Сульфатные. Главные компоненты серная кислота и сульфат меди. Сернокислое соединение отличается невысокой электропроводимостью, для повышения параметра добавляется серная кислота. Выход меди по току достигает 100%, на катоде не выделяется водород. За счет повышения концентрации кислоты уменьшается растворимость сульфата, что понижает верхний предел максимально допустимой плотности тока.

Меднение в домашних условиях: химическое, гальваническое

Влияние содержания серной кислоты на электропроводность электролита

При перемешивании увеличивается концентрация медных ионов на катодном слое. При повышении температуры возрастает растворимость сульфата меди, электролит повышает кислотность, что приводит к получению мелкокристаллических осадков.

Для улучшения катодной поляризации в электролит добавляются поверхностно активные вещества. Дополнительно они уменьшают образование наростов на острых краях.

Меднение в домашних условиях: химическое, гальваническое

Режимы и состав сульфатных электролитов для меднения

Для образования блестящего покрытия используются аноды АМФ, не допускающие образование шлама, или аноды из особо чистой рафинированной меди.

Влияние концентрации меди на плотность тока с перемешиванием (1) и без перемешивания (2). Электролит фторборатный.

Меднение в домашних условиях: химическое, гальваническое

Электролит фторборатный.

Для недопущения попадания шлама аноды помещаются в чехлы, изготовленные из кислотоустойчивого материала, дополнительно раствор постоянно фильтруется.

  1. Фторборатные. Отличаются высокой устойчивостью, гальваническое нанесение получается плотным и мелкокристаллическим, рассеивающие показатели такие же, как при сульфатном меднении. За счет большой растворимости увеличивается плотность тока, осаждать медь непосредственно на детали нельзя.

Меднение в домашних условиях: химическое, гальваническое

Состав и режим работы фторборатных электролитов

При непрерывном перемешивании допускается повышать плотность тока. Контроль технологически параметров меднения осуществляется измерением кислотности раствора. Для повышения качества меднения используется карбонат натрия, для понижения медный купорос.

  1. Нитратные. Электролит используется при гальванопластике, обеспечивает повышенное качество осадка.

Меднение в домашних условиях: химическое, гальваническое

Режимы и состав нитратных электролитов

Комплексные электролиты

  1. Цианидные. Условия обработки значительно отличаются от осаждения из кислых, в них медь существует в виде комплексных ионов, что заметно понижает ее активность. Увеличение плотности тока принуждает катодный потенциал резко смещаться в поле отрицательных значений. Но процесс меднения нельзя производить при увеличенной плотности тока в связи с тем, что выход меди может падать до нуля. Главными компонентами раствора являются свободный цианид натрия и комплексный цианид калия. Во время работы содержание меди понижается из-за недостаточной их растворимости.

Меднение в домашних условиях: химическое, гальваническое

Режим и состав цианидных электролитов для меднения

  1. Пирофосфатные. Медные осадки имеют мелкокристаллическую структуру, гладкие, блестящие или полублестящие. Для улучшения качества обработки и повышения катодной и анодной плотностей может добавляться медный купорос. Катодный потенциал в пирофосфатных растворах имеет более отрицательные параметры, чем у кислотных.

Меднение в домашних условиях: химическое, гальваническое

Режим и состав пирофосфатных электролитов

  1. Этилендиаминовые. Процесс меднения может осуществляться непосредственно по поверхности стали, при низких плотностях тока катодная поляризация достигает больших значений. Рассеивающие характеристики выше, чем у сульфатных, но ниже, чем имеет цианидный раствор.

Режим и состав этилендиаминовых электролитов

Загрузка и выгрузка деталей должна выполняться при минимальной силе тока, в первые 40–50 секунд дается толчок тока, в три раза превышающий рабочие значения меднения.

  1. Полиэтиленполиаминовые. Во время обработки деталей потенциалы смещаются в поле отрицательных значений, электролит применяется вместо цианидных.

Режим работы и составы полиэтиленполиаминовых электролитов

  1. Аммонийные. В состав входит аммиак, сульфат аммония и сульфат меди. При невысоких плотностях тока уменьшается выход по току, улучшение меднения осуществляется за счет добавления нитрата аммония. Осадки равномерные по толщине, плотные и полублестящие.

Режимы работы и состав аммонийного электролита

Без специальной обработки поверхностей медные осадки имеют недостаточную адгезию, причина – пассивирование стали раствором аммиака. Улучшение параметров покрытия достигается введением в раствор нитрата меди.

Устройство ванны медненияЛинейные параметры и конструктивные особенности должны отвечать требованиям ГОСТ 23738-85.

Гальваническая ванна изготавливается из модифицированных особо устойчивых пластиков, конкретные марки подбираются с учетом параметров технологических процессов.

Ванна без кармана. Наиболее простая конструкция, применяется как в отдельности, так и на производственных линиях.

Ванна без кармана

Ванна с карманом. Обработка может выполняться с одновременными процессами удаления верхнего загрязненного слоя электролита.

Ванна с карманом

Конкретный выбор ванны меднения осуществляется в зависимости от особенностей предприятия, характеристик подлежащих меднению деталей и общих производственных мощностей.

Во время проектирования рассчитываются максимальные нагрузки с учетом объема раствора, длина, высота и ширина может изменяться по желанию заказчиков.

При необходимости на ванны меднения устанавливается дополнительное оборудование и водопроводная арматура. За счет специальных механизмов улучшается качество процесса меднения.

Используемые пластики адаптируются к химическому составу электролита и температурным режимам меднения.

Механическая подготовка поверхностей

Перед меднением с поверхности должна удаляться окалина, заусеницы и раковины. Качество обработки регламентируется положениями действующего ГОСТа 9.301-86. Конкретные параметры шероховатости устанавливаются в зависимости от назначения покрытия.

После механической обработки деталей с поверхности должны быть удалены все дефекты, оказывающие негативное влияние на качество меднения.

В обязательном порядке удаляется техническая смазка и эмульсия, металлическая стружка, продукты коррозионных процессов и пыль.

Подготовка к меднению производится при следующих технологических операциях:

  1. Шлифование. Верхний слой деталей снимается абразивными элементами, может быть тонким, декоративным или грубым.
  2. Полирование. Во время операции сглаживаются мельчайшие выступы, поверхность блестящая зеркальная.
  3. Крацевание. Для очистки поверхностей применяются металлические щетки.
  4. Галтовка. Детали обкатываются в специальных колоколах.
  5. Химическое и электрохимическое обезжиривание. Для обработки используют органические и неорганические растворы.

От качества предварительной подготовки поверхностей во многом зависит процесс меднения и физические показатели осадков.

Источник: https://plast-product.ru/galvanicheskoe-mednenie/

Применяем уроки химии и физики в быту. Меднение болтов для выпуска. — DRIVE2

В этом году запланировал много работы с Бурундуком.

Основной объем делищ нужно сделать за весну.Одна из таких работ, заменить заднюю банку глушителя.

Купил б/у заднюю банку, с авто 2009 года.Надо будет ввариваться…но старый в любом случае надо отсоединять…на авто варить не буду.

К чему я это…надо болты-гайки.

Пошел на рынок, а болтов то нет омедненных.Что же за страна такая.

Чуток расстроился и решил гальванизировать болты, гайки и шайбы сам.Задача это не особо сложная…обычная кухонная магия.

Нужна кислота, медный купорос, медь…ну и источник постоянно тока.Чистую кислоту даже и не стал пытаться искать. Купил обычный, дешевый аккумуляторный электролит.

Меднение в домашних условиях: химическое, гальваническое

  • Медный купорос купил в магазине для садоводов.

Меднение в домашних условиях: химическое, гальваническое

  1. Ехать куда-то покупать медные пластинки не стал, взял толстый медный провод.

Меднение в домашних условиях: химическое, гальваническое

Ничто не предвещало беды ))

Когда попытался в магазине найти обычные, «черные» болты, гайки, шайбы…столкнулся с тем, что сейчас все продается в цинке.Ай яй яй.Полазил по своим закромам, тоже ничего не нашел.

  • В общем, задача по гальванике теперь получила дополнение в виде предварительного удаления цинка с гаек, болтов и шайб.

Меднение в домашних условиях: химическое, гальваническое

Цинк можно удалить разными путями…механически-в данном случае не очень удобно, выжечь-в целом легко…кинуть в мангал например или на горелке прокалить…но это отпустит металл…не хотелось.Решил убрать цинк химически.

Если детальку покрытую цинком кинуть в емкость с кислотой, то кислота скушает цинк…причем достаточно быстро.Чтобы ускорить процесс и сделать удаление цинка более равномерным, добавил еще электричество.

Читайте также:  Резка стекла: закаленного, виды стеклорезов, техника, способы резки

В качестве анода выступает деталька, с которой надо снять цинк, подвешенная на медном проводе. В качестве катода-металлическая пластина.

Ну и в качестве среды-электролит.

Ну главное тут помнить:Работы с кислотой требуют повышенной аккуратности. Используем перчатки, защищаем глаза. Работаем в хорошо проветриваемом помещении (процедура токсична и взрывоопасна). При смешивании кислоты с водой…всегда добавляем кислоту в воду, а не наоборот!В общем дав 2-3А тока, в течении 5-8 минут получаем очищенную от цинка детальку.

Меднение в домашних условиях: химическое, гальваническоеТеперь наконец-то можно заняться тем, для чего это все и затевалось.

МЕДНИМ!

Готовим раствор.100гр-электролит.20гр-дистиллированная вода.

  1. 20гр-медный купорос.
  2. Очищенные от цинка детальки, доводим металлической щеткой, промываем в щелочном растворе, обезжириваем.

В банку с раствором помешаем медную проволоку и вешаем на нее +.На медной проволоке подключенной к — вешаем детальку.

Для начала оставляем так не подавая ток на 5 минут.

Меднение в домашних условиях: химическое, гальваническое

Детальки покроются микронным слоем меди из раствора.И уже после даем ток…я давал 20-30мА…на 10 минут.

Меднение в домашних условиях: химическое, гальваническоеЭпизодически «потряхиваем» в растворе…Меднение в домашних условиях: химическое, гальваническоеНу и спустя около 4 часов баловства, получаем кучку нужностей, с грифом hand made.Меднение в домашних условиях: химическое, гальваническоеДальше хорошо промыл в воде с хозяйственным мылом. Полировать не стал )

Теперь думаю, что еще омеднить…или разцинкить )

p.s. Давно перестал отвечать на комментарии, так как 99 из 100 просто не заслуживают прочтения, не говоря уже ответа на них.-А можно купить…-А можно у токаря заказать…

-А можно…уй в стакане мыть.

Пост написан весной 14 года! и в общем-то как-то тихо, спокойно валялся, как один из многочисленных записей в блоге, а этим летом у аквариумных рыбок драйва зашевелились плавники и народ токнуло, и тема всплыла.…ох если бы я за каждый из ваших дебильных комментов получал хотя бы по $0.10, я бы уже миллионером стал…

И КСТАТИ, СИДЕТЬ И ПАЛЬЦЕМ В КЛАВУ ТЫКАТЬ КУДА ПРОЩЕ, ЧЕМ ПОЙТИ И СДЕЛАТЬ ЧТО-ТО СВОИМИ РУКАМИ…ДА?

Источник: https://www.drive2.ru/b/1035185/

Покрытие металла медью в домашних условиях. Гальванопластика

Меднение – это процесс нанесения на поверхность медного слоя гальваническим способом.

Медный слой придает изделию внешнюю привлекательность, что позволяет использовать прием гальванического покрытия медью в дизайнерских проектах. Также он придает металлу высокую электропроводность, что позволяет подвергать изделие дальнейшей поверхностной обработке.

Меднение в домашних условиях: химическое, гальваническое

Меднение можно использовать в качестве основного процесса для создания поверхностного слоя, а также как промежуточную операцию для дальнейшего нанесения другого металлического слоя. К такому способу можно отнести, например, процесс серебрения, хромирования или никелирования.

Меднение можно проводить в домашних условиях. Это дает возможность решить много бытовых проблем.

Гальваника в домашних условиях: оборудование и материалы

Чтобы выполнить покрытие медным слоем самостоятельно, нужно приобрести необходимое для процесса оборудование и материалы.

Меднение в домашних условиях: химическое, гальваническое

Прежде всего, нужно подготовить источник электрического тока. Разные домашние мастера советуют использовать силу тока, разброс которой в большом диапазоне. Работа должна проводиться на постоянном токе.

В качестве источника тока можно взять батарейку КБС-Л напряжением 4,5 вольт или новую батарейку марки «Крона» с рабочим напряжением 9 вольт. Можно также вместо нее использовать выпрямитель малой мощности, дающий напряжение не более 12 вольт, или автомобильный аккумулятор.

Обязательным является использование реостата для регулировки напряжения и плавного выхода из процесса.

Для раствора электролита должна быть заготовлена нейтральная емкость, например из стекла, а также пластиковая широкая посуда, имеющая достаточные размеры для размещения в ней детали. Емкости должны выдерживать температуру не менее 80оС.

Также понадобятся аноды, обеспечивающие покрытие всей поверхности детали. Они предназначены для подведения тока в электролитный раствор и его распределение по всей площади детали.

Для проведения гальваники в домашних условиях понадобятся также химреактивы для приготовления раствора:

  • медный купорос,
  • соляная или другая кислота,
  • дистиллированная вода.
  • Заготовив все необходимое, можно приступать к работе.
  • Видео:

Меднение стальных изделий

Меднение стали медным купоросом является одним из основных процессов в области гальваники потому, что оно используется для предварительного покрытия медью. Она отличается высокой адгезией к стальной поверхности, в отличие от других металлов, которые не обладают хорошим сцеплением со сталью. Медный слой при соблюдении технологии держится на стальных изделиях прекрасно.

Есть две технологии нанесения покрытия: с погружением изделия в электролитный раствор и способ неконтактного покрытия поверхности медью без помещения в жидкий электролитный раствор.

Меднение путем погружения в раствор

Меднение в домашних условиях: химическое, гальваническое

Процесс выполняется с соблюдением следующих этапов:

  1. С поверхности стальной детали удаляется окисная пленка с помощью наждачной бумаги и щетки, а затем деталь промывается и обезжиривается содой с финишной промывкой водой.
  2. В стеклянную банку помещаются две медные пластины, подсоединенные к медным проводникам, которые служат анодом. Для этого их соединяют вместе и подводят к положительной клемме прибора, используемого в качестве источника тока.
  3. Между пластинами свободно подвешивается обрабатываемая деталь. К ней подводится отрицательный полюс клеммы.
  4. В цепь встраивается тестер с реостатом, чтобы регулировать силу тока.
  5. Готовится электролитный раствор, в состав которого обычно входит медный купорос – 20 грамм, кислота (соляная или серная) – от 2 до 3 мл, растворенная в 100 мл (лучше дистиллированной) воды.
  6. Готовый раствор заливается в подготовленную стеклянную банку. Он должен покрыть помещенные в банку электроды полностью.
  7. Электроды подключаются к источнику тока. С помощью реостата устанавливается ток (10-15 мА должны приходиться на 1см2 площади детали).
  8. Через 20-30 минут ток отключается, и деталь, покрытая медью, достается из емкости.

Видео:

Покрытие медью без помещения в электролитный раствор

Такой способ используется не только для стальных изделий, но и алюминиевых предметов и изделий из цинка. Процесс осуществляется так:

  1. Берется многожильный медный провод, с одного конца которого снимается изоляционное покрытие, а проводкам из меди придается вид своеобразной кисточки. Для удобного использования «кисть» закрепляют на ручке — держателе (можно взять деревянную палку).
  2. Другой конец провода без кисти подсоединяется к положительной клемме используемого источника напряжения.
  3. Готовится электролитный раствор на основе концентрированного медного купороса с добавлением небольшого количества кислоты. Он наливается в широкую емкость, необходимую для удобного окунания кисти.
  4. Подготовленная металлическая деталь, очищенная от оксидной пленки и обезжиренная, помещается в пустую ванночку и подсоединяется к отрицательной клемме.
  5. Кисть смачивается приготовленным раствором и водится вдоль поверхности пластины, не прикасаясь к ней.
  6. После достижения необходимого медного слоя, процесс заканчивается, а деталь промывается и сушится.

Между поверхностью детали и импровизированной медной кистью всегда должен быть слой из раствора электролита, поэтому кисть необходимо обмакивать в электролит постоянно.

Меднение алюминия медным купоросом

Нанесение на поверхность меди – отличный способ обновления алюминиевых столовых приборов и других изделий из алюминия, используемых дома.

Меднение алюминия медным купоросом можно провести самостоятельно. Упрощенный вариант для демонстрации процесса – это покрытие медью алюминиевой пластинки простой формы.

Меднение в домашних условиях: химическое, гальваническое

На этом примере можно потренироваться. Выполнение процесса происходит так:

1. Поверхность пластинки необходимо сначала зачистить, а затем обезжирить.

2. Затем нужно нанести на нее немного концентрированного раствора сернокислой меди (медного купороса).

3. Следующим действием является подсоединение к алюминиевой пластинке провода, подсоединенного к отрицательному полюсу. Подсоединять провод к пластинке можно с помощью обычного зажима.

4. Положительный заряд подается на устройство, состоящее из оголенного медного провода с диаметром от 1 до 1,5 мм, конец которого распределяется между щетинами зубной щетки.

Во время работы этот конец провода не должен касаться поверхности алюминиевой пластины.

Меднение в домашних условиях: химическое, гальваническое

5. Обмакнув щетину в раствор медного купороса, начинают водить щеткой в подготовленном для покрытия медью месте. При этом не нужно допускать замыкания цепи, прикасаясь к поверхности алюминиевой пластины концом медного провода.

6. Омеднение поверхности сразу становится визуально заметно. Чтобы слой был качественным, с окончанием процесса не нужно торопиться.

7. После завершения работы слой меди нужно выровнять дополнительной очисткой, удалив остатки медного купороса и протерев поверхность спиртом.

Гальванопластика в домашних условиях

Гальванопластикой называют процесс электрохимического воздействия на изделие с целью придания ему необходимой формы осаждаемым на поверхности металлом.

Меднение в домашних условиях: химическое, гальваническое

Обычно эту технологию используют для покрытия металлом неметаллических изделий. Широко применяют ее в ювелирной области и дизайне бытовых предметов.

Покрытие рабочего изделия должно обладать электропроводящими свойствами. При отсутствии такого слоя сначала предмет покрывают графитом или бронзой.

Основными металлами, используемыми для гальванопластики, являются медь, никель, серебро и хром. Также используют металлизацию поверхностей сплавами из стали.

Гальванопластика в домашних условиях особенно популярна среди мастеров. Чтобы создать нужную форму, с копии делается ее слепок. Для этого используют легко плавящийся металл, графит и гипс.

  1. Видео:
  2. После изготовления формы предмет подвергают покрытию металлом с использованием электролита.

(2

Источник: https://plavitmetall.ru/obrabotka/mednenie-v-domashnix-usloviyax.html

Меднение деталей в домашних условиях двумя способами — пошаговая инструкция с видео

Когда речь идет о гальванотехнике, сразу же на ум приходят такие технологические операции, как хромирование и цинкование металлоизделий. Но если задать вопрос, а что представляет собой гальваностегия, то ответит не каждый – проверено. Хотя ничего сверхнового данный термин не подразумевает.

Проще говоря, это методика покрытия тончайшим слоем металла любого материала, будь-то сталь, алюминий, древесина или пластик. С тем, как произвести меднение какого-либо образца в домашних условиях, мы и разберемся.

Общая информация

Меднение в домашних условиях: химическое, гальваническоеМеднение – методика отчасти более универсальная, чем то же цинкование. Для каких целей оно проводится?

  • Защита образцов от цементации перед их раскроем способом резания, а также от коррозии.
  • Устранение дефектов на поверхностях деталей, когда иные способы неприемлемы или трудны в реализации. К примеру, если основа характеризуется сложным рельефом.
  • Декорирование изделий.
  • Создание копий образцов из других материалов.
  • Подготовка деталей из стали к хромированию, серебрению, золочению. В подобных случаях меднение является лишь одним из этапов работы по поверхностной обработке материала.
  • Для создания сегментов «под пайку».
Читайте также:  Сплав ад31т: характеристики, состав, применение, термообработка

Вряд ли читателя заинтересуют такие нюансы, как классификация меди (рафинированная, бескислородная, общего применения), различные варианты растворов, использующихся при меднении, характеристики материалов и подобные вещи. Далее рассмотрены лишь простейшие методы нанесения Cu на любую поверхность, которые несложно организовать в домашних условиях, без каких-либо сложностей и финансовых затрат.

Меднение в электролите

Такая методика подходит лишь для покрытия слоем Cu металлических деталей. По сути, технология мало чем отличается от того же цинкования в домашних условиях.

Подготовка

Оборудование понадобится простейшее:

 Ванночка (емкость) стеклянная.  Ее вместительность определяется габаритами обрабатываемой детали. Даже литровая банка или стакан – как варианты.

Меднение в домашних условиях: химическое, гальваническое

 Медные электроды.  Как правило, используются два. Это позволяет более качественно покрыть заготовку слоем со всех сторон и упрощает сам процесс. По ходу работы не придется периодически менять положение детали относительно электрода. Что именно использовать, зависит от конкретной ситуации – пластины из меди, куски толстой проволоки. Это непринципиально.

 Источник тока и соединительные провода.  Достаточно даже маломощного блока питания, на 6 – 8 В. Если в БП нет встроенного амперметра и не предусмотрена плавная регулировка напряжения, то придется использовать соответствующий прибор и реостат как отдельные элементы электрической цепи. Примерная схема, которую собирают для меднения деталей, показана на рисунке.

Меднение в домашних условиях: химическое, гальваническое

 Электролит.  Можно использовать покупной раствор, хотя придется и поискать. Если же его готовить самому, то на 100 мл воды дистиллированной понадобится серная кислота (3 мл) и медный купорос (20 г) – не дефицит.

Процесс меднения

  • Деталь зачищается от наслоений. При необходимости – протравливается, погружается в специальные растворы для удаления инородных фракций. Что именно использовать, зависит от степени и вида загрязнения.
  • Обезжиривание образца. Самый простой способ – окунуть в раствор соды (горячий), а потом промыть водой для удаления ее остатков.
  • В емкость наливается приготовленный состав и помещаются электроды. Уровень раствора выбирается так, чтобы он полностью покрывал обрабатываемую деталь.
  • Погружение изделия. Оно подвязывается на проводе, который соединяется с «–» БП. Необходимо проследить, чтобы заготовка не касалась стенок ванночки, ее дна и электродов.

После включения напряжения величина тока постепенно повышается до расчетного значения, и в таком режиме обработка осуществляется в течение ⅓ часа (время ориентировочное). Если меднение проводится впервые, то следует контролировать данный процесс.

О том, что деталь можно вынимать из емкости, судят по оттенку ее поверхности и равномерности покрытия (отсутствию необработанных участков, раковин, вкраплений и так далее).

Остается лишь смыть с образца остатки электролита и просушить. Получается, что эта технология для реализации в домашних условиях никакой сложности не представляет.

Меднение без ванночки

Данным способом можно наносить металлическое покрытие на любые материалы. Суть заключается в «обмазке» (без прямого контакта) заготовки электролитом специальной кисточкой, щетинки которой – медные проволочки.

Недостаток этой технологии в том, что добиться качественного меднения рельефных поверхностей вряд ли удастся. По крайней мере, понадобится много времени и усилий, чтобы тщательно обработать все «щели» и «выбоины».

Особенности подготовительного этапа

 Кисточка.  В домашних условиях ее делают из многожильного медного проводника. Снять изоляцию и «распушить» один его конец – не проблема. Чтобы было удобнее работать, стоит подумать, из чего изготовить рукоятку кисточки.

Ею придется водить по поверхности образца, а с учетом того, что провода гибкие, такое меднение станет испытанием для мастера. Как вариант – подвязать «рабочую часть» к карандашу, пластиковому корпусу шариковой ручки.

Догадаться несложно.

 Тара.  Деталь перед меднением укладывается на любую подходящую посуду. Для удобства работы она не должна иметь высоких бортиков. Оптимальный вариант – тарелка. Плюс к этому – емкость, в которой будет электролит.

В нее придется постоянно опускать кисточку, поэтому и здесь выбор не затруднен. Подойдет и стакан, если образец небольшой и раствора понадобится немного.

Соответственно, вся тара предварительно обрабатывается – моется, чистится, кипятится, обезжиривается.

 Сборка схемы.  Аналогично предыдущему способу. Кисточка выполняет функцию анода, поэтому ее к «+» БП, а покрываемая деталь является катодом (к «–»).

Процесс меднения

Для обеспечения неразрывности электрической цепи в посуду наливается электролит, так, чтобы его уровень превышал высоту детали. Кисточкой, которая периодически также обмакивается в растворе (для этого он и заливается в отдельную тару), необходимо водить по-над образцом. В результате его поверхность покрывается слоем меди. По сути, производится ее напыление.

Меднение в домашних условиях: химическое, гальваническое

В каких случаях целесообразно использовать такой способ меднения

  • Если материал образца не является токопроводящим.
  • При больших габаритах детали. Подобрать в домашних условиях ванночку соответствующих размеров, к примеру, для люстры, вряд ли получится.

Полезные советы

Как определить требуемые параметры блока питания? Для плотности тока при меднении нормой считаются 0,5 А/дм² образца, который предстоит покрыть защитным слоем.

  • Превышение расчетного значения чревато тем, что медь сильно потемнеет, к тому же не будет прочно держаться на основе.
  • При сложной конфигурации детали, наличии множества выступов, заостренных сегментов плотность тока берется меньшей, примерно в 2,5 раза.

Медь довольно быстро окисляется. Перед началом процесса обработки изделия электроды следует хорошо зачистить.

Время выдержки детали в растворе выбирается исходя из того, какой толщины слой необходимо получить при меднении. Зависимость прямая – чем дольше идет обработка, тем толще покрытие.

При необходимости восстановления внешнего вида истершихся элементов фурнитуры (мебельной или иной) их меднение – неплохой выход из положения.

Автор не единожды сталкивался с тем, что люди, озабоченные проблемами экологии, сразу же задаются вопросом – а как в домашних условиях организовать утилизацию отработки? Ведь электролит не вечен, и использовать его всю жизнь точно не получится. Кстати, вполне резонное и более чем справедливое замечание.

Есть неплохое решение – собирать оставшуюся после меднения «бурду» в отдельной стеклянной емкости. Зачем? Пригодится. Этот раствор отлично подходит для обработки древесины.

Ваш покорный слуга, читатель, сам пропитывал им лаги перед настилом полов на даче. Учитывая, что зимой она не отапливается, условия эксплуатации материала понятны.

Когда спустя 12 лет потребовалось переложить половицы, выяснилось, что лаги – как новенькие. Не было даже малейшего намека на какую-то плесень, следы гнили.

Так как любому из нас приходится заниматься если не строительством, то уж ремонтом обязательно, нет смысла куда-то потихонечку, подальше от сторонних глаз, сливать использованный электролит. Не по-хозяйски это.

Источник: https://ismith.ru/metalworking/mednenie-v-domashnix-usloviyax/

Химическое меднение – что это такое?

За услугами по разработке технологии химического меднения обращайтесь к нам!Необходимость  химического меднения возникает  при металлизации диэлектрика для создания токопроводящего слоя. Другое назначение – для меднения металлических деталей сложного профиля, так как химическое меднение позволяет получить равномерное по толщине покрытие по всей поверхности.

В зависимости от назначения составы растворов химического меднения, как и подготовительные операции, различны.

Перед химическим меднением поверхность диэлектрика надо тщательно подготовить механически, травлением в химическом растворе создать шероховатость, которая обеспечит при меднении адгезию покрытия к основе. Затем  поверхность химически обезжирить в растворе, г/л:

  • Тринатрийфосфат  30-40
  • Натр едкий 8-10
  • Стекло натриевое жидкое  5-7
  • Карбонат натрия  40-45
  • в течение 3-5 минут при температуре 40-50ºС.
  • Для травления используют раствор, содержащий 100 г серной кислоты и 30 г хромового ангидрида. Чтобы обеспечить шероховатость, необходимую при меднении, детали выдерживают в  растворе в течение 1-5 минут при температуре 60ºС
  • После тщательной промывки перед меднением проводят сенсибилизацию в  растворе двухлористого олова (30-40 г/л) и соляной кислоты (30-40 г/л) при температуре 18-25ºС, промывают в дистиллированной воде и активируют в растворе двухлористого палладия:
  • PdCl2  1-2 г/л
  • HCl  1-2 мл/л
  • При комнатной температуре 3-5 минут
  • В результате из раствора на поверхности осаждается тонкий слой палладия, который катализирует осаждение меди из раствора химического меднения.
  • Sn2+ + Pd2+ =  Pd  +  Sn4+

С учетом назначения слоев осажденной меди растворы химического меднения подразделяют на: разбавленные растворы – для тонкослойного химического меднения и концентрированные растворы – для толстослойного химического меднения. Тонкие (0,5-1 мкм) медные слои выполняют функцию подслоя в процессе металлизации диэлектриков, а толстые (до 20-30 мкм) – функцию рисунков печатных плат.

  1. Составы растворов химического меднения сходны по основным компонентам, но отличаются по концентрациям и добавкам, восстановителем химической меди в растворах химического меднения является формальдегид.
  2. Для тонкослойного химического меднения наиболее распространен тартратный раствор:
  3. Медь сернокислая   15-20 г/л
  4. Никель хлористый   4-6 г/л
  5. Тартрат натрия     60-80 г/л
  6. Натр едкий  15-20 г/л
  7. Натрий углекислый  5-7 г/л
  8. Формалин (33%)  10-20 мл/л
  9. Температура 18-25ºС, время 10-20 минут.
  10. Толстослойное химическое меднение проводят в глицериновом растворе:
  11. Медь сернокислая   100 г/л
  12. Натр едкий  100 г/л
  13. Глицерин 100 г/л
  14. Формалин (33%)  25-35 мл/л
  15. Температура 18-25ºС, время от 20 минут, покачивание.

Меднение в домашних условиях: химическое, гальваническое

Процесс химического меднения

  • По подслою химической меди производят гальваническое меднение толщиной до 20 мкм из кислого электролита.
  • Принципиально другой механизм химического меднения латуни из раствора:
  • Фосфорная кислота 150 г/л
  • Уксусная кислота  100 г/л
  • Глицерин   10 г/л
  • Перекись водорода 100 г/л
  • Оптимальная температура 85-90ºС
  • Время меднения 5-10 минут.
Читайте также:  Ножовка по металлу: виды, применение, конструкция

Химическое меднение из раствора происходит вследствие растворения поверхностного слоя цинка, поэтому образующееся при меднении покрытие имеет прочное сцепление с латунью. Толщина покрытия при химическом меднении за 10 минут составляет 10-12 мкм.

В результате использования растворов химического меднения можно получить металлизацию на любом диэлектрике.

Думайте, творите!

За услугами по разработке технологии химического меднения обращайтесь к нам!

Внимание! Учебный курс по гальванике! Узнать подробнее…

Запись опубликована в рубрике Советы молодым специалистам. Добавьте в закладки постоянную ссылку.

Источник: http://blog.tep-nn.ru/?p=1206

Меднение и его электролиты

Гальваническое осаждение меди было открыто в 1838 г., русским академиком Б.С. Якоби и с того времени широко применяется во всех отраслях промышленности.

Медь — пластичный и легко полирующийся металл с плотностью 8,9 г/см3 и температурой плавления 1084 °С. Теплопроводность меди 1,38 МДж/(м-°С), а удельное электрическое сопротивление 0,0175 Ом-мм2/м. Атомная масса меди 63,57.

В химических соединениях, входящих в состав электролитов, медь одновалентна или двухвалентна. Так, в цианистом медном электролите комплексное соединение меди содержит одновалентную медь, а в сернокислом электролите медный купорос имеет в своем составе двухвалентную медь.

Соответственно и электрохимический эквивалент меди равен 2,372 и 1,186 г/А-ч.

Стандартный потенциал меди 0,34 В.

Гальванически осажденная медь имеет красивый розовый цвет, но в атмосферных условиях легко реагирует с влагой и углекислотой воздуха, а также с сернистыми газами, которые находятся в атмосфере промышленных городов, покрываясь окислами и изменяя свой цвет.

Медь интенсивно растворяется в азотной, медленнее в хромовой кислотах; значительно слабее в серной и почти не реагирует с соляной кислотой. Из органических кислот на медь не действует уксусная. Из щелочей ее легко растворяет аммиак.

Благодаря своей пластичности и свойству легко полироваться медь широко применяется в многослойных защитно-декоративных покрытиях типа медь — никель — хром в качестве промежуточной прослойки.

Как самостоятельное покрытие медь применяется для местной защиты стальных деталей от цементации, азотирования, борирования и прочих термодиффузионных способов обработки поверхности деталей.

Велико значение толстослойных медных покрытий в гальванопластике, которая применяется для снятия металлических копий с художественных изделий и для получения медных деталей сложного профиля.

Электролиты и режимы меднения

Существующие электролиты меднения подразделяются по своему составу на щелочные и кислые.

К группе щелочных электролитов относятся цианистые и нецианистые электролиты: железистосинеродистые, пирофосфатные и др. Основными из щелочных электролитов являются цианистые электролиты, являющиеся непревзойденными по качеству осажденной меди, высокой рассеивающей способности, возможности создания мелкокристаллической структуры покрытий.

В качестве растворимых анодов применяют либо пластины из чистой меди, либо сборные аноды из небольших пластинок фосфористой меди. При использовании медных анодов применяют медь, соотношение площади медной пластины к площади покрываемых деталей должно быть не менее 2:1.

При применении в качестве анода пластинок из фосфористой меди их засыпают в плоские решетчатые корзины. Для цианистых электролитов каркасы корзин выполняют из нержавеющей стали, а для сернокислых — из титана. Стенки корзин изготовляют из перфорированного листового винипласта или пентапласта.

При необходимости допускается пользование нерастворимыми анодами из стали марки 08Х18Н10Т или другой нержавеющей стали.

Для составления щелочного цианистого электролита используются следующие материалы:

  • цианистая медь CuCN — желтоватый порошок, нерастворимый в воде, но растворимый в цианистом натрии, весьма ядовита;
  • цианистый натрий NaCN — весьма ядовит.

Приготовление такого двухкомпонентного электролита весьма несложно и заключается в постепенном введении расчетного количества цианистой меди в концентрированный раствор цианистого натрия или калия и нагревании до 60-70 °С при интенсивном перемешивании.

После образования раствора комплексной соли меди его анализируют на содержание свободного цианистого натрия и корректируют в случае необходимости, после чего разбавляют электролит водой до заданного объема и приступают к эксплуатации без какой-либо предварительной проработки.

Окончательный состав (г/л) двухкомпонентного цианистого электролита и режимы его работы следующие:

  • цианистая медь -50-70;
  • цианистый натрий (свободный) — 10-25;
  • температура, °С — 15-30;
  • плотность тока, А/дм2 — 1,0-3,0;
  • катодный выход по току, % — 50-70;
  • величина рН -10-11.

При плотностях тока более 2 А/дм2 допускается реверсирование тока в соотношении 10:1. Скорость осаждения меди для всех цианистых электролитов определяется по табл. 5.12 в зависимости от плотности тока и выхода по току, который для различных электролитов может колебаться в больших пределах.

Остальные цианистые электролиты отличаются от описанного выше лишь различными добавками, либо ускоряющими в какой-то мере процесс осаждения, либо улучшающими внешний вид покрытий.

К таким добавкам относятся, например, сегнетова соль (калий-натрий виннокислый), которая вводится для растворения пассивной пленки на анодах. Ее вводят в состав электролита в количестве до 50-70 г/л.

Блескообразующие добавки пока не нашли широкого применения при цианистом меднении.

Щелочные нецианистые электролиты призваны заменить токсичные цианистые электролиты на безвредные, или, в крайнем случае, на менее токсичные, хотя они несколько уступают по эффективности их использования.

Таблица 5.12. Скорость осаждения меди и занисимости от плотности тока и ныхода по току.

Плотность тока, А/дм2 Скорость осаждения меди (мкм/ч) при выходе по току, %
40 50 60 70 80 90
0,5 5,3 6,6 7,9 9,3 10,7 12,0
1,0 10,7 13,2 15,9 18,6 21,3 24,0
2,0 21,4 26,4 31,9 37,2 42,6 48,0
3,0 32,1 39,6 47,9 56,0 63,9 74,0
4,0 42,8 52,8 63,8 74,4 85,2 96,0
5,0 53,5 66,0 79,0 93,0 107,0 120,0

К электролитам, наиболее приближающимся по своим свойствам к цианистым, следует отнести железистосинеродистый электролит, составленный на основе железистосинеродистого калия и сегнетовой соли.

Электролит обладает высокой рассеивающей способностью, однако содержит некоторое количество цианистых комплексных солей, образующихся во время эксплуатации электролита.

Для него рекомендуются следующие состав (г/л) и режим работы:

  • сернокислая медь (в пересчете на металл) — 20-25;
  • железистосинеродистый калий (общий) — 180-220;
  • сегнетова соль — 90-110;
  • едкое калий — 8-10;
  • температура, °С — 50-60;
  • плотность тока, А/дм2 — 1,5-2,0;
  • выход по току, % — 50-60.

Следующим электролитом, получившим производственное применение, хотя и весьма ограниченное, является пирофосфатный электролит. В состав электролита, кроме сернокислой меди, входят следующие компоненты:

  1. пирофосфорнокислый натрий Na4P2O7;
  2. фосфорнокислый натрий двухзамещенный Na2HPO4.

При составлении электролита каждый компонент растворяется отдельно в горячей воде, а затем все растворы сливают в рабочую ванну и доводят водой до заданного объема. Готовый электролит имеет темно-синий цвет и содержит комплексные соединения, в которых медь двухвалентна.

Рассеивающая способность электролита намного ниже, чем у цианистых. Кроме того, при меднении стальных деталей в этом электролите их следует завешивать под током во избежание выпадения контактной меди. Для удовлетворительной работы электролита весьма важно поддерживать величину рН строго в заданных пределах.

Наиболее известный состав (г/л) и режим работы приведены ниже:

  • сернокислая медь — 30-50;
  • натрий пирофосфорнокислый — 120-180;
  • натрий фосфорнокислый двухзамещенный — 60-100;
  • температура, °С — 45-55;
  • величина рН — 7,0-8,0;
  • плотность тока, А/дм2 — 1,0-1,5;
  • выход по току, % — 70-80.

Используются медные аноды, поверхность которых должна в 2-3 раза превышать площадь загружаемых деталей. Скорость осаждения меди из этого электролита весьма мала и составляет 3-4 мкм/ч. Механическое перемешивание электролита позволяет повысить рабочую плотность тока до 1 А/дм2.

Из кислых электролитов наиболее широко применяемым является сернокислый. Кроме него известны борфтористоводородный и сульфаминовый электролиты.

Кислые электролиты характеризуются простотой состава, устойчивостью в эксплуатации и высоким выходом по току.

Их основными недостатками являются низкая рассеивающая способность и невозможность непосредственно осаждать медь на сталь вследствие выпадения контактной меди.

Из кислых электролитов наиболее общепринятым является сернокислый. В простейшем своем виде он состоит всего из двух компонентов. Состав (г/л) и режим работ этого электролита следующие:

  • сернокислая медь — 150-250;
  • серная кислота — 50-70;
  • температура, °С — 15-25;
  • плотность тока, А/дм2 — 1,0-8,0;
  • выход по току, % — 95-98.

При перемешивании электролита сжатым воздухом или при прокачивании его с непрерывной фильтрацией можно работать при катодной плотности до 6-8 А/дм2, а при вращении цилиндрических деталей на катоде плотность тока может доходить до 30-40 А/дм2, что бывает необходимо при наращивании слоя меди большой толщины, например в гальванопластике. Для получения гладких и блестящих покрытий в сернокислый электролит вводят блескообразователи.

В табл. 5.13 представлены сведения по скорости осаждения меди из кислых и нецианистых электролитов.

Плотность тока, А/дм2 Скорость осаждения меди (мкм/ч) при выходе по току, %
95 96 97 98 99 100
1,0 12,5 12,6 12,7 12,9 13,1 13,2
5,0 63,5 63,0 63,5 64,5 65,6 66,2
10,0 125,0 126,0 127,0 129,0 131,0 132,5
20,0 250,0 252,0 254,0 258,0 262,0 265,0

Для получения гладких покрытий при больших скоростях наращивания меди необходимо пользоваться электролитами на основе борфтористоводородной или сульфаминовой кислоты. Такие электролиты позволяют применять плотности тока в 10-15 А/дм2 не только при меднении, но и при нанесении других гальванических покрытий. Ниже приведены состав (г/л) и режим работы борфтористо-водородного электролита:

Таблица 5.13. Скорость осаждения меди из кислых и нецианистых электролитон.

  • борфтористоводородная медь — 3-40;
  • борная кислота — 15-20;
  • борфтористоводородная кислота — 15-18;
  • температура, °С — 15-25;
  • плотность тока, А/дм2 — до 10;
  • выход по току, % — 99;
  • величина рН — 1,0.

Электролит перемешивают сжатым воздухом или механической мешалкой. Аноды — медные. Корректировку электролита производят углекислой медью и борфтористоводородной кислотой.

Возможно Вас так же заинтересуют следующие статьи:

Источник: https://ECM-zink.ru/info/stati/mednenie-i-ego-elektrolityi.html

Ссылка на основную публикацию
Adblock
detector