Искусственное старение металла: механическое и термическое

Главная / Теория термической обработки металлов / Старение и отпуск / Старение / Искусственное старение

23 сентября 2011

В зависимости от режима, структурных изменений и получаемого комплекса свойств искусственное старение можно подразделить на полное, неполное, перестаривание и стабилизирующее старение (соответствующие режимы и свойства приведены в таблице Режимы старения и механические свойства состаренных сплавов на разной основе для литейного алюминиевого сплава AЛ9).

Полное искусственное старение проводят при такой температуре и продолжительности, которые обеспечивают достижение максимальной прочности.

Неполное искусственное старение — это старение с более короткой выдержкой или при более низкой температуре, чем полное с целью повысить прочность при сохранении достаточной пластичности.

Режимы неполного старения соответствуют восходящим ветвям кривых на рисунках Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения.

Некоторая потеря возможного прироста прочности компенсируется меньшим снижением пластичности.

Перестаривание — это старение при более высокой температуре или большей выдержке, чем полное, с целью получить сочетание повышенных прочности, пластичности, коррозионной стойкости, электропроводности и других свойств. Режимы перестаривания соответствуют нисходящим ветвям кривых на рисунках Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения.

По сравнению с неполным старением перестаривание при той же прочности обеспечивает большую степень распада твердого раствора и коагуляцию выделений, что часто позволяет достигнуть требуемого комплекса разнообразных свойств.

Стабилизирующее старение — это разновидность перестаривания, целью которого является стабилизация свойств и размеров изделия.

Жаропрочные сплавы, предназначенные для длительной службы, обычно подвергают старению при температуре выше рабочей. В противном случае при эксплуатации изделия в нем будут активно протекать структурные изменения, приводящие к разупрочнению и нестабильности свойств изделия. Очень часто термическую обработку жаропрочных сплавов проводят в режиме перестаривания.

Выбор режима старения следует проводить с учетом условий закалки.

С повышением температуры нагрева под закалку из однофазной области (выше Т0 в сплаве С0 на рисунке Схема к объяснению закалки без полиморфного превращения) старение ускоряется из-за повышения концентрации закалочных вакансий, которая входит в предэкспоненциальный множитель А в выражении для скорости зарождения новой фазы.

Таким образом, С-кривые распада раствора на рисунке С-кривые образования зон ГП с повышением температуры закалки сдвигаются влево, причем этот сдвиг больше в низкотемпературной области, где роль закалочных вакансий особенно велика.

Некоторые сплавы подвергают старению без специального нагрева под закалку. В таких случаях пересыщение раствора достигается ускоренным охлаждением с температуры конца затвердевания отливки или горячей обработки давлением.

Упрочнение здесь не достигает максимально возможного для данного сплава из-за меньшей пересыщенности твердого раствора, но экономическая эффективность (исключение операции закалки) делает указанное старение целесообразным для ряда деталей.

Для отдельных сплавов, например для сплава MЛ12 системы Mg — Zn — Zr, старение отливок без специального нагрева под закалку является основным способом термической обработки. Скорость охлаждения после старения не влияет на свойства сплава.

Обычно с температуры старения изделия охлаждают на воздухе.

«Теория термической обработки металлов»,И.И.Новиков

Искусственное старение металла: механическое и термическое

Явление возврата после старения было открыто на дуралюмине.

Если естественно состаренный дуралюмин нагреть до температуры примерно 250 °С, выдержать 20 — 60 с и быстро охладить, то его свойства возвращаются к значениям, характерным для свежезакаленного состояния.

  Сущность явления возврата состоит в том, что зоны ГП, возникшие при естественном старении, во время нагрева сплава растворяются, метастабильные…

Искусственное старение металла: механическое и термическое

Выбор температуры и продолжительности старения После предварительной оценки температурного уровня старения по соотношению или по аналогии с другими сплавами на базе того же металла экспериментально отрабатывают режим старения, строя графики, подобные рисуноки Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения. Как известно, старение подразделяют на естественное, происходящее при комнатной температуре, и искусственное,…

Искусственное старение металла: механическое и термическое

Старение с выдержкой вначале при одной, а затем при другой температуре называют ступенчатым. Как правило, температуру первой ступени выбирают ниже, чем второй.

Основная цель двухступенчатого (двойного) старения — создать большое число центров выделений на низкотемпературной ступени, когда пересыщенность твердого раствора велика (на рисунке Размер выделений степень пересыщенности C0/C1 растет с понижением температуры Т1), а затем…

Искусственное старение металла: механическое и термическое

Рассмотрим практически важный случай сложной роли естественного старения на примере сплавов системы Al — Mg — Si, находящихся на квазибинарном разрезе Al — Mg2Si или недалеко от него (сплавы типа авиаль). В этих сплавах при естественном старении образуются игольчатые зоны ГП, обогащенные магнием и кремнием, а при искусственном (170 °С) — метастабильная β´-фаза (смотрите таблицу…

Режимы старения и механические свойства состаренных сплавов Искусственное старение металла: механическое и термическое

С ролью предстарения тесно связан вопрос о роли скорости нагрева при одноступенчатом старении. Обычно на скорость нагрева до температуры старения не обращают внимания.

Однако начальные стадии распада при замедленном нагреве могут влиять на свойства состаренного сплава.

Так, например, замедленный нагрев до температуры старения некоторых алюминиевых сплавов позволяет несколько повысить их прочность. Режимы старения и механические…

Источник: https://www.ktovdome.ru/teoriya_termicheskoy_obrabotki_materialov/364_2/86/11078.html

Как состарить металл — Полезные советы — 2019

На сегодняшний день металлические детали и поверхности пользуются огромным спросом при оформлении интерьера. Ими декорируется мебель и аксессуары.

Востребованным является состаренный металл: с шершавой поверхностью и разными ее цветовыми оттенками. Подобные детали декора наделяют интерьер либо предметы одежды определенной солидностью, проверенной временем.

Процесс старения

Старение в качестве температурной обработки используется как заключительная операция. Применима к тем металлам и сплавам, у которых пресыщенный твердый раствор может выделять избыточный компонент и самопроизвольно распадаться.

После проведения процедуры старения у металла увеличиваются твердость с прочностью, но при этом снижаются вязкость с пластичностью, но эти значения сохраняются на протяжении срока работы.

Старение стали производится для изменения внутренней структуры после закалки. Полученный твердый раствор феррита пресыщенный углеродом и азотом при нагревании распадается. В зависимости от количества содержания углерода в сплаве внутренняя структура может приобретать форму:

  • дискообразную (в виде тонких пластинок),
  • сферическую,
  • кубическую,
  • игольчатую.

Искусственное старение металла (термообработка) применяется к тем сплавам, в которых растворяемость одного элемента в твердом состоянии значительно снижена. Это проявляется при снижении температуры.

Во время искусственного старения в сталях с низким содержанием углерода, не выше 0,05%, распадается пресыщенный твердый альфа раствор. При этом выделяются избыточные фазы. Такая метаморфоза приводит к тому, что снижается пластичность, но приводит к увеличению твердости и прочности.

Искусственное старение металла: механическое и термическое

На рисунке показана модель Орована, которая иллюстрирует перемещение дислокаций. Максимального эффекта добиться возможно при естественном старении, но время затраченное на это будет значительным. Увеличить скорость протекания процесса можно искусственным старением, но при этом прочностные характеристики будут снижены.

Искусственное старение металла: механическое и термическое

Твердость в зависимости от времени старения

На графике отчетливо видно, что сокращение времени старения не позволяет получить высокую твердость.

Течение процесса старения во многом зависит от углерода и азота. Особенно это заметно в малоуглеродистых сталях. Азот с уменьшением температуры начинает хуже растворятся в альфа железе.

Например, при температуре 590°С растворенного азота содержится 0,1%, но уже при 20°С его содержание снижается до 0,004%. При старении альфа раствор выделяет нитриды.

Поэтому влияние азота менее выражено по сравнению с тем же углеродом при температурном воздействии.

При увеличении углерода в сталях увеличивается эффект изменения структуры, получаемый при термическом воздействии. Объем углерода, максимум которого может раствориться в альфа железе составляет 0,02-0,04%. При таком содержании закаленное изделие, подвергнутое естественному старению обладает твердостью в полтора раза выше чем после отжига.

Старение – это основной способ увеличения прочности жаропрочных сплавов (с высоким содержанием никеля). В эту же группу относятся сплавы на основе алюминия, меди, магния. Кроме того, измененная структура вышеперечисленных металлов и сплавов придает им коэрцитивную силу.

Алюминиевые и алюминисто-медные сплавы подвергаются деструкции при различных температурах (свыше 100°С) из-за различия в температуре распада структуры разных металлов. Так выделяют низкотемпературное и высокотемпературное изменение структуры.

Распад твердого раствора проходит по двум путям. В первом случае это образование и рост частиц фазы идет по всему объему. Во втором случае распад прерывистый (ячеистый). Во время него ячейки растут колониями. У колоний структура ячеистая, а рост идет от границы зерна и движется во внутрь, уменьшая размер.

Технология состаривания металла

  • Перед началом работ металл необходимо очистить от любых загрязнений. Именно от предварительной подготовки зависит успех работы, поэтому необходимо очищать поверхность старательно. Иногда даже рекомендуют отжечь металл для удаления остатков смол или других веществ.
  • Если детали из меди или латуни, то ее необходимо сначала отбелить слабым раствором серной кислоты. А железо обрабатывают более концентрированным раствором серной кислоты. Алюминиевые изделия обрабатываются двууглексилой содой. Вне зависимости от способа обработки детали после завершения работ необходимо тщательно промыть под проточной водой и очистить жесткой щеткой.

Искусственное старение металла: механическое и термическое

  • Для работы с латунью и медью используется азотная кислота. Поскольку испарения этой кислоты вредны для человека, то следует соблюдать особую осторожность, а вообще не рекомендуется работать с этим веществом в закрытом помещении. Лучше выйти для работы с металлом на улицу.
  • На поверхность металлического изделия кислота наносится ватным тампоном, намотанным на деревянную палочку. Реакция на вещество будет заметна сразу – поверхность металла будет менять цвет от насыщенного зеленого до черного. После того, как реакция произошла, металл нужно нагревать до полного испарения состава. Затем изделие промывают под струей горячей проточной воды.
  • Цвет готового изделия может получиться от оливково-зеленого до коричневого и от светло-серого до черного. Это зависит от концентрации кислоты, продолжительности соприкосновения с ней, от степени нагрева. Полученный эффект довольно стойкий, поэтому можно полировать или шлифовать деталь.
  • Если состариваются железные детали, то их тщательно очищают, намазывают олифой, а потом нагревают до 300-400 градусов по Цельсию. Для равномерной обработки поверхности лучше нагревать деталь в печи. Если необходим светлый тон детали, то применяют азотную кислоту.
  • Для обработки алюминиевых изделий использую керосин или копоть. Эти вещества подчеркивают структуру этого металла и придают ей красивый декоративный вид.
  • Читайте также:  Воздушный компрессор: назначение, принцип работы, виды

    Метод быстрого состаривания металлических изделий

    Часто для различных творческий идей необходимы старинные кнопки, иголки, булавки, гвозди, подковы и т.д. Быстро состарить такие металлические изделия можно с помощью уксуса (1/4 стакана) и соли (2 столовые ложки).

    1. Смешивают оба вещества и в полученный раствор погружают металлическую деталь.
    2. Состав перемешивают, накрывают крышкой с отверстиями и оставляют на 12 часов.
    3. Затем детали достают и просушивают на газете.
    4. Если образовались излишки ржавчины, можно зачистить их наждачной бумагой.

    Для работы с раствором лучше взять стеклянную или пластиковую посуду, стойкую к химическим веществам. Перемешивать компоненты надо деревянной, пластиковой или фарфоровой ложкой. Тара необходима большего объема, поскольку после погружения в раствор металлической детали жидкость начнет пениться.

    Если работы проводятся не на улице, то следует использовать хорошо проветриваемое помещение.

    Для состаривания металла потребуется:

    ✔ двууглекислая сода либо активные кислоты,

    Последовательность работ

    — Методов металлообработки и декоративного оформления металлов в настоящее время много, чему способствует развитие химической промышленности. Многие способы состаривания металла дошли к нам еще из далекого прошлого. Поэтому метод декоративной обработки металла необходимо выбирать в зависимости от желаемого результата и вида используемого металла.

    Искусственное старение металла: механическое и термическое

    — До начала работ необходимо очистить поверхность материала от всевозможных загрязнений. Результаты труда во многом определяются именно качеством проведения данного этапа. Допускается изделие осторожно отжечь, что избавит его от оставшейся смолы либо иных примесей.

    Медные и латунные сплавы следует заблаговременно отбелить в растворе серной кислоты слабой концентрации, для железа в подобном случае рекомендуется использовать серную кислоту, для изделий из алюминия – двууглекислую соду.

    Все предметы после обработки необходимо тщательно промыть и очистить щеткой с металлическим ворсом. Только после этого можно приступать к самой отделке.

    — Состарить латунь и медь поможет азотная кислота. Главное – соблюдать меры предосторожности (все работы следует выполнять на открытом воздухе), так как данная кислота выделяет опасные испарения.

    Ватный тампон необходимо намотать на деревянную палочку. Этим приспособлением и выполняется обработка поверхности металла азотной кислотой либо ее раствором.

    Затем (после завершения реакции) следует нагревать предмет до того времени, пока не прекратится реакция испарения.

    — Концентрация кислоты, время обработки металла и степень последующего нагрева – это основные факторы, которые определяют будущий цвет поверхности.

    — Если выбор сделан в пользу изделий из железа, то их необходимо обработать олифой сразу после очистки. Затем предмет нагревается до 300-450C. Более равномерная поверхность получится при использовании печи. Более светлые тона поверхности можно получить за счет азотной кислоты.

    — Чтобы декорировать либо состарить алюминиевую поверхность, следует воспользоваться копотью либо керосином. Данные вещества максимально подчеркнут все особенности в рельефе и придадут поверхности неповторимость.

    Термическое старение

    Фаза упрочняющая металл во время термического воздействия происходит в точке максимума. Здесь проходит метастабильный промежуток раствора в зоне Гинье-Престона. Такой вид упрочнения металлов и сплавов принято называть дисперсионным.

    Искусственное старение металла: механическое и термическое

    • Зависимость прочности от времени и температуры старения
    • При более длительной выдержке начинается перестаривание, то есть снижение прочностных характеристик. На это влияют:
    • коагуляция,
    • частичная замена частиц некогерентыми.
    1. Виды термического старения металла:
    • Двухступенчатое – закалка, затем выдержка при температуре замещения, а потом выдерживание с повышенной температурой для получения однородности твердого раствора.
    • Закалочное – закалка и одна фаза выдержки с естественным охлаждением.
    • Естественное – для алюминиевых сплавов.
    • Искусственное – для сплавов из цветных металлов с нагревом до температуры выше той, которая используется для естественной деструкции.
    • Стабилизационное – высокая температура старения и длительный срок выдержки помогают сохранить размеры и свойства детали.

    Механическое старение металла

    Деструкция стали при помощи деформирующих усилий происходит в диапазоне температур ниже процесса рекристаллизации. Обусловлено это образованием и движением дислокаций. При холодной пластической деформации увеличивает плотность дислокаций, которые далее еще больше увеличиваются при увеличении нагрузок.

    Изменяющиеся механические свойства металла вызывает движение атомов углерода и азота к дислокациям, которые размещены в альфа растворе. Достигнув дислокаций атомы образуют облака (атмосферы Котрелла). Данные скопления препятствуют движению дислокаций, благодаря чему происходит изменение свойств. Появляются присущие состаренным термообработкой деталям свойства.

    Если на эффект старения деформированием сильно влияют азот, никель и медь, то с добавками ванадия, титана и ниобия данный эффект полностью пропадает. Поэтому рекомендуется использовать сталь с содержанием алюминия 0,02-0,07%.

    Рекомендуемые режимы для проведения старения

    • для сталей с высоким содержанием углерода: температура порядка 130°С-150°С, время выдержки порядка 25-30 часов,
    • для сплавов из цветных металлов: температура порядка 250°С, время выдержки порядка 1 часа.
    • для естественного процесса: температура порядка 20°С,
    • для искусственного протекания процесса: температура порядка 250°С, время выдержки порядка 1 часа.
    • Температура нагрева и время выдержки подбирается индивидуально к каждой марке металла и к сплаву в зависимости от их состава.

    Источник: https://ru.mazorhomes.com/9178-metal-aging.html

    Виды и режимы старения металла

    Старение металла может происходить в результате длительной эксплуатации, при возникновении форс-мажорных обстоятельств, при нарушении технологии изготовления конструкции и выполняться специально.

    В первом и втором случае теряются первоначально заложенные свойства – материал физически изнашивается, и, как правило, требуется его полная замена. В третьем случае при выполнении гибочных, монтажных, сварных и других операций снижаются эксплуатационные свойства, что в некоторых случаях недопустимо.

    Поэтому особо ответственные изделия проверяют на склонность к деформационному старению по определенным методикам.

    Специально выполняемая операция по старению металла, имеющая второе название – дисперсионное твердение – разновидность заключительной термической обработки, которая проводится с целью получения необходимых физических, химических и механических свойств.

    Может выполняться естественным путем, искусственным способом (термообработкой) и пластическим деформированием. Используется для сплавов и металлов, у которых пересыщенный твердый раствор выделяет избыточный компонент и самопроизвольно распадается. В результате проведения операции любым способом у материалов увеличиваются такие показатели, как прочность и твердость, которые сохраняются на протяжении срока эксплуатации, но снижаются показатели пластичности и вязкости.

    Искусственное старение металла: механическое и термическое

    Оглавление

    • 1 Виды старения металла
    • 2 Режимы старения

    Виды старения металла

    Выделяют 2 вида старения металла: термическое и механическое. Термический вид является разновидностью искусственного старения металла, которое выполняют с подогревом до определенной температуры, выдержкой и охлаждением на воздухе.

    В процессе операции изменяется растворимость углерода в альфа-железе в зависимости от температуры, до которой была нагрета заготовка. Режимы проведения операции зависят от марки стали, чугуна, цветного металла или сплава и указываются в технологическом процессе по выполнению операции.

    Различают следующие виды искусственного старения металлов:

    • полное (выполняется при определенной температуре с продолжительностью, обеспечивающей максимальные прочностные характеристики);
    • неполное (выполняется при более низкой температуре непродолжительно для повышения прочности и сохранения пластических свойств);
    • перестаривание (выполняется при высокой температуре или с большой выдержкой с целью получения высокой прочности, коррозионной стойкости, электропроводности и других свойств);
    • стабилизирующее (выполняется для стабилизации размеров и физико-химических свойств изделия).

    Кроме того, операция может выполняться за насколько стадий, так называемое ступенчатое или двойное старение. Вначале нагрев осуществляют при более низкой температуре, а затем – при высокой. На первом этапе создаются многочисленные центры выделений твердого раствора, а на втором – обеспечивается их распад. Таким образом получается однородность и плотность распределения выделений в материале.

    При естественном старении материал выдерживается при комнатной температуре определенное время, что приводит к повышению твердости, прочности и текучести. Процесс этот длительный.

    Обычно занимает 15 и больше дней (зависит от материала), когда изготовленные детали и заготовки хранятся на открытом воздухе.

    Чтобы ускорить процесс получения качественного материала и получить те же результаты, выполняют операцию искусственного старения в специальных печах по определенной технологии.

    Механический вид называют деформационным, осуществляют путем пластической деформации при нагреве ниже температуры рекристаллизации материала. Обычно это 20 °C. Возможен вариант совмещения механического и термического старения. Такой способ применяют для легированных сталей.

    Режимы старения

    Чтобы искусственно состарить материал, необходимо знать марку металла или основу, на которой он изготовлен (химический состав). От этого зависит режим выполнения операции. Сюда входит выбор температуры нагрева и время выдержки. Ориентировочные данные указаны в таблице.

    Металл или сплав на его основеТемпература нагрева, °CВремя выдержки, час
    Алюминий 100÷235 1÷17
    Медь 160÷330 2÷25
    Титан 550 1
    Магний 170÷180 16
    Никель 690÷710 16
    Сталь с высоким содержанием углерода 130÷150 25÷30

    Операция может выполняться без предварительной закалки заготовок или деталей и с ней. И тут важно правильно подобрать температуру нагрева: она должна быть ниже той, при которой происходила закалка.

    В любом случае это оговаривается в технологическом процессе по изготовлению той или иной детали, который разрабатывают специалисты на производстве с учетом применяемого оборудования и режимов старения.

    Скорость нагрева до температуры, с какой производится операция, особой роли не играет. Однако для алюминия и его сплавов лучше выполнять медленный нагрев. Это повысит прочность изделия.

    Старение черных, цветных металлов и их сплавов является распространенным технологическим процессом, позволяющим добиться нужных свойств.

    Операция должна производиться с учётом структурных и физико-химических особенностей марки металла на качественном оборудовании, специально предназначенном для проведения искусственного старения. Такие печи выпускают отечественные и зарубежные производители в широком ассортименте.

    Они соответствуют современным требованиям к энергосбережению и безопасности, простоты в управлении и обслуживании. Работают на разных температурных режимах. Многие из моделей могут встраиваться в конвейерные линии, что позволяют повысить производительность труда.

    Различаются такие печи объемом садки, производительностью, мощностью и наличием дополнительных функций, которые упрощают выполнение такого вида термообработки.

    Просим тех, кто занимался вопросами старения и выполнял такие операции, поделиться опытом в х к тексту.

    Источник: https://WikiMetall.ru/metalloobrabotka/starenie-metalla.html

    Искусственное старение стали

    Искусственное старение металла: механическое и термическое

    Старение металла – это процессы, протекающие внутри металла и вызывающие изменения физических и механических свойств, внутренней структуры. Проистечение данных процессов может происходить естественным путем (при большой длительности по времени и температуре, приближенной к 20°С) и искусственным воздействием (термообработкой и пластическим деформированием).

    Старение металла

    Процесс старения

    Старение в качестве температурной обработки используется как заключительная операция. Применима к тем металлам и сплавам, у которых пресыщенный твердый раствор может выделять избыточный компонент и самопроизвольно распадаться.

    Читайте также:  Температура плавления свинца в градусах по цельсию

    После проведения процедуры старения у металла увеличиваются твердость с прочностью, но при этом снижаются вязкость с пластичностью, но эти значения сохраняются на протяжении срока работы.

    Старение стали производится для изменения внутренней структуры после закалки. Полученный твердый раствор феррита пресыщенный углеродом и азотом при нагревании распадается. В зависимости от количества содержания углерода в сплаве внутренняя структура может приобретать форму:

    • дискообразную (в виде тонких пластинок);
    • сферическую;
    • кубическую;
    • игольчатую.

    Искусственное старение металла (термообработка) применяется к тем сплавам, в которых растворяемость одного элемента в твердом состоянии значительно снижена. Это проявляется при снижении температуры.

    Во время искусственного старения в сталях с низким содержанием углерода, не выше 0,05%, распадается пресыщенный твердый альфа раствор. При этом выделяются избыточные фазы. Такая метаморфоза приводит к тому, что снижается пластичность, но приводит к увеличению твердости и прочности.

    Модель Орована

    На рисунке показана модель Орована, которая иллюстрирует перемещение дислокаций. Максимального эффекта добиться возможно при естественном старении, но время затраченное на это будет значительным. Увеличить скорость протекания процесса можно искусственным старением, но при этом прочностные характеристики будут снижены.

    Твердость в зависимости от времени старения

    На графике отчетливо видно, что сокращение времени старения не позволяет получить высокую твердость.

    Течение процесса старения во многом зависит от углерода и азота. Особенно это заметно в малоуглеродистых сталях. Азот с уменьшением температуры начинает хуже растворятся в альфа железе.

    Например, при температуре 590°С растворенного азота содержится 0,1%, но уже при 20°С его содержание снижается до 0,004%. При старении альфа раствор выделяет нитриды.

    Поэтому влияние азота менее выражено по сравнению с тем же углеродом при температурном воздействии.

    При увеличении углерода в сталях увеличивается эффект изменения структуры, получаемый при термическом воздействии. Объем углерода, максимум которого может раствориться в альфа железе составляет 0,02-0,04%. При таком содержании закаленное изделие, подвергнутое естественному старению обладает твердостью в полтора раза выше чем после отжига.

    Старение – это основной способ увеличения прочности жаропрочных сплавов (с высоким содержанием никеля). В эту же группу относятся сплавы на основе алюминия, меди, магния. Кроме того, измененная структура вышеперечисленных металлов и сплавов придает им коэрцитивную силу.

    Алюминиевые и алюминисто-медные сплавы подвергаются деструкции при различных температурах (свыше 100°С) из-за различия в температуре распада структуры разных металлов. Так выделяют низкотемпературное и высокотемпературное изменение структуры.

    Распад твердого раствора проходит по двум путям. В первом случае это образование и рост частиц фазы идет по всему объему. Во втором случае распад прерывистый (ячеистый). Во время него ячейки растут колониями. У колоний структура ячеистая, а рост идет от границы зерна и движется во внутрь, уменьшая размер.

    Механическое и термическое старение

    Существует два вида старения металла: термическое и механическое. Рассмотрим каждый из них более подробно.

    Термическое старение

    Фаза упрочняющая металл во время термического воздействия происходит в точке максимума. Здесь проходит метастабильный промежуток раствора в зоне Гинье-Престона. Такой вид упрочнения металлов и сплавов принято называть дисперсионным.

    • Зависимость прочности от времени и температуры старения
    • При более длительной выдержке начинается перестаривание, то есть снижение прочностных характеристик. На это влияют:
    • коагуляция;
    • частичная замена частиц некогерентыми.

    Виды термического старения металла:

    • Двухступенчатое – закалка, затем выдержка при температуре замещения, а потом выдерживание с повышенной температурой для получения однородности твердого раствора.
    • Закалочное – закалка и одна фаза выдержки с естественным охлаждением.
    • Естественное – для алюминиевых сплавов.
    • Искусственное – для сплавов из цветных металлов с нагревом до температуры выше той, которая используется для естественной деструкции.
    • Стабилизационное – высокая температура старения и длительный срок выдержки помогают сохранить размеры и свойства детали.

      Просечная сетка из нержавеющей стали

    Механическое старение металла

    Деструкция стали при помощи деформирующих усилий происходит в диапазоне температур ниже процесса рекристаллизации. Обусловлено это образованием и движением дислокаций. При холодной пластической деформации увеличивает плотность дислокаций, которые далее еще больше увеличиваются при увеличении нагрузок.

    Изменяющиеся механические свойства металла вызывает движение атомов углерода и азота к дислокациям, которые размещены в альфа растворе. Достигнув дислокаций атомы образуют облака (атмосферы Котрелла). Данные скопления препятствуют движению дислокаций, благодаря чему происходит изменение свойств. Появляются присущие состаренным термообработкой деталям свойства.

    Если на эффект старения деформированием сильно влияют азот, никель и медь, то с добавками ванадия, титана и ниобия данный эффект полностью пропадает. Поэтому рекомендуется использовать сталь с содержанием алюминия 0,02-0,07%.

    Рекомендуемые режимы для проведения старения

    Термическая обработка:

    • для сталей с высоким содержанием углерода: температура порядка 130°С-150°С, время выдержки    порядка 25-30 часов;
    • для сплавов из цветных металлов: температура порядка 250°С, время выдержки порядка 1 часа.

    Пластическая обработка:

    • для естественного процесса: температура порядка 20°С;
    • для искусственного протекания процесса: температура порядка 250°С, время выдержки порядка 1 часа.

    Температура нагрева и время выдержки подбирается индивидуально к каждой марке металла и к сплаву в зависимости от их состава.

    , пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    Источник: http://StankiExpert.ru/spravochnik/materialovedenie/starenie-metalla.html

    Как состарить металл

    Желание состарить металл не возникнет у автомобилистов или строителей, а вот рукодельницы и дизайнеры сейчас очень часто прибегают к такому приему, чтобы получить интересные детали в оформлении интерьеров или декоративные элементы. Поверхность состаренного металла приобретает интересную структуру и различные цветовые оттенки – шершавость и игра цветов придают изделию солидность и оригинальность.

    Искусственно состарить металл довольно просто. В элементарном случае его можно положить в место с высокой влажностью и спустя некоторое время (пройдут недели) изделие покроется слоем ржавчины и станет похоже на старинную вещь.

    Способ прост, но требует много времени, поэтому на данный момент чаще всего для состаривания металлов используют различные химические вещества: азотная кислота, двууглексилая сода, олифа или активные кислоты.

    Специалисты постоянно находят все новые и новые способы декоративного состаривания металла, но самые проверенные и доступные рецепты дошли к нам из древних времен.

    Важным моментом при данном процессе является необходимость правильного применения химических веществ к определенным металлам. А еще поскольку речь идет об агрессивных веществах, то при состаривании металлов необходимо использовать средства индивидуальной защиты – перчатки, очки, респираторы.

    Технология состаривания металла

    • Перед началом работ металл необходимо очистить от любых загрязнений. Именно от предварительной подготовки зависит успех работы, поэтому необходимо очищать поверхность старательно. Иногда даже рекомендуют отжечь металл для удаления остатков смол или других веществ.
    • Если детали из меди или латуни, то ее необходимо сначала отбелить слабым раствором серной кислоты. А железо обрабатывают более концентрированным раствором серной кислоты. Алюминиевые изделия обрабатываются двууглексилой содой. Вне зависимости от способа обработки детали после завершения работ необходимо тщательно промыть под проточной водой и очистить жесткой щеткой.
    • Для работы с латунью и медью используется азотная кислота. Поскольку испарения этой кислоты вредны для человека, то следует соблюдать особую осторожность, а вообще не рекомендуется работать с этим веществом в закрытом помещении. Лучше выйти для работы с металлом на улицу.
    • На поверхность металлического изделия кислота наносится ватным тампоном, намотанным на деревянную палочку. Реакция на вещество будет заметна сразу – поверхность металла будет менять цвет от насыщенного зеленого до черного. После того, как реакция произошла, металл нужно нагревать до полного испарения состава. Затем изделие промывают под струей горячей проточной воды.
    • Цвет готового изделия может получиться от оливково-зеленого до коричневого и от светло-серого до черного. Это зависит от концентрации кислоты, продолжительности соприкосновения с ней, от степени нагрева. Полученный эффект довольно стойкий, поэтому можно полировать или шлифовать деталь.
    • Если состариваются железные детали, то их тщательно очищают, намазывают олифой, а потом нагревают до 300-400 градусов по Цельсию. Для равномерной обработки поверхности лучше нагревать деталь в печи. Если необходим светлый тон детали, то применяют азотную кислоту.
    • Для обработки алюминиевых изделий использую керосин или копоть. Эти вещества подчеркивают структуру этого металла и придают ей красивый декоративный вид.

    Метод быстрого состаривания металлических изделий

    Часто для различных творческий идей необходимы старинные кнопки, иголки, булавки, гвозди, подковы и т.д. Быстро состарить такие металлические изделия можно с помощью уксуса (1/4 стакана) и соли (2 столовые ложки).

    1. Смешивают оба вещества и в полученный раствор погружают металлическую деталь.
    2. Состав перемешивают, накрывают крышкой с отверстиями и оставляют на 12 часов.
    3. Затем детали достают и просушивают на газете.
    4. Если образовались излишки ржавчины, можно зачистить их наждачной бумагой.

      Почему магнитится нержавеющая сталь

    Советы

    Для работы с раствором лучше взять стеклянную или пластиковую посуду, стойкую к химическим веществам. Перемешивать компоненты надо деревянной, пластиковой или фарфоровой ложкой. Тара необходима большего объема, поскольку после погружения в раствор металлической детали жидкость начнет пениться.

    1. Если работы проводятся не на улице, то следует использовать хорошо проветриваемое помещение.
    2. Оценить способ изготовления:

    Источник: https://steelfactoryrus.com/iskusstvennoe-starenie-stali/

    Старение сплавов

    Старение — это процесс термической обработки закаленного сплава, заключающийся в распаде пересыщенного твердого раствора с выделением частиц избыточной фазы. Данный процесс может протекать как при нормальной температуре — естественное старение, так и при повышенной температуре — искусственное старение.

    Процессы старения свойственны как сталям, так и цветным сплавам. Кроме того, во многих цветных сплавах процесс старения протекает по типовой схеме.

    После закалки без полиморфного превращения сплав состоит из α-пересыщенного твердого раствора, который находится в неустойчивом состоянии и при повышении температуры (или при нормальной температуре) начинает распадаться.

    На начальной стадии распада, в определенных местах кристаллической решетки, образуются зоны с повышенной концентрацией, растворенного при закалке, второго компонента.

    Эти зоны получили название зоны Гинье-Престона (зоны ГП или ЗГП), в честь имени французского (Гинье) и английского (Престон) ученых, обнаруживших данное явление в 1938 году. На начальном этапе ЗГП имеют небольшие размеры и называются зоны ГП-1.

    Читайте также:  Твердые сплавы: марки, свойства, применение, компоненты

    При дальнейшем развитии процесса эти зоны начинают расти и достигают размера 20-30 нм в диаметре. Эти зоны называются зонами ГП-2. Особой разницы между ними нет, кроме того, что в зонах ГП-2 атомы находятся в более упорядоченном положении.

    Зонное и фазовое старение

    Процесс образования и роста зон ГП-1 и ГП-2 называется зонным старением, когда в сплаве еще не выделяется вторая самостоятельная фаза. Образование ГП-1 и ГП-2 часто называют предвыделениями или подготовительной стадией образования (выделения) второй β-фазы.

    При дальнейшем развитии процесса, в сплаве начинает выделяться вторая фаза. Чаще всего она имеет промежуточные свойства и называется метастабильной β’-фазой. Данный процесс называется фазовым старением. На первоначальном этапе кристаллическая решетка β’-фазы когерентно связана с α-твердым раствором.

    Через некоторое время и/или при повышении температуры процесса эта когерентность нарушается и метастабильная β’ фаза становится стабильной β фазой, которая чаще всего представляет собой химическое соединение. Дальше происходит сфероидизация и коагуляция (укрупнение частиц) этой фазы.

    При коагуляции происходит снижение прочностных свойств сплава.

    При старении прочность сплава повышается на этапе образования зон ГП и метастабильной β’ фазы, т.к. в этот период возникает максимальное искажение кристаллической решетки α-твердого раствора.

    Эти искажения, наряду с наличием зон ГП и β’ фазы, блокируют движение дислокаций в сплаве. Чем больше в сплаве зон ГП и β’ фазы, тем большей прочности удается достигнуть при старении.

    Такое упрочнение называют дисперсионным твердением

    Во время сфероидизации и коагуляции β-фазы, прочность сплава снижается. Этот процесс называется перестариванием. Чаще всего целью старения является получение максимальной прочности сплава.

    Для этого делается полное старение. Когда необходимо получить комплекс прочностных и пластических свойств делается неполное старение на определенную структуру.

    Неполное старение регулируется температурой процесса и временем выдержки.

    Изменение механических свойств сплава во время старения индивидуально и зависит от химического состава и предшествующей термической или пластической обработки. Пример изменения прочности дюралюминия при старении показан на схеме ниже*

    Искусственное старение металла: механическое и термическое

    Изменение прочности дюралюминия при различных температурах старения

    *Источник фото: Учебник Материаловедение, Гуляев А.П., 1986 г., с.484

    В общем случае старение сплавов — выделение избыточной фазы протекает по следующей схеме:

    ГП1 — ГП2 — β’ — β

    Источник: https://HeatTreatment.ru/starenie-splavov

    СТАРЕ́НИЕ МЕТА́ЛЛОВ

    Авторы: М. А. Штремель

    СТАРЕ́НИЕ МЕТА́ЛЛОВ, из­ме­не­ние свойств ме­тал­лов и спла­вов, про­те­каю­щее са­мо­про­из­воль­но в про­цес­се дли­тель­ной вы­держ­ки при ком­нат­ной темп-ре (ес­те­ст­вен­ное ста­ре­ние) ли­бо при уме­рен­ном на­гре­ве (ис­кус­ст­вен­ное ста­ре­ние). С. м. про­во­дит­ся как спец. окон­ча­тель­ная опе­ра­ция тер­ми­че­ской об­ра­бот­ки для боль­шо­го чис­ла спла­вов, ко­то­рая обес­пе­чи­ва­ет по­лу­че­ние ком­плек­са не­об­хо­ди­мых ме­ха­нич. или фи­зич. свойств.

    Ста­ре­ние, или «дис­пер­си­он­ное твер­де­ние», – осн. спо­соб уп­роч­няю­щей тер­мич. об­ра­бот­ки спла­вов на ос­но­ве цвет­ных ме­тал­лов – Al, Mg, Cu, Ni и др.; про­во­дит­ся при вы­держ­ке спла­ва ни­же темп-ры пред­ше­ст­вую­щей за­кал­ки с це­лью вы­де­ле­ния из твёр­до­го рас­тво­ра дис­перс­ных (0,01–1 мкм) вклю­че­ний, что при­во­дит к по­вы­ше­нию проч­но­сти.

    В спла­вах на ос­но­ве же­ле­за при ста­ре­нии (при 20–300 °C и вы­держ­ке от не­сколь­ких ча­сов до не­сколь­ких лет) про­ис­хо­дит по­вы­ше­ние пре­де­ла те­ку­че­сти по ме­ре пе­ре­хо­да со­дер­жа­щих­ся в спла­вах N и C в сег­ре­га­ции (хи­мич. не­од­но­род­но­сти) и вы­де­ле­ния на дис­ло­ка­ци­ях.

    В за­ви­си­мо­сти от пред­ше­ст­вую­щей об­ра­бот­ки спла­ва ста­ре­ние мо­жет быть двух осн. ти­пов – за­ка­лоч­ное и де­фор­ма­ци­он­ное. Наи­боль­шее прак­тич. зна­че­ние име­ет де­фор­мац.

    ста­ре­ние, ко­то­рое в от­ли­чие от за­ка­лоч­но­го мо­жет про­ис­хо­дить при низ­ком со­дер­жа­нии при­мес­ных ато­мов в твёр­дом рас­тво­ре; оно на­блю­да­ет­ся прак­ти­че­ски для все­го диа­па­зо­на со­дер­жа­ния С в ста­ли, в то вре­мя как за­ка­лоч­ное да­ёт за­мет­ный эф­фект в осн.

    толь­ко для низ­ко­уг­ле­ро­ди­стых ста­лей. В слу­чае ко­гда де­фор­мац. ста­ре­нию пред­ше­ст­ву­ет хо­лод­ная пла­стич. де­фор­ма­ция, уп­роч­не­ние ста­ли по­вы­ша­ет­ся, но не­сколь­ко сни­жа­ет­ся пла­стич­ность. Ди­на­мич. де­фор­мац. С. м.

     – про­цесс ста­ре­ния, про­те­каю­щий не­по­сред­ст­вен­но в хо­де пла­стич. де­фор­мации; та­кую «тё­п­лую де­фор­ма­цию» ни­же тем­пе­ра­тур рек­ри­стал­ли­за­ции ис­поль­зу­ют для до­пол­нит. уп­роч­не­ния, напр., пру­жин­ной про­во­ло­ки и лен­ты.

    Ста­ре­ние ста­ли мо­жет про­яв­лять­ся в ухуд­ше­нии пла­стич­но­сти и вяз­ко­сти за вре­мя дли­тель­ной экс­плуа­та­ции при кли­ма­тич. темп-рах. К про­цес­су соб­ст­вен­но С. м., в т. ч. де­фор­ма­ци­он­но­го, до­бав­ля­ет­ся де­гра­да­ция по­верх­но­ст­но­го слоя за счёт из­но­са, кор­ро­зии и пр.

    Для пре­дот­вра­ще­ния от­ри­цат. эф­фек­та С. м. в «не­ста­рею­щих ста­лях» по­ни­жа­ют со­дер­жа­ние C и N (до 10–3% по мас­се) или свя­зы­ва­ют их в со­еди­не­ния (TiC, AlN и др.). Экс­пресс-кон­троль ста­ли на воз­мож­ное С. м.

     – срав­не­ние удар­ной вяз­ко­сти до и по­сле хо­лод­ной де­фор­ма­ции и вы­держ­ки при 250 °C.

    Источник: https://bigenc.ru/technology_and_technique/text/4163242

    Термическая обработка

    В зависимости от химического состава сплавы подразделяются на термически неупрочняемые и термически упрочняемые. Первые или вообще не подвергают никакой термообработке как например, многие сплавы на основе меди, алюминиевые сплавы типа АД1, АМЦ и др.

    , или отжигают. Вторые также могут поставляться без термообработки в состоянии после прессования или после отжига, но их можно и упрочнять путем закалки и старения. Впервые основы теории термической обработки металлических сплавов разработал великий русский металлург Д.

    А. Чернов.

    Операция отжига заключается в нагреве металла до определенной температуры, характерной для данного сплава, выдержке при этой температуре и медленном охлаждении. В результате отжига металл становится более мягким, пластичным. Поэтому часто отжиг применяют для тех пресс-изделий, которые подвергают дальнейшей обработке давлением.

    Например, прессуют пруток из алюминиевого сплава Д18. Этот пруток служит заготовкой для последующего волочения на проволоку меньшего диаметра. Для того, чтобы при волочении можно было осуществить большую деформацию л металл не разрушился, прессованную заготовку приходится отжигать при температуре около 400°С.

    Отжиг проводят чаще всего в электрических печах с воздушной циркуляцией.

    Очень большое значение в технике имеет другой вид термической обработки, называемый закалкой. При закалке металл становится прочнее, тверже.

    Во многих машинах, аппаратах и других конструкциях отдельные части и детали могут выдержать высокие рабочие напряжения только потому, что они закалены.

    Закалке подвергают не каждый сплав, а только такой, в котором при нагреве происходит внутренняя перестройка структуры металла, вызывающая изменения его свойств.

    Суть закалки заключается в следующем. При повышенных температурах, характерных для каждого сплава, в основном металле сплава, например, в алюминии алюминиевого сплава, растворяются легирующие элементы, упрочняющие его (медь, магний, цинк и др.). В результате получается так называемый твердый раствор на основе алюминия, который прочнее чистого алюминия.

    Если этот твердый раствор охлаждать медленно, то упрочняющие элементы из него выделятся, так как растворимость их в алюминии при понижении температуры уменьшается и сплав станет мягким и пластичным.

    Если же твердый раствор охладить быстро, то упрочняющие элементы из него не успеют выделиться, и при комнатной температуре сплав будет иметь повышенные прочностные свойства.

    В зависимости от состава сплава закалку производят при различных температурах: например, алюминиевые сплавы закаливаются с температуры около 500°С, стали — с 800—1000°С и т. д.

    Нагрев металла под закалку производят в определенном интервале температур.

    Для одних сплавов допустимые температуры ограничиваются узким интервалом и такие сплавы называют «чувствительными» к закалке, другие сплавы могут закаливаться в широком интервале температур, и называются «нечувствительными» к закалке.

    Большое значение имеет скорость охлаждения с закалочной температуры. Для достижения полного эффекта закалки необходимо, чтобы скорость охлаждения была очень высокой — составляла несколько сотен градусов в секунду.

    Есть много и других особенностей в закалке различных металлов, создана целая теория закалки, а в промышленности действует широкая сеть термических отделений, цехов и предприятий, где производится закалка различных металлических полуфабрикатов и деталей.

    Чтобы определить температуру закалки, металловеды строят специальные диаграммы, называемые диаграммами состояния, в которых отражается связь между температурой, содержанием химических элементов сплава и изменениями состава. Например, широко известны диаграммы состояния систем железо — углерод, алюминий — медь и др.

    , которые являются научной основой для различных видов термической обработки. Такие диаграммы показывают, в частности, до какой температуры нужно нагреть сплав, чтобы в нем произошли изменения, обеспечивающие получение желаемых свойств.

    Закалку осуществляют следующим образом. Профили нагревают в специальных печах до температуры закалки и некоторое время выдерживают в них для ее выравнивания по всему объему профиля. В это время в металле завершаются те изменения структуры, о которых мы говорили выше. Затем нагретый металл очень быстро охлаждают, например, путем резкого погружения в ванну с холодной водой.

    В последние годы большое число пресс-изделий, прежде всего из алюминиевых сплавов типа АД31, стали закаливать сразу же после выхода их из матрицы. Оказывается, горячее прессование можно вести при таких условиях, что температура изделия после выхода из матрицы будет равна температуре закалки.

    В этом случае достаточно профиль охладить прямо на столе пресса и закалка будет осуществлена. Охлаждающей средой для алюминиевых сплавов типа АД31 служит или воздух, который нагнетается вентилятором, или разбрызганная в мелкие капли вода (водяной туман).

    Закалка на столе пресса очень выгодна — устраняется повторный нагрев перед закалкой, в результате экономятся энергия и трудовые затраты. Кроме того, не нужно строить дорогостоящие закалочные агрегаты, да и качество готовых профилей, закаленных на столе пресса, в основном выше, чем при закалке из печи.

    При этом, однако, следует иметь в виду, что пока на столе пресса можно закаливать не все сплавы, а лишь «нечувствительные» к закалке, как например, упомянутый выше сплав АД31.

    К операциям термической обработки относится также старение, которое применяется, например, для алюминиевых сплавов и различных сталей. Дело в том, что после закалки некоторые алюминиевые сплавы не сразу приобретают наибольшую прочность, а этот процесс при комнатной температуре может длиться долгое время.

    Для его ускорения применяют нагрев до не очень высоких температур. Например, один из вариантов старения для сплава АД31: нагрев до 195—205 °С в течение 2—3 ч. Такое старение при повышенных температурах называют искусственным в отличие от естественного — при комнатной температуре.

    Искусственное старение проводят в специальных печах, и выполняют эту операцию после обрезки профилей.

    Источник: http://www.stroitelstvo-new.ru/pressovanie/termicheskaja-obrabotka.shtml

    Ссылка на основную публикацию
    Adblock
    detector