Брусок кристаллического титана
Титан — лёгкий прочный металл серебристо-белого цвета.
Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C.
Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.
СТРУКТУРА
Кристаллическая структура кристалла
Титан имеет две аллотропические модификации. Низкотемпературная модификация, существующая до 882 °C, имеет гексагональную плотноупакованную решетку с периодами а = 0,296 нм и с = 0,472 нм.
Высокотемпературная модификация имеет решетку объемноцентрированного куба с периодом а = 0,332 нм.
Полиморфное превращение (882 °C) при медленном охлаждении происходит по нормальному механизму с образованием равноосных зерен, а при быстром охлаждении — по мартенситному механизму с образованием игольчатой структуры.
Титан обладает высокой коррозионной и химической стойкостью благодаря защитной окисной пленке на его поверхности. Он не корродирует в пресной и морской воде, минеральных кислотах, царской водке и др.
СВОЙСТВА
Кристаллы титана
Точка плавления 1671 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере.
Применяемый в промышленности технический титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С.
Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см3, предел прочности 300-550 Мн/м2 (30-55кгс/мм2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м2 (115-165 кгс/мм2). Является парамагнетиком. Конфигурация внешней электронной оболочки атома Ti 3d24s2.
Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.
При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной). Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.
Запасы и добыча
Кристаллы титана
Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).
На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т.
На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т.
Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.
Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.
Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана их при 850 °C восстанавливают магнием.
Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков.
ПРОИСХОЖДЕНИЕ
Титановая руда
Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т.
В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках.
Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан.
Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.
Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%).
ПРИМЕНЕНИЕ
Изделия из титана
Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах.
Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%.
Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.
Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.
Технический титан из-за недостаточно высокой теплопрочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении.
Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т.п.
Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей).
В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.
Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.
Титан (англ. Titanium) — Ti
КЛАССИФИКАЦИЯ
Физические свойства
Оптические свойства
Кристаллографические свойства
Титан – полезные свойства и особенности металла
Этот металл – один из самых распространенных на планете. Его значение для человека неоценимо: титан стал «дублером» поврежденных зубов и суставов. У него есть фанаты, стремящиеся заменить все свои кости титановыми.
Что представляет собой
Титан – элемент периодической системы Менделеева №22. Международное обозначение – Titanium (Ti).
Это блестящий серебристый металл. Легок, прочен, устойчив к коррозии.
По составу представляет собой конгломерат пяти стабильных изотопов.
История открытия
История открытия металла связана с именами нескольких ученых:
- В конце 18 века немец Мартин Клапрот и англичанин Уильям Грегор одновременно открыли диоксид вещества.
- Через десять лет их компанию пополнил француз Луи-Николя Воклен.
- К середине 19 века Иенс Берцелиус получил металлический титан.
- Еще через сто лет материал повышенной чистоты выделили голландцы.
Стержень, состоящий из титановых кристаллов высокой чистоты
Название нового вещества предложил Клапрот: по учрежденной им традиции химик назвал открытый элемент именем персонажа греческой мифологии.
Титаны – это дети главных богов греческого пантеона Зевса и Геи. То есть второе поколение богов.
Физико-химические характеристики
Свойства металла хорошо изучены:
- Легко реагирует с кислотами даже малой концентрации.
- Это тугоплавкий металл: температура плавления – 1670°C. Для вскипания требуется вдвое больше.
- Пластичен, хрупкость обретает на морозе (-80°C).
- На прочность влияет степень очистки, но не температура.
- При комнатной температуре покрывается оксидной пленкой, что делает его устойчивым к коррозии (исключая щелочи).
- При обычном давлении существует два вида титана с разными типами решеток: высоко- и низкотемпературный.
Легкость, почти невесомость – главное свойство, по которому титан легко отличить от других металлов.
Тита́н / Titanium (Ti), 22 |
47,867(1) а. е. м. (г/моль) |
[Ar] 3d2 4s2 |
147 пм |
132 пм |
(+4e)68 (+2e)94 пм |
1,54 (шкала Полинга) |
−1,63 |
2, 3, 4 |
657,8 (6,8281) кДж/моль (эВ) |
4,54 г/см³ |
1670 °C 1943 K |
3560 K |
18,8 кДж/моль |
422,6 кДж/моль |
25,1 Дж/(K·моль) |
10,6 см³/моль |
гексагональная плотноупакованная (α-Ti) |
a=2,951 с=4,697 (α-Ti) |
1,587 |
380 K |
(300 K) 21,9 Вт/(м·К) |
7440-32-6 |
Из-за повышенной вязкости механическая обработка металла затруднена. Этот недостаток устраняют, смазывая инструмент специальными составами.
Технология получения
Технический прогресс частично отразился на способе получения металла.
Сегодня титан получают двумя методами:
- Процесс Кролла. Один из основных, предложен в 1940 году ученым из Люксембурга Гийомом Кроллом. Заключается в восстановлении металлического титана магнием при высоких температурах. Комбинаты, вырабатывающее такое сырье, именуются титано-магниевыми.
- FFC Cambridge. Новацией является электрохимическая технология. Она предполагает прямое восстановление металла из оксида в расплавленной смеси хлорида и оксида кальция. Процесс назван по именам разработчиков, сотрудников Кембриджского университета Фрэя, Фартинга, Чена.
Цена продукта доступна: титан разной степени очистки на мировых биржах торгуют по $5,7 – 6,1 за кг.
Месторождения, добыча
Месторождения равномерно распределены по планете. Российские залежи рассредоточены по всей территории страны (20 рудников). Крупнейшее – на севере, в Республике Коми.
Добыча ведется традиционным способом, но предполагает использование средств защиты от пыли.
Мировые резервы руды оцениваются триллионом тонн. При нынешних темпах добычи титанового сырья хватит на полтора столетия.
Присутствие в природе
В природе титан представлен оксидами разных химических элементов (более ста). В свободном виде не встречается.
Не считается редким металлом: содержание в породах исчисляется килограммами на тонну (от 2,3 до 9).
Это девятый по распространенности элемент земной коры – более полупроцента по массе.
Больше всего его в бокситах и морской осадочной глине.
Породы плохо выветриваются, образуя крупные россыпи.
Где используется
Титан так же прочен, как сталь, но вполовину легче. Он вдвое превосходит по прочности алюминий, но тяжелее всего на 60%. Этими достоинствами обусловлено использование человеком титана как металла.
Промышленность
Титановые сплавы – конструкционный материал номер один для строителей ракет, самолетов, океанских лайнеров. Чаще их выполняют из сплавов с другими металлами (особенно никелем и алюминием).
Заготовка титанового шпангоута истребителя F-15 до и после прессования на штамповочном прессе компании Alcoa усилием 45 тыс. тонн, май 1985
Титан легче других металлов, но способен работать при высоких температурах.
Есть и другие области применения металла:
- Трубы, насосы, другое оборудование для работы с агрессивными жидкостями.
- Военно-промышленный комплекс – бронированные жилеты, корпусы субмарин, детали ракет, самолетов.
- Установки для опреснения воды, очистки воздуха.
- Исходник при производстве целлюлозы, бумаги.
- Детали автомобилей, сельхозтехники, оборудование пищепрома.
- Спортивный инвентарь.
Более половины соединений вещества забирают производители лаков и красок. Это, например, титановые белила.
Все больше продукции из титана припадает на IT-сферу: корпус, начинка мобильных телефонов, других гаджетов.
Медицина
Прочный металл дружелюбен к процессам, протекающим в организме человека. Поэтому его активно задействуют как материал протезов конечностей, зубных имплантов. Медицина ценит его свойство безболезненно сращиваться с костной тканью. Поэтому титан относится к металлам будущего.
Безопасность для тканей организма человека сделала возможным применение металла для пирсинга.
Другие сферы
Из титана изготавливают корпусы часов класса люкс. Это материал ювелирных изделий.
Часы из титанового сплава
Нитридом вещества «золотят» купола храмов, предметы декора. Четырехвалентный хлорид «создает» дымовую завесу и дымчатость стекла.
Пищевая добавка Е171 – это белый диоксид титана (TiO2), пищевой краситель.
Марки и сплавы
Номенклатура титановых сплавов насчитывает десятки позиций.
Самый востребованный – с алюминием и ванадием, 6% и 4% соответственно. На его производство тратится половина добываемого сырья.
Второй по популярности – ферротитан (соотношение титан-железо – 1:3). В черной металлургии это средство для очистки стали от примесей.
Чаще всего выплавляются следующие марки титана:
- ВТ1-0;
- ВТ1-00;
- ВТ1-00 св.
Это технический материал, без легирующих присадок. В нем минимум примесей: содержание Ti (%) – 99,24+.
Предостережение
Металлическое вещество безопасно. Опасность исходит от титановой пыли: она провоцирует онкологию. Это проблема людей, работающих на добыче руды, и металлургов.
Кроме того, титановая пыль – потенциальное взрывчатое вещество.
Пожар может сотворить и стружка металла.
Проверить совместимость мужчины и женщины по Знаку Зодиака
Двоякость свойств металла титан
Многих интересует немного загадочный и не до конца изученный титан — металл, свойства которого отличаются некоторой двоякостью. Металл и самый прочный, и самый хрупкий.
Самый прочный и самый хрупкий металл
Его открыли двое ученых с разницей в 6 лет — англичанин У. Грегор и немец М. Клапрот. Название титана связывают, с одной стороны, с мифическими титанами, сверхъестественными и бесстрашными, с другой стороны, с Титанией — королевой фей.
Это один из самых распространенных в природе материалов, но процесс получения чистого металла отличается особой сложностью.
Свойства титана
22 химический элемент таблицы Д. Менделеева Titanium (Ti) относится к 4 группе 4 периода.
Цвет титана серебристо-белый с выраженным блеском. Его блики переливаются всеми цветами радуги.
Это один из тугоплавких металлов. Он плавится при температуре +1660 °С (±20°). Титан отличается парамагнитностью: он не намагничивается в магнитном поле и не выталкивается из него.
Металл характеризуется низкой плотностью и высокой прочностью.
Но особенность этого материала заключается в том, что даже минимальные примеси других химических элементов кардинально изменяют его свойства.
При наличии ничтожной доли других металлов титан теряет свою жаропрочность, а минимум неметаллических веществ в его составе делают сплав хрупким.
Эта особенность обуславливает наличие 2 видов материала: чистого и технического.
- Титан чистого вида используют там, где требуется очень легкое вещество, выдерживающее большие нагрузки и сверхвысокие температурные диапазоны.
- Технический материал применяется там, где ценятся такие параметры, как легкость, прочность и устойчивость к коррозии.
Вещество обладает свойством анизотропности. Это означает, что металл может изменять свои физические характеристики, исходя из приложенных усилий. На эту особенность следует обращать внимание, планируя применение материала.
Титан теряет прочность при малейшем присутствии в нем примесей других металлов
Проведенные исследования свойств титана в нормальных условиях подтверждают его инертность. Вещество не реагирует на элементы, находящиеся в окружающей атмосфере.
Изменение параметров начинается при повышении температуры до +400°С и выше. Титан вступает в реакцию с кислородом, может воспламеняться в азоте, впитывает газы.
Эти свойства затрудняют получение чистого вещества и его сплавов. Производство титана основано на применении дорогостоящей вакуумной аппаратуры.
Титан и конкуренция с другими металлами
Этот металл постоянно сравнивают с алюминием и сплавами железа. Многие химические свойства титаназначительно лучше, чем у конкурентов:
- По механической прочности титан превосходит железо в 2 раза, а алюминий в 6 раз. Прочность его увеличивается при снижении температуры, чего не отмечается у конкурентов.
Антикоррозионные характеристики титана значительно превышают показатели других металлов. - При температурах окружающей среды металл абсолютно инертен. Но при повышении температуры свыше +200°С вещество начинает поглощать водород, изменяя свои характеристики.
- При более высоких температурах титан вступает в реакции с другими химическими элементами. Он обладает высокой удельной прочностью, что в 2 раза превосходит свойства лучших сплавов железа.
- Антикоррозионные свойства титана значительно превышают показатели алюминия и нержавеющей стали.
- Вещество плохо проводит электричество. Титан имеет удельное электросопротивление в 5 раз выше, чем у железа, в 20 раз, чем у алюминия, и в 10 раз выше, чем у магния.
- Титан характеризуется низкой теплопроводностью, это обусловлено низким коэффициентом температурного расширения. Она меньше в 3 раза, чем у железа, и в 12, чем у алюминия.
Какими способами получают титан?
Материал занимает 10 место по распространению в природе. Существует около 70 минералов, содержащих титан в виде титановой кислоты или его двуокиси. Наиболее распространенные из них и содержащие высокий процент производных металла:
- ильменит;
- рутил;
- анатаз;
- перовскит;
- брукит.
Основные залежи титановых руд находятся в США, Великобритании, Японии, большие месторождения их открыты в России, Украине, Канаде, Франции, Испании, Бельгии.
Добыча титана – дорогой и трудозатратный процесс
Получение металла из них стоит очень дорого. Ученые разработали 4 способа производства титана, каждый из которых рабочий и эффективно используется в промышленности:
- Магниетермический способ. Добытое сырье, содержащее титановые примеси, перерабатывают и получают диоксид титана. Это вещество подвергается хлорированию в шахтных или солевых хлораторах при повышенном температурном режиме. Процесс очень медленный, ведется в присутствии углеродного катализатора. При этом твердый диоксид переводится в газообразное вещество – тетрахлорид титана. Полученный материал восстанавливается магнием или натрием. Сплав, образовавшийся при реакции, подвергают нагреванию в вакуумной установке до сверхвысоких температур. В результате реакции происходит испарение магния и его соединений с хлором. В конце процесса получают губкоподобный материал. Его плавят и получают титан высокого качества.
- Гидридно-кальциевый способ. Руду подвергают химической реакции и получают гидрид титана. Следующий этап – разделение вещества на составляющие. Титан и водород выделяют в процессе нагревания в вакуумных установках. По окончании процесса получают оксид кальция, который отмывают слабыми кислотами. Первые два способа относятся к промышленному производству. Они позволяют получать в кратчайшие сроки чистый титан с относительно небольшими издержками.
- Электролизный метод. Титановые соединения подвергают воздействию током большой силы. В зависимости от исходного сырья, соединения разделяются на составляющие: хлор, кислород и титан.
- Йодидный способ или рафинирование. Полученный из минералов диоксид титана обдают парами йода. В результате реакции образуется йодид титана, который нагревают до высокой температуры – +1300…+1400°С и воздействуют на него электрическим током. При этом из исходного материала выделяются составляющие: йод и титан. Металл, полученный данным способом, не имеет примесей и добавок.
Области применения
Применение титана зависит от степени его очистки от примесей. Наличие даже небольшого количества других химических элементов в составе сплава титана кардинально меняет его физико-механические характеристики.
Титан с некоторым количеством примесей называется техническим. Он имеет высокие показатели коррозийной стойкости, это легкий и очень прочный материал. От этих и других показателей зависит его применение.
- В химической промышленности из титана и его сплавов изготавливают теплообменники, различного диаметра трубы, арматуру, корпуса и детали для насосов различного назначения. Вещество незаменимо в местах, где требуются высокая прочность и стойкость к кислотам.
- На транспорте титан используют для изготовления деталей и агрегатов велосипедов, автомобилей, железнодорожных вагонов и составов. Применение материала уменьшает вес подвижных составов и автомобилей, придает легкость и прочность велосипедным деталям.
- Большое значение титан имеет в военно-морском ведомстве. Из него изготавливают детали и элементы корпусов для подводных лодок, пропеллеры для лодок и вертолетов.
- В строительной промышленности применяется сплав цинк-титан. Он используется как отделочный материал для фасадов и кровель. Этот очень прочный сплав имеет важное свойство: из него можно изготавливать архитектурные детали самой фантастической конфигурации. Он может принимать любую форму.
- В последнее десятилетие титан широко применяют в нефтедобывающей отрасли. Сплавы его применяют при изготовлении оборудования для сверхглубокого бурения. Материал используется для изготовления оборудования для добычи нефти и газа на морских шельфах.
У титана очень широкая область применения
Чистый титан имеет свои области применения. Он нужен там, где необходима стойкость к высоким температурам и при этом должна сохраняться прочность металла.
Его применяют в:
- авиастроении и космической отрасли для изготовления деталей обшивки, корпусов, элементов крепления, шасси;
- медицине для протезирования и изготовления сердечных клапанов и других аппаратов;
- технике для работы в криогенной области (здесь используют свойство титана – при снижении температуры усиливается прочность металла и не утрачивается его пластичность).
В процентном соотношении использование титана для производства различных материалов выглядит так:
- на изготовление краски используется 60 %;
- пластик потребляет 20 %;
- в производстве бумаги используют 13 %;
- машиностроение потребляет 7 % получаемого титана и его сплавов.
Сырье и процесс получения титана дорогостоящие, затраты на его производство компенсируются и окупаются сроком службы изделий из этого вещества, его способностью не менять свой внешний вид за весь период эксплуатации.
Особенности титана и его сплавов
На сегодняшний день титан занимает 4-е место по использованию в промышленности. Однако его активная добыча и производство начинается только с 40-х годов 20 века. Титан и его сплавы обладают уникальными характеристиками и требуют более внимательного рассмотрения при металлообработке.
Титан
Основные сведения
Титан — металл серебристого цвета, который входит в 4 группу 4 периода в периодической таблице. По официальным сведениям он занимает 10 место по распространению в природе.
Изначально металл применялся в народном хозяйстве, но после выявления его сверхпрочности при малом удельном весе, титан и его сплавы начали использовать при строении самолётов, кораблей, ракет и машин.
История открытия
Впервые оксид титана был обнаружен в 1791 году. Сделал это открытие У. Грегор (англичанин). Он взял пробу железистого песка на пляже Корнуолла и проводил над ним исследования.
В результате экспериментов учёный выделил оксид неизвестного металла, которому так и не дал название. Назвал этот элемент титаном другой учёный — Мартин Генрих Клапрот (немец).
В 1825 году другой исследователь Йёнс Якоб Берцелиус смог выделить образец этого металла из оксида.
Производство и изготовление
Благодаря распространённости в природе добывать руду, содержащую титан, не сложно. Самые распространённые виды руды, в которых содержится этот металл — брукит, ильменит, анатаз и рутил. Однако дальнейшие способы обработки титана (плавка, закалка и старение) считаются дорогостоящими. Существует несколько этапов получения чистого металла из руды:
- В первую очередь добывается титановый шлак, с помощью разогревания ильменита до 1650 градусов.
- Далее шлак проходит процесс хлорирования.
- После этого с помощью печей сопротивления производится титановая губка.
- Для получения чистого металла заключительным этапом обработки является процесс рафинирования.
Если нужно получить слитки титана, губку на его основе переплавляют в вакуумной печи.
Магниетермический процесс
Магниетермическое восстановление — популярный метод получения металла. Проведение технологического процесса:
- Расплавляется оборотный магниевый конденсат.
- Сливается конденсат хлористого магния.
- При температуре 800 градусов, жидкий тетрахлорид титана с жидким магнием подаются в форму для застывания. Скорость подачи — 2,1–2,3 г/ч см2.
Постепенно температура снижается до 600 градусов.
Гидридно-кальциевый метод
Это промышленный метод восстановления металла. Процесс проведения работ:
- При температуре 500 градусов Цельсия металлический кальций насыщается водородом.
- Далее его смешивают с двуокисью титана. Компоненты нагревают в реторте, постепенно повышая температуру до 1100 градусов.
- Спекшиеся компоненты вымывают из реторты.
- Далее проводится обработка соляной кислотой.
- Титановый порошок сушат, запекают в индукционных печах при температуре около 1400 градусов.
На спекшуюся массу должно воздействовать давление 10в-3 мм.
Электролизный метод
Способ получения сплава, основанный на применении электрического тока. Напряжение воздействует на ТiO2, ТiСl4. До этого их растворяют с помощью расплавленных солей фторидов.
Йодидный метод
Способ получения металла после термической диссоциации TiJ4. Изначально его получают при реакции паров йода с металлическим титаном.
Чтобы получить сплав высокой чистоты, необходимо применять последний способ получения соединения. Три первых метода позволяют быстро получать технический титан.
Достоинства и недостатки
Как и у любого другого металла, у титана есть сильные и слабые стороны. К преимуществам относятся:
- малый вес;
- коррозийная стойкость;
- устойчивость к воздействию высоких температур;
- высокая прочность — больше, чем у лучших образцов стали.
Недостатки:
- Пыль и стружка, остающаяся после обработки титановых заготовок, может воспламенится при температуре в 400 градусов.
- Этот металл плохо сваривается и практически не поддаётся резке.
- Затратный способ получения металла из руды обуславливает его высокую стоимость.
Однако, несмотря на имеющиеся минусы, материал и его сплавы широко распространены в различных отраслях производства.
Малый вес
Продукция из титана
В строительных магазинах можно найти разнообразные товары, изготовленные из этого металла. Из него производят проволоку, ленту и фольгу, прутья, трубы. Также можно приобрести титан в цельных листах.
Область применения
Благодаря преимуществам, которым обладает титан, его используют в различных отраслях промышленности:
- военно-морское дело;
- строительство;
- медицина;
- машиностроение;
- судостроение и самолётостроение;
- химической промышленности.
Особенности применения этого металла делают его популярнее с каждым годом. Его активно используют в народном хозяйстве.
Характеристики и свойства
Характеристики титана напрямую зависят от количества примесей, содержащихся в его составе. Физические параметры:
- Удельная прочность — 450 МПа.
- Температура плавления титана — 1668 градусов.
- Температура кипения — 3227 градусов.
- Предел прочности у сплавов — 2000 Мпа.
- Упругость титана — 110,25 Гпа.
- Твердость металла — 103 НВ.
- Предел текучести — 380 Мпа.
Структура и свойства этого металла обуславливают его низкую электропроводность. В нормальных условиях титан обладает высоким показателем устойчивости к коррозийным процессам.
Металл
Титан представляет собой серебристо-белый металл. Он тугоплавкий, немного тяжелее алюминия. Однако при чуть большем весе прочность титана в три раза больше. Поддаётся различным способам обработки. Устойчив к воздействию влаги и кислот. Основные свойства титана были описаны выше.
Химические свойства титана
В нормальных условиях на поверхности этого металла образуется оксидная плёнка, которая защищает его от разрушительного воздействия влаги и кислот.
К химическим свойствам титана можно отнести его устойчивость к воздействию щелочей, растворам хлора. Имеет степень окисления +4. С кислородом начинает взаимодействовать при температуре в 600 градусов.
Титановая стружка может самовоспламеняться при нагревании.
Виды сплавов
Титановые сплавы можно разделить на три большие группы:
- Соединения на основе химических соединений. Представители этой группы имеют жаропрочную структуру и низкую плотность. Снижение плотности напрямую влияет на снижение веса материала. Такие сплавы используют при изготовлении деталей для автомобилей, каркасов для летательных аппаратов и корпусов для кораблей.
- Жаропрочные сплавы с низкой плотностью. Это аналог соединений с никелем, но с меньшей ценой. В зависимости от химического состава меняется устойчивость сплава титана к высоким температурам.
- Конструкционные — высокопрочные соединения, которые легко поддаются обработке благодаря высокому показателю пластичности. Из этих сплавов изготавливаются детали, которые устанавливаются в оборудовании, работающим с большими нагрузками.
При производстве титановых сплавов используется официальная маркировка, которая указывает на то, с какими металлами он соединён.
Свойства и применение титановых сплавов
Титановые сплавы лишены основных недостатков чистого металла. При добавлении сторонних материалов изменяются его характеристики. Ключевые свойства титановых сплавов:
- устойчивость к коррозийным процессам;
- малая плотность;
- большая удельная прочность.
Также сплавы более устойчивы к воздействию высоких температур. Благодаря повышенной защите от воздействия кислот и щелочей сплавы на основе этого материала получили популярность в химической промышленности и медицине. Их используют в строительстве, изготовлении оборудования, машин, самолётов, ракет и кораблей.
Титан и соединения на его основе распространены в различных направлениях промышленности. Этот металл обладает уникальными характеристиками, которые выделяют его на фоне других материалов. Из-за сложностей получения чистого металла цена на него достаточно высока.
Титан
Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.
Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.
Физические и механические свойства
Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него.
Изображение 2Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы.
По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.
По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.
Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза — меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.
В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».
Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло.
Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.
Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм.
Из титана изготавливают такие виды проката: титановая лента, титановая проволока, титановые трубы, титановые втулки, титановый круг, титановый пруток.
Химические свойства
Чистый титан – это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии.
Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение.
Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.
Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.
Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород.
При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.
Способы получения
Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%).
Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.
1. Магниетермический процесс
Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде.
Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот.
Губчатый титан переплавляют для получения качественного металла.
2. Гидридно-кальциевый метод
Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре.
Образуется оксид кальция, который проходит отмывку слабыми кислотами.Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах.
Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.
3. Электролизный метод
Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.
4. Йодидный метод
Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.
Применение титана
Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана – это прекрасный материал для самолётостроения, ракетостроения и судостроения.
Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.
Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника.
Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов.
В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.