Какие металлы обладают постоянной валентностью

Валентность химических элементов – это способность у атомов хим. элементов образовывать некоторое число химических связей. Принимает значения от 1 до 8 и не может быть равна 0. Определяется числом электронов атома затраченых на образование хим. связей с другим атомом. Валентность это реальная величина. Обозначается римскими цифрами (I ,II, III, IV, V, VI, VII, VIII).

Как можно определить валентность в соединениях:

— Валентность водорода (H) постоянна всегда 1. Отсюда в соединении H2O валентность O равна 2.

— Валентность кислорода (O) постоянна всегда 2. Отсюда в соединении СО2 валентность С равно 4.

  • — Высшая валентность всегда равна № группы.
  • — Низшая валентность равна разности между числом 8 (количество групп в Таблице Менделеева) и номером группы, в которой находится элемент.
  • — У металлов в подгруппах А таблицы Менделеева, валентность = № группы.
  • — У неметаллов обычно две валентности: высшая и низшая.

Какие металлы обладают постоянной валентностью

Валентность химических элементов может быть постоянной и переменной. Постоянная в основном у металлов главных подгрупп, переменная у неметаллов и металлов побочных подгруп.

Какие металлы обладают постоянной валентностью

Таблица валентности химических элементов

Атомный № Химический элемент Символ Валентность химических элементов Примеры соединений
1 Водород / Hydrogen H I HF
2 Гелий / Helium He отсутствует — 
3 Литий / Lithium Li I Li2O
4 Бериллий / Beryllium Be II BeH2
5 Бор / Boron B III BCl3
6 Углерод / Carbon C IV, II CO2, CH4
7 Азот / Nitrogen N I, II, III, IV NH3
8 Кислород / Oxygen O II H2O, BaO
9 Фтор / Fluorine F I HF
10 Неон / Neon Ne отсутствует — 
11 Натрий / Sodium Na I Na2O
12 Магний / Magnesium Mg II MgCl2
13 Алюминий / Aluminum Al III Al2O3
14 Кремний / Silicon Si IV SiO2, SiCl4
15 Фосфор / Phosphorus P III, V PH3, P2O5
16 Сера / Sulfur S VI, IV, II H2S, SO3
17 Хлор / Chlorine Cl I, III, V, VII HCl, ClF3
18 Аргон / Argon Ar отсутствует — 
19 Калий / Potassium K I KBr
20 Кальций / Calcium Ca II CaH2
21 Скандий / Scandium Sc III Sc2S3
22 Титан / Titanium Ti II, III, IV Ti2O3, TiH4
23 Ванадий / Vanadium V II, III, IV, V VF5, V2O3
24 Хром / Chromium Cr II, III, VI CrCl2, CrO3
25 Марганец / Manganese Mn II, III, IV, VI, VII Mn2O7, Mn2(SO4)3
26 Железо / Iron Fe II, III FeSO4, FeBr3
27 Кобальт / Cobalt Co II, III CoI2, Co2S3
28 Никель / Nickel Ni II, III, IV NiS, Ni(CO)4 
29 Медь / Copper Сu I, II CuS, Cu2O
30 Цинк / Zinc Zn II ZnCl2
31 Галлий / Gallium Ga III Ga(OH)3
32 Германий / Germanium Ge II, IV GeBr4, Ge(OH)2
33 Мышьяк / Arsenic As III, V As2S5, H3AsO4
34 Селен / Selenium Se II, IV, VI, H2SeO3
35 Бром / Bromine Br I, III, V, VII HBrO3
36 Криптон / Krypton Kr VI, IV, II KrF2, BaKrO4
37 Рубидий / Rubidium Rb I RbH
38 Стронций / Strontium Sr II SrSO4
39 Иттрий / Yttrium Y III Y2O3
40 Цирконий / Zirconium Zr II, III, IV ZrI4, ZrCl2
41 Ниобий / Niobium Nb I, II, III, IV, V NbBr5
42 Молибден / Molybdenum Mo II, III, IV, V, VI Mo2O5, MoF6
43 Технеций / Technetium Tc I — VII Tc2S7
44 Рутений / Ruthenium Ru II — VIII RuO4, RuF5, RuBr3
45 Родий / Rhodium Rh I, II, III, IV, V RhS, RhF3
46 Палладий / Palladium Pd I, II, III, IV Pd2S, PdS2
47 Серебро / Silver Ag I, II, III AgO, AgF2, AgNO3
48 Кадмий / Cadmium Cd II CdCl2
49 Индий / Indium In III In2O3
50 Олово / Tin Sn II, IV SnBr4, SnF2
51 Сурьма / Antimony Sb III, IV, V SbF5, SbH3
52 Теллур / Tellurium Te VI, IV, II TeH2, H6TeO6
53 Иод / Iodine I I, III, V, VII HIO3, HI
54 Ксенон / Xenon Xe II, IV, VI, VIII XeF6, XeO4, XeF2
55 Цезий / Cesium Cs I CsCl
56 Барий / Barium Ba II Ba(OH)2
57 Лантан / Lanthanum La III LaH3
58 Церий / Cerium Ce III, IV CeO2 , CeF3
59 Празеодим / Praseodymium Pr III, IV PrF4, PrO2
60 Неодим / Neodymium Nd III Nd2O3
61 Прометий / Promethium Pm III Pm2O3
62 Самарий / Samarium Sm II, III SmO
63 Европий / Europium Eu II, III EuSO4
64 Гадолиний / Gadolinium Gd III GdCl3
65 Тербий / Terbium Tb III, IV TbF4, TbCl3
66 Диспрозий / Dysprosium Dy III Dy2O3
67 Гольмий / Holmium Ho III Ho2O3
68 Эрбий / Erbium Er III Er2O3
69 Тулий / Thulium Tm II, III Tm2O3
70 Иттербий / Ytterbium Yb II, III YO
71 Лютеций / Lutetium Lu III LuF3
72 Гафний / Hafnium Hf II, III, IV HfBr3, HfCl4
73 Тантал / Tantalum Ta I — V TaCl5, TaBr2, TaCl4
74 Вольфрам / Tungsten W II — VI WBr6, Na2WO4 
75 Рений / Rhenium Re I — VII Re2S7, Re2O5
76 Осмий / Osmium Os II — VI, VIII OsF8, OsI2, Os2O3
77 Иридий / Iridium Ir I — VI IrS3, IrF4
78 Платина / Platinum Pt I, II, III, IV, V Pt(SO4)3, PtBr4
79 Золото / Gold Au I, II, III AuH, Au2O3, Au2Cl6
80 Ртуть / Mercury Hg II HgF2, HgBr2
81 Талий / Thallium Tl I, III TlCl3, TlF
82 Свинец / Lead Pb II, IV PbS, PbH4
83 Висмут / Bismuth Bi III, V BiF5,  Bi2S3
84 Полоний / Polonium Po VI, IV, II PoCl4, PoO3
85 Астат / Astatine At нет данных — 
86 Радон / Radon Rn отсутствует — 
87 Франций / Francium Fr I — 
88 Радий / Radium Ra II RaBr2
89 Актиний / Actinium Ac III AcCl3
90 Торий / Thorium Th II, III, IV ThO2, ThF4 
91 Проактиний / Protactinium Pa IV, V PaCl5,  PaF4
92 Уран / Uranium U III, IV UF4, UO3
93 Нептуний Np III — VI NpF6, NpCl4 
94 Плутоний Pu II, III, IV  PuO2, PuF3, PuF4 
95 Америций Am III — VI  AmF3, AmO2 
96 Кюрий Cm III, IV  CmO2, Cm2O3
97 Берклий Bk III, IV BkF3, BkO2 
98 Калифорний Cf  II, III, IV Cf2O3 
99 Эйнштейний Es  II, III  EsF3 
100 Фермий Fm II, III — 
101 Менделевий Md II, III 
102 Нобелий No II, III
103 Лоуренсий Lr III
Номер Элемент  Символ Валентность химических элементов  Пример

Таблица валентности химических элементов

Таблица валентности химических элементов:

Ниже приводится таблица валентности химических элементов с примерами соединений.

Валентность (от лат. valēns – «имеющий силу») – способность атомов химических элементов образовывать определённое число химических связей.

  • Валентность – это мера (численная характеристика) способности химических элементов образовывать определённое число химических связей.
  • Значения валентности записывают римскими цифрами I, II, III, IV, V, VI, VII, VIII.
  • Валентность определяют по числу химических связей, которые один атом образует с другими.
Читайте также:  Вибростанок своими руками для изготовления тротуарной плитки

Таблица валентности химических элементов:

Атомный номер Химический элемент Символ Валентность Примеры соединений Примечание
1 Водород H I HCl, H2O2
2 Гелий He отсутствует
3 Литий Li I LiOH, Li2O
4 Бериллий Be I, II
  • BeH (моногидрид бериллия);
  • BeH2, BeO, Be(OH)2, BeCO3
5 Бор B III B2O3
6 Углерод C II, IV
7 Азот N I, II, III, IV
  • N2O;
  • NO;
  • N2O3, Ca(NO2)2,(NO)F, HNO2,  NH2OH, NH3;
  • NO2, N2O4, HNO3, NH4NO3,  Ca(NO3)2, N2O5
В азотной кислоте (HNO3) и своем высшем оксиде (N2O5) атом азота образует только четыре ковалентные связи, являясь четырехвалентным
8 Кислород O II (NO)F, CaO, O2, H2O2,Cl2O, H2O
9 Фтор F I HF, (NO)F
10 Неон Ne отсутствует
11 Натрий Na I Na2S, Na2O
12 Магний Mg II Mg(NO3)2
13 Алюминий Al III Al2O3, Al2S3, AlCl3
14 Кремний Si II, IV
15 Фосфор P III, V
  • P2O3, PH3,  H3PO3, H3PO4;
  • P2O5
16 Сера S II, IV, VI
  • H2S, K2S, PbS, Al2S3, Fe2S3, FeS2;
  • SO2;
  • SF6, SO3, H2SO4
17 Хлор Cl I, III, IV, V, VI, VII
  • Cl2O, NaCl,  Cl2, HCl, NH4Cl;
  • NaClO2;
  • NaClO2;
  • KClO3, Cl2O5;
  • Cl2O6;
  • Cl2O7
18 Аргон Ar отсутствует
19 Калий K I KOH, K2O, K2S
20 Кальций Ca II Ca(OH)2
21 Скандий Sc III Sc2O3
22 Титан Ti II, III, IV
23 Ванадий V II, III, IV, V
24 Хром Cr II, III, VI
25 Марганец Mn II, III, IV, VI, VII
  • Mn(OH)2;
  • Mn2O3;
  • MnO2;
  • MnO3;
  • Mn2O7
26 Железо Fe II, III
  • Fe(OH)2, FeS2, FeO;
  • Fe2O3, Fe(OH)3, Fe2Cl3, Fe2S3
27 Кобальт Co II, III
28 Никель Ni II, III
29 Медь Cu I, II
30 Цинк Zn II ZnSO4, ZnO, ZnS
31 Галлий Ga I, II, III
32 Германий Ge II, IV
33 Мышьяк As III, V
34 Селен Se II, IV, VI
35 Бром Br I, III, V, VII
36 Криптон Kr отсутствует
37 Рубидий Rb I RbOH
38 Стронций Sr II SrO
39 Иттрий Y III Y(NO3)3
40 Цирконий Zr II, III, IV
41 Ниобий Nb I, II, III, IV, V
  • NbH;
  • NbO;
  • NbI3;
  • NbO2;
  • Nb2O5
42 Молибден Mo II, III, IV, V, VI
  • MoCl2;
  • Mo(OH)3;
  • MoO2;
  • MoCl5;
  • MoF6
43 Технеций Tc II, III, IV, V, VI, VII
  • TcCl2;
  • TcBr3;
  • TcBr4;
  • TcF5;
  • TcCl6;
  • Tc2O7
44 Рутений Ru II, III, IV, V, VI, VII, VIII
  • Ru(OH)2;
  • RuCl3;
  • Ru(OH)4;
  • Ru2O5;
  • RuB2;
  • NaRuO4;
  • RuO4
45 Родий Rh II, III, IV, V, VI
  • RhO;
  • Rh2(SO4)3;
  • Rh(OH)4;
  • RhF5;
  • RhF6
46 Палладий Pd II, IV
47 Серебро Ag I, II, III
48 Кадмий Cd I, II
49 Индий In I, II, III
50 Олово Sn II, IV
51 Сурьма Sb III, V
52 Теллур Te II, IV, VI
53 Йод I I, III, V, VII
54 Ксенон Xe отсутствует
55 Цезий Cs I Cs2O
56 Барий Ba II Ba(OH)2
57 Лантан La III La2(SO4)3
58 Церий Ce III, IV
59 Празеодим Pr II, III, IV
60 Неодим Nd II, III
61 Прометий Pm III PmBr3
62 Самарий Sm II, III
63 Европий Eu II, III
64 Гадолиний Gd II, III
65 Тербий Tb II, III, IV
66 Диспрозий Dy II, III
67 Гольмий Ho III Ho2(SO4)3
68 Эрбий Er III Er2O3
69 Тулий Tm II, III
70 Иттербий Yb II, III
71 Лютеций Lu III LuBr3
72 Гафний Hf I, II, III, IV
  • HfCl;
  • HfS;
  • HfBr3;
  • Hf(SO4)2
73 Тантал Ta I, II, III, IV, V
  • Ta2O;
  • TaO;
  • TaCl3;
  • TaO2;
  • Ta2O5
74 Вольфрам W II, III, IV, V, VI
  • W6Cl12;
  • WO3;
  • WO2;
  • W2Cl10;
  • WF6
75 Рений Re I, II, III, IV, V, VI, VII
  • Re2O;
  • ReO;
  • Re2O3;
  • ReO2;
  • ReF5;
  • ReCl6;
  • ReF7
76 Осмий Os I, II, III, IV, V, VI, VII, VIII
  • OsI;
  • OsI2;
  • OsBr3;
  • OsO2;
  • OsCl4;
  • OsF5;
  • OsF6;
  • OsOF5; 
  • OsO4
77 Иридий Ir I, II, III, IV, V, VI
  • IrCl;
  • IrCl2;
  • IrCl3;
  • IrO2;
  • Ir4F20;
  • IrF6
78 Платина Pt II, III, IV, V, VI
  • PtO;
  • Pt2O3;
  • PtO2;
  • PtF5;
  • PtF6
79 Золото Au I, II, III, V
80 Ртуть Hg I, II
81 Таллий Tl I, II, III
82 Свинец Pb II, IV
83 Висмут Bi III, V
84 Полоний Po II, IV, VI
85 Астат At нет данных
86 Радон Rn отсутствует
87 Франций Fr I FrOH
88 Радий Ra II Ra(OH)2
89 Актиний Ac III Ac2O3
90 Торий Th II, III, IV
91 Протактиний Pa II, III, IV, V
  • PaO;
  • PaH3;
  • Pa(OH)4;
  • Pa2O5
92 Уран U III, IV, V, VI
93 Нептуний Np III, IV, V, VI, VII
94 Плутоний Pu III, IV, V, VI, VII
95 Америций Am II, III, IV, V, VI
96 Кюрий Cm II, III, IV
97 Берклий Bk III, IV
98 Калифорний Cf II, III, IV
99 Эйнштейний Es II, III
100 Фермий Fm II, III

Первоначально за единицу валентности была принята валентность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента. Определенная таким образом валентность называется валентностью в водородных соединениях или валентностью по водороду: так, в соединениях HCl, H2O, NH3, CH4 валентность по водороду хлора равна единице, кислорода – двум, азота – трём, углерода – четырём.

Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединять один атом данного элемента.

Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду: так, в соединениях K2O, CO, N2O3, SiO2, SO3 валентность по кислороду калия равна единице, углерода – двум, азота – трём, кремния – четырём, серы – шести.

С точки зрения электронной теории валентность определяется числом неспаренных (валентных) электронов в основном или возбужденном состоянии.

Известны элементы, которые проявляют постоянную валентность. У большинства химических элементов валентность переменная.

  • Диборид титана
  • Гидроксид алюминия
Читайте также:  Изготовление планктона для ловли толстолобика своими руками

1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность  — способность атома какого-либо химического элемента в соединении оттягивать на себя электроны связанных с ним атомов других химических элементов.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

  • График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.
  • При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.
  • Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Степень окисления – условный заряд атома химического элемента  в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, т.е. все связывающие электронные пары смещены к атомам с большей электроотрицательностью.

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

Щелочные металлы, т.е. все металлы IA группы — Li, Na, K, Rb, Cs, Fr +1
Все элементы II группы, кроме ртути: Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd +2
Алюминий Al +3
Фтор F -1

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:
кислород O -2 Пероксиды водорода и металлов: Фторид кислорода — 

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

Кислород VI +2 (в OF2)
Фтор VII
Медь I +2
Железо VIII  +6 (например K2FeO4)
  1. 6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:
  2. низшая степень окисления неметалла = №группы − 8
  3. Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

  • Запишем формулу серной кислоты:
  • Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).
  • Степень окисления кислорода во всех сложных веществах равна  -2 (кроме пероксидов и фторида кислорода OF2). Расставим известные степени окисления:
  • Обозначим степень окисления серы как x:

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю.

Схематически это можно изобразить следующим образом:

Т.е. мы получили следующее уравнение:

Решим его:

  1. Таким образом, степень окисления серы в серной кислоте равна +6.
  2. Пример 2
  3. Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение.

Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH4+ (заряд данного катиона можно посмотреть в таблице растворимости).

Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH4+ , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH4+ и анионами Cr2O72-.

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

  • Решая которые, находим x и y:
  • Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.
  • Как определять степени окисления элементов в органических веществах можно почитать здесь.

Валентность

Валентность — число химических связей, которые образует атом элемента в химическом соединении.

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

  1. Валентные возможности атома зависят от количества:
  2. 1) неспаренных электронов 
  3. 2) неподеленных электронных пар на орбиталях валентных уровней 
  4. 3) пустых электронных орбиталей валентного уровня 

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня.

Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е.

атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных (  ) орбиталей валентного уровня.

Наличие таких орбиталей на заполняемом уровне приводит к  тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму.

Читайте также:  Растворитель ржавчины: для кузова авто, болтов, труб

Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

  • Резюмируя информацию по валентным возможностям атома углерода:
  • 1) Для углерода возможны валентности II, III, IV
  • 2) Наиболее распространенная валентность углерода в соединениях IV
  • 3) В молекуле угарного газа CO связь тройная (!), при этом одна из трех связей образована по донорно-акцепторному механизму

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH3), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар.

Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но  также и тогда, когда один атом, имеющий неподеленную пару электронов — донор(  ) предоставляет ее другому атому с вакантной (  ) орбиталью валентного уровня (акцептору). Т.е.

для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии.

Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей.

Многие  могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованная π-связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O3, бензола C6H6 и т.д.

  1. em>Резюмируя информацию по валентным возможностям атома азота:
  2. 1) Для азота возможны валентности I, II, III и IV
  3. 2) Валентности V у азота не бывает!

3) В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления +5 (!).

4) В соединениях, в которых атом азота четырехвалентен, одна из ковалентных связей образована по донорно-акцепторному механизму (соли аммония NH4+, азотная кислота и д.р).

Валентные возможности фосфора

  • Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:
  • Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.
  • Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d-подуровень с 5-ю вакантными орбиталями.
  • В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s-орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях.

Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа.

Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d-подуровня, распаривание электронов s и p-орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Таким образом, кислород практически всегда имеет валентность, равную II, однако в некоторых частицах он трехвалентен, в частности, в молекуле угарного газа C≡O. В случае, когда кислород имеет валентность III, одна из ковалентных связей образована по донорно-акцепторному механизму.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода  H2S.

Как мы видим, у атома серы на внешнем уровне появляется d-подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p-подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO2, SF4, SOCl2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s-подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO3, H2SO4, SO2Cl2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Ссылка на основную публикацию
Adblock
detector