Для бесперебойной работы устройств, которые постоянно включают и выключают, используют устройства для подавления перенапряжения, они распределяют питание и осуществляют управление над подключенными нагрузками. Подача питания происходит через правильные схемы подключения оборудования, для этого используют электродвигатель. Так же осуществляется реверсивное движение и остановка.
Устройство и принцип работы
Магнитные пускатели и контакторы можно подключать самим, достаточно понять принцип работы устройств и настройку схем. Состоит пускатель магнитный из магнитопровода и катушки-индуктора. Магнитный провод имеет две части подвижную и не подвижную, первая закрепляется на пружине и осуществляет свободное движение, а вторая установлена на теле устройства и неподвижна.
В отверстии второй части установлена катушка, ее расположение влияет на номинальные контакторы пускателя с катушкой, подразделяются на 12 V и 24 V, 110 V и 220 V и 380 V. А вторая часть служит для подвижных и неподвижных контактов. Если питание не поступает, первая часть отжимается пружинами, а состояние контактов не меняется и остается в первоначальном виде.
- Как только напряжение появляется, при нажатии пусковой кнопки или другом поступлении электроэнергии, катушкой регулируется генерация электромагнитного поля, при котором притягивается первая часть устройства и расположение контактов меняется.
Если напряжение пропадает, зона электромагнитного поля иссякает, пружинная часть отжимается в подвижной стороне контактора в верхнюю сторону, а состояние контактов возвращается в первоначальный вид.
Так работает электромагнитный пускатель, напряжение появляется в контактах происходит замыкание, пропадает происходит размыкание.
На контактное устройство подключаются постоянные или переменные приборы с напряжением.
Но нужно следить за параметрами устройства, чтобы они не превышали заявленные в инструкции по применению.
Пускатели делятся на два типа с нормальными закрытыми контактами и нормальными открытыми. От этого можно понять, как они работают, первые отключают напряжение, а вторые включают, чтобы питание подавалось нужно использовать номер два, а чтобы подавлялось первый.
Где и зачем применяется
Электромагнитные пускатели и контакторы встраиваются в силовую сеть, которая занимается транспортированием тока, может быть постоянное или переменное напряжение, работа применяется на электромагнитных индукциях. Устройства оснащаются набором сигнальных контактов, через них питаются подключенные приборы. Одни выполняют вспомогательную функцию, а другие рабочую.
Электроустановки и электродвигатели управляются пускателями, но не защищают их при падении напряжения, так как происходит размыкание силового контакта, и работа прибора, на который распределяется электромагнит приостанавливается и самостоятельное включение исключается.
Чтобы привести оборудование в действие нужно воспользоваться кнопкой “пуск”. Это обеспечивает безопасность, так как из-за самопроизвольного включения могут произойти аварии.
В схемы подключения пускателя могут включаться реле с тепловым действием, они предназначены предохранять электродвигатели и другие установки от длительной работы. Бывают однополюсные и двухполюсные магнитные пускатели. Срабатывают при воздействии токовой перегрузки двигателей, по которым проходит напряжение.
Основные характеристики
Для того, чтобы пускатель корректно работал, нужно соблюдать определенные правила при монтаже, знать основы приборов с реле и подбирать схемы магнитного и реверсивного устройства.
Контакторы и пускатели работают небольшое время и чаще всего используются устройства с разомкнутым контактом.
В одни встраивается сигнальная цепь и предназначена для приборов с потреблением от 0,28 до 12 киловатт, другие для от 5 до 70 киловатт и способны работать с распределением напряжения 220 или 380 V.
Варианты устройств делятся на:
- открытую;
- защищенную;
- пылеводозащищенную;
- пылебрызгонепроницаемую форму.
Пускатель PME содержит “релюшку” трн, а модель PAE различается по числу реле. Если поступает полное напряжение, катушки прибора надежно работают. основная часть устройств имеет узлы:
- сердечник;
- электромагнитная катушка;
- якорь;
- каркас;
- механический датчик;
- группы контактов, центральные и дополнительные.
В конструкции может быть дополнительная сборка из защитного реле, электропредохранителя добавочного комплекта клеммы и пускового устройства.
Электромагнитная катушка с витками рассчитана на передачу напряжения до 650 V. Катушка размещается в сердце, и большая часть мощности распределяется на силовую часть пружин. В нормальном состоянии контакт разомкнут и пружины удерживаются в верхнем положении и держат магнитнопроводные участки.
Бывают пускатели, которые ограничивают перенапряжение, их используют для полупроводных систем. Катушка начинает работу переменной токовой системы, тип тока и характеристика не влияют на работу установки.
5 схем подключения пускателя, схема подключения через кнопки пуск и стоп
Для подключения схем нужны две клавиши “Пуск” и “Стоп”, производятся каждый в отдельном корпусе или в едином, работа устройства от этого не меняется и называется кнопочным постом.
Если кнопки находятся отдельно, то вопросов не возникает, один контакт подача питания, другой убывание. А если кнопки находятся в одном корпусе, то они имеют каждая по 2 группе контактных линий, две на “Пуск” и две на “Стоп”, у каждой группе своя сторона. Есть отделение с клеммой для контроля подачи тока.
Схемы подключения магнитных пускателей с катушками 220 V — однофазная сеть и подключение, простой вариант. 220 V подается на катушку верхнюю и нижнюю, которые располагаются в теле устройства.
К проводам подключается шнур с входом для питания, как только вилка будет в розетке, начнется работа пускателя. Приводится в действие с любым напряжением, а снимается, когда срабатывает пускатель с контактами t1-t3.
Схемы настройки при помощи кнопок “Пуск” и “Стоп”. Пускатель используется для электродвигателей, работа удобна, когда присутствуют кнопки “Пуск” и “Стоп”. Для постоянной работы устройства их чередуют через подачу фаз на магнитную катушку.
Работа пускателя происходит только при нажатой кнопке “Пуск”, то есть не подходит для постоянной работы устройства. В схему можно добавить самоподхват, работа происходит с вспомогательными контактами, которые можно установить на некоторые типы устройств.
Схемы подключения асинхронных двигателей 380 V в пускатели 220 V — подсоединение к контактным проводам трех фаз и по ним распределяется нагрузка. Это пускатели с тепловым реле, оно функционирует для защиты двигателя от нагрева.
Реверсивные схемы подключения — используются в случае, если нужно обеспечение вращения двигателей в противоположные направления. Направление меняется, когда перебрасывается фаза, в схеме присутствует два пускателя и кнопочный блок, в котором располагаются клавиши “стоп”, “вперед” и “назад”.
Силовые схемы подключения контактора-фазы переключаются перенаправлением при вращении двигателей, все контролируется силовой схемой.
Когда контакты срабатывают на катушку приходит сигнал, на каждую свой, всего три фазы, двигатель работает в левом направлении. Фаза с на третьей обмотке, b на b, а в фазе номер один изменения не происходят.
В этом случае движение мотора будет в правую сторону.
Схемы не сложные, но реверсивная требует двухстороннюю защиту, чтобы не было встречного включения. Разделяется на механическую блокировку и защиту контакта.
3 схемы подключения автоматики электрического отопления
Практически любой электрический котел требует обязательного наличия автоматики управления.
Вы не можете установить один единственный выключатель на вводе, которым будете запускать и отключать обогрев. Должна быть определенная система безопасности и приборы отслеживания температуры теплоносителя. Давайте же рассмотрим, как собрать такую систему, разберем ее схему и функциональность отдельных элементов.
При этом остановимся на самых минималистичных и простейших вариантах, которые вы сможете собрать самостоятельно своими руками.Ведь как известно, чем меньше элементов, тем больше надежность всей системы. Поэтому самые простые варианты и работают дольше и надежнее остальных.
Принципиальная схема автоматики электрокотла всегда начинается с подачи напряжения через вводной автомат.
Электрическое отопление подразумевает, как правило, наличие трехфазного ввода 380В. Значит и автомат должен быть трехполюсным.
- Обратите особое внимание, это должен быть именно один трехполюсный выключатель, а не три отдельных однополюсных.
- При КЗ и повреждении греющего элемента любой фазы, защита должна прекращать подачу напряжения по всем фазам.
- После вводного автомата фазные проводники нужно разделить.
- Делается это на электромагнитных пускателях.
Именно на них и ложится основная работа по автоматической коммутации эл.сети. Автомат то вы включаете и выключаете ручками, а пускатель будет это делать без вашего участия, на основе подачи управляющего напряжения от соответствующих датчиков.
При этом в отличие от автомата, покупайте три отдельных однофазных модульных пускателя. Старые модели типа ПМЛ, ПМА, КМИ здесь не подойдут. И дело вовсе не в их шумной работе и громких щелчках.
Модульный трехфазный экземпляр в едином корпусе, тоже будет не пригоден для нашей схемы.
Самое главное преимущество однофазных – возможность ручной и очень простой регулировки мощности электрокотла. Подробнее об этом будет сказано ниже.
К силовым клеммам каждого контактора, как раз-таки и подключаются нагревательные элементы (ТЭН, электроды) котла отопления.
Замкнутое или разомкнутое положение контактов зависит от того, подано или снято напряжение с его катушки управления. Получается, чтобы собрать автоматику, на клеммы этих самых катушек мы должны через какие-то другие элементы подавать управляющие сигналы (напряжение).
Катушка имеет два контакта А1, А2.
При покупке обращайте внимание, пускатели могут идти с катушками на 380В и 220В. Лучше брать последний вариант.
В этом случае на один из контактов вы напрямую подключаете нулевой проводник, а в разрыв второго устанавливаете кнопки-микровыключатели.
Для чего они нужны? Благодаря им, у вас появляется возможность включать поочередно 1,2 или 3 тэна, тем самым увеличивая или уменьшая мощность отопления.
К примеру, на улице за окном температура -5С. Нажимаете одну кнопку и запускаете в работу всего один ТЭН мощностью 2квт. Ударили морозы -25С, нажимаете все три кнопки и повышаете мощность в три раза.
При этом количество ступеней обогрева будет зависеть от номинальной мощности каждого нагревательного элемента. Если они все будут по 2квт – это всего три ступени.
А вот если один будет 2квт, второй 3квт, а третий 4квт, то количество ступеней автоматически возрастает до семи!
Все будет зависеть от того, какие фазы (тэны) и в какой последовательности подключать.
- по отдельности 2квт – 3квт – 4квт
То есть, благодаря этим маленьким кнопочкам и раздельным модульным пускателям вы получаете простейшую схему для регулировки мощности электрического отопления.
Ток в цепях управления катушек очень небольшой (несколько миллиампер). Соответственно ставить сюда полноценные выключатели не нужно.
На все эти три микровыключателя должна быть подана одна фаза. Допустим фаза С. Берете ее с нижних контактов вводного автомата.
Вот именно из этой точки и начинается вся дальнейшая схема автоматики.
Обязательный элемент такой схемы – предельный термостат.
Это защитное устройство, которое отключит ваш электрокотел, если он пошел, что называется в разнос.
Например, перестал работать циркуляционный насос или где-то образовался засор. В результате этого температура начала резко возрастать и превысила допустимые значения.
Данную температуру вы устанавливаете самостоятельно при помощи ручного регулятора.
Так как это защитный элемент, который должен полностью “гасить” котел, подключать его нужно последовательно в разрыв управляющей фазы, как на рисунке внизу.
Помимо безопасности, нам потребуется еще один элемент. Элемент управления, который будет его периодически включать и выключать для поддержания заданной температуры воды.
Этим устройством является рабочий термостат.
Не путайте его с предельным. В предельном имеется взводимая вручную кнопка, которая при срабатывании препятствует самостоятельному включению датчика.
То есть, когда он сработал один раз, вам потребуется осмотреть всю систему и схему, дабы разобраться в причине срабатывания. И только после этого, нажав эту кнопочку, отопление можно будет запустить заново. Рабочий термостат включается-выключается без вашего участия, в зависимости от выставленной на нем температуры.
Данный термостат монтируется после предельного, опять же в разрыв цепи.
Таким образом мы получили элемент защиты и элемент управления. В принципе, это и есть самая примитивная схема №1 для автоматики электрического отопления.
Чтобы получить более функциональный вариант, добавим сюда прибор для отслеживания температуры воздуха в помещении – комнатный термостат.
Ему не важно какая будет температура котловой воды, он реагирует именно на комфортную температуру воздуха в вашем доме.
По аналогии с предыдущими элементами монтируете его в разрыв, перед рабочим термостатом. Вторая простейшая схема готова.
Но человек всегда стремится к большему и помимо комфорта при электрическом отоплении, всегда хочется еще и сэкономить. Все таки электроотопление за редким исключением, в наших реалиях не совсем дешевая штука.
Как это сделать, усовершенствовав вышеприведённую схему подключения? Для этого дела существует ночной тариф.
Чтобы им воспользоваться в полной мере, нам потребуется реле времени.
Оно будет запускать электроотопление только в заданный промежуток суток. Размещайте его в схеме перед комнатным термостатом.
Однако при этом обратите внимание на один нюанс. При наличии в схеме такого устройства, обязательно параллельно ему монтируется термостат минимальной температуры воздуха.
Днем в ваше отсутствие, температура на улице может резко упасть. Уезжали при -5С, приехали вечером — за окном минус 25С. Соответственно и дома существенно похолодает. Стены начнут выстывать, так как реле времени попросту не даст запуститься отоплению раньше запрограммированного часа. Чтобы этого не случилось вам и потребуется своеобразная “шунтирующая” перемычка.
Она запустит отопление, как только температура в доме упадет ниже минимального порога. В итоге не даст дому остыть, а системе разморозиться.
Чтобы визуально наблюдать включены датчики или выключены в данный момент, можно подключить в общую точку перед микровыключателями сигнальную лампочку и вывести ее на видное место.
Особенно это полезно при нахождении щитка управления и самого котла в подвале дома или в соседней пристройке.
Большинство заводских электрокотлов отопления построено именно на таких принципиальных схемах управления. Есть одна питающая линия (фаза), подающая сигнал на катушку прибора с силовыми элементами, а все дополнительное оборудование, датчики и релюшки, как раз-таки и “навешиваются” на эту самую линию, выполняя защитную и контролирующую функции.
Как видите, ничего сложного и замысловатого здесь нет.
Разработка оптимальных решений бесконтактных коммутирующих устройств для электрических машин переменного тока
Исматов, Э. Ф. Разработка оптимальных решений бесконтактных коммутирующих устройств для электрических машин переменного тока / Э. Ф. Исматов. — Текст : непосредственный // Молодой ученый. — 2020. — № 3 (293). — С. 45-46. — URL: https://moluch.ru/archive/293/65952/ (дата обращения: 21.12.2021).
В данной статье рассмотрены вопросы коммутации электродвигателей и безопасного управления электрическими машинами во время коммутации.
Ключевые слова: компенсация, бесконтактная, блок, ПТ-16, ПТ-40, силовой блок, реле, коммутация, статор, ротор, электронный ключ.
Электромагнитные пускатели широко применяются для пуска электродвигателей и управления ими на промышленных предприятиях [1]. Но некоторые дефекты показали, что электромагнитные пускатели не могут применяться во всех отраслях промышленности и в шахтах [2].
Например, во время коммутации в газоразрядных и пожароопасных помещениях электромагнитные пускатели образуют коммутационную дугу, вследствие чего в шахтах происходит пожар.
Статистика показала, что коэффициент полезного действия магнитных пускателей меньше, чем автоматических [1].
- В современном мире распространены бесконтактные пускатели, имеющие больший потенциал, чем электромагнитные. Бесконтактные пускатели по сравнению с магнитными пускателями и автоматическими выключателями обладают следующими преимуществами [2]:
- − возможность осуществления большого количества коммутаций (сотни или тысячи срабатываний в час);
- − одновременное отключение фаз питающей сети и значительное снижение мощности потребления цепями управления;
- − повышенное быстродействие и возможность работать в сильных электромагнитных полях электролизных и электродуговых производств, а также в пожароопасных помещениях;
- − повышение надежности из-за отсутствия электрической дуги и механического изнашивания, залипания и подгорания контактов.
Бесконтактные пускатели выполняются на полупроводниковых элементах, и управление ими в зависимости от типа будет разным [1]. Сложность системы управления пускателями является одним из факторов, препятствующим широкому применению таких коммутационных аппаратов [1, 2].
Мы ведем научные исследования по разработке и внедрению бесконтактных коммутационных аппаратов на базе различных полупроводниковых элементов, обладающих простой, экономичной и надежной системой управления.
Одним из таких устройств является бесконтактный пускатель на базе тиристоров. Электрическая схема такого пускателя представлена на рис. 1.
Рис. 1. Электрическая схема бесконтактного тиристорного пускателя для асинхронных двигателей напряжением до 1000В:а — силовая цепь пуска АД; б — цепь управления
Предлагаемая нами схема бесконтактного тиристорного пускателя имеет более простое управление при сохранении всех преимуществ бесконтактных пускателей на базе полупроводниковых элементов [2].
Новый бесконтактный трехполюсный тиристорный пускатель представляет собой устройство, состоящее из шести тиристоров, шести резисторов, двух малогабаритных промежуточных реле и теплового реле для защиты (рис. 1).
Подача питания к двигателю начинается с подачи напряжения на реле КL1 и KL2 одновременно. Реле КL1 и KL2 срабатывают и замыкают свои контакты, тем самым подавая сигналы к управляющим электродам тиристоров.
Силовые тиристоры открываются, и подается питание напряжением 380В к зажимам асинхронного электродвигателя. Вследствие этого двигатель запускается и начинает вращаться. Если в процессе пуска или в нормальном режиме возникает короткое замыкание в двигателе, то срабатывает тепловое реле, и электродвигатель отключается.
- Таким образом, новый бесконтактный трехполюсный тиристорный пускатель может быть использован в качестве коммутационного аппарата для пуска электродвигателей и технологического оборудования на промышленных предприятиях.
- Следует отметить, что бесконтактные пускатели такого типа будут очень полезны для двухскоростных двигателей с полюсно-переключаемыми обмотками, где требуется большое количество коммутаций с частыми пусками, переходами с одной скорости на другую и торможением.
- Литература:
- Зарипов Ш. У. и др. Разработка рациональных решений бесконтактного управления электроприводами горных машин // Современные научные исследования и разработки. — 2017. — №. 8. — С. 201–205.
- Саъдуллаев М. С. и др. Использование устройств, состоящих из бесконтактных элементов, в управлении компенсирующими устройствами // Молодой ученый. — 2018. — №. 1. — С. 23–25.
Основные термины (генерируются автоматически): пускатель, бесконтактный тиристорный пускатель, бесконтактный трехполюсный тиристорный пускатель, время коммутации, пуск электродвигателей, тепловое реле, цепь управления, электрическая схема.
Новый бесконтактный трехполюсный тиристорный пускатель представляет собой устройство, состоящее из шести тиристоров, шести резисторов, двух малогабаритных промежуточных реле и теплового реле для защиты (рис.1).
Более совершенными устройствами управления являются магнитные пускатели. Магнитный пускатель — электрический аппарат, предназначенный для пуска, реверса и отключения электродвигателей. Магнитный пускатель, — по существу, контактор переменного или…
Предлагаемое бесконтактное устройство, силовая цепь которого состоит из тиристоров, выделяется простотой схемы управления и защиты, надежностью и удобством в эксплуатации. Устройство состоит из включающего блока 2 по напряжению и регулированию тока нагрузки 1…
Так в схемах включения трансмиттерного реле ТШ начато использование бесконтактного коммутатора тока БКТ, улучшающего работу контактов
БКТ является более современным переключающим устройством для коммутации кодового тока в рельсовых цепях 25 и 50 Гц.
Рис. 1. Схема управления двигателем с помощью магнитного пускателя.
Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с
При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми…
‒ аппараты управления (контакторы, пускатели, сильноточные реле). Управление выключателями может осуществляться местно
Устройства защиты тиристорные типов УЗТ-1 и УЗТ-2 предназначены для защиты аппаратуры электрических цепей переменного тока с…
В большинстве случаев контакторы используются для цепей управления электродвигателями.
Они связаны с цепями управления коммутационных аппаратов (контакторов, пускателей
Дистанционное управление мощными электрическими цепями…
Библиографическое описание: Сабельников А. С. Коммутация силовой цепи с помощью
Количество ступеней, их сопротивление и время коммутации подбиралось таким образом
В распределительных электрических сетях напряжением 10 кВ для коммутации токов короткого…
Одной из самых перспективных схем крановых приводов являются схемы на базе тиристорных преобразователей. Можно выделить четыре основные системы использования тиристорных преобразователей для регулирования частоты вращения синхронных двигателей.
Рис. 2. Электрическая схема соединений.
После нажатия кнопки «Пуск» поста управления включается контактор А2, после нажатия кнопки «Стоп» контактор отключается.
Рис. 1. Схема распределительной электрической цепи с устройствами релейной защиты.
Принцип работы бесконтактного пускателя ПБР-3А — читать статью
Схема электрическая принципиальная бесконтактного пускателя ПБР-3А приведена на рисунке А.1. (см. сайт ООО «Реконт» www.recont.z500.ru «Схемы»).
Входным сигналом пускателей является напряжение отрицательной полярности, подаваемого относительно контакта 8 на вход «М» (контакт 7) или вход «Б* (контакт 9). Обозначение «М» (меньше) или «Б» (больше) приняты условно.
Для осуществления управления пускателем с помощью ключей в пускателе имеется источник напряжения , на положительный потенциал которого выведен на клемму 8, отрицательный — на клемму 10.
С помощью ключей контакт 10 подключается ко входу «М» или «Б».
( Примечание : Запрещается использовать внутренний источник питания пускателя ПБР-3А для питания токовых датчиков БСПТ-10(М) исполнительного механизма, для этого предусмотрены специализированные трансформаторные блоки питания БП-20 (БП-10) или импульсные блоки питания БП-20 (БП-10), а также других устройств типа реле и т.п.)
В исходном состоянии (входные сигналы отсутствуют) напряжение на эмиттере транзистора VT4 меньше напряжения включения за счет малой величины сопротивления резисторов R6, R13, уменьшающих напряжение на эмиттере через положительный вывод выпрямительного диодного моста VD9… VDI2.
В связи с этим транзисторы VT1 и VT3 закрыты, управляющих импульсов на трансформаторах VТ2 и VТЗ нет. Симисторы VD33…VD36 закрыты. Напряжение на выходе отсутствует.
При подаче управляющего напряжения на клеммы 8 — 7 (8-9) происходит заряд конденсаторов CI (С2) и СЗ, выполняющих функции фильтров и элементов схемы задержки на реверс.
Протекание тока через резисторы R6, R13, отрицательный вывод выпрямительного диодного моста VD9… VDI2 и диод VD5 (VD6) приводит к увеличению падения напряжения на резисторах R6 и R13 и открытию диода отрицательного вывода выпрямительного диодного моста VD9… VDI2.
В результате этого на базе транзистора VT1(VT3) напряжение уменьшается, происходит заряд конденсаторов СЗ и С5 и увеличение напряжения на базе транзистора VT3 (VT1) и эмиттере транзистора VT4 относительно базы 1 транзистора VT4.
При достижении напряжением на эмиттере транзистора VT4 напряжения включения транзистор открывается и конденсатор С5 разряжается по цепи: резистор R7, переход база-эмиттер транзистора VT3 (VT1), диод VD14 (VD13), переход эмиттер — база транзистора VT4, и отрицательный вывод выпрямительного диодного моста VD9… VDI2.
Ток разряда конденсатора, протекающий через базу транзистора VT3 (VT1), усиливается им и в трансформаторе ТV3 (ТV2) формируется импульс, отпирающий симисторы VD33 (VD34) и VD36 (VD35).
Процесс заряд-разряд конденсатора С5 повторяется периодически и прекращается только после снятия входного сигнала.
Симисторы VD33 (VD34) и VD36 (VD35) также открыты до снятия входного напряжения.
- Симисторы силовой цепи VD33…VD36 служат для подачи напряжения на электродвигатель.
- Конденсатор С14 и резисторы R27, R28 предназначены для улучшения условий коммутации симисторов.
- Пускатель защищен от одновременного отпирания всех симисторов, вызванного подачей напряжения на оба входа, или быстрым реверсом напряжения управления.
- Пускатели содержит варисторы RU1…RU4 для защиты симисторов от перенапряжений при коммутации электродвигателя.
Пускатель ПБР-ЗА содержит схему защиты электродвигателя от перегрузки. Схема защиты обеспечивает отключение электродвигателя механизма при выходе выходного органа исполнительного механизма на упор, либо при заклинивании его в промежуточном положении.
Входной сигнал схемы зашиты — ток электродвигателя.
Выходное напряжение трансформаторов тока TV4 и TV5 через выпрямительный диодный мост (VD19, VD20, VD25, VD26), резистор R19 подается на конденсаторы С8, С9.
Если конденсаторы зарядятся до напряжения отпирания транзистора VT5, транзистор откроется, уменьшит потенциал эмиттера транзистора VT2 (при практически постоянном напряжении на базе этого транзистора).
Транзистор VT2 откроется и зашунтирует цепь питания эмиттера транзистора VT4, формирование импульсов прекратится. В таком положении схема остается до снятия входного напряжения со входа пускателя.
Пускатель рассчитан на подключение электродвигателей различной мощности, поэтому предусмотрено изменение тока срабатывания защиты изменением положения движка потенциометра R22, расположенного на передней панели пускателя.
4.3. Защита пускателя от коротких замыканий
Для защиты пускателя от коротких замыканий рекомендуется подавать напряжение на клеммы 1-2-3 пускателя через предохранители ПК45 5А.